Черные дыры – астрофизический миф

Определение гравитационных радиусов Солнца для инфракрасного, светового и гамма фотонов с длинами волн. Изучение закона всемирного тяготения, открытый И. Ньютоном. Рачет равенства между энергией фотона и потенциальной энергией гравитационного поля.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 05.02.2019
Размер файла 77,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЧЁРНЫЕ ДЫРЫ - АСТРОФИЗИЧЕСКИЙ МИФ

Канарев Ф.М.

Научная идея о существовании Чёрных дыр - одна из долгоживущих. И этот факт является наиболее удивительным, так как доказательство ошибочности этой идеи базируется на знаниях средней школы. Из этого анализа однозначно и неопровержимо следует «Чёрные дыры» - научный миф. гравитационный фотон энергия закон

Закон всемирного тяготения, открытый И. Ньютоном (1687 г.), стимулировал развитие астрономических идей. Вначале Митчелл (1783 г.), затем Лаплас (1796 г.) предсказали возможность существования звезд с таким сильным гравитационным полем, которое задерживает световые фотоны, и поэтому такие звезды становятся невидимыми. Впоследствии их назвали Черными дырами [1].

В 1916 г. немецкий астроном и физик Карл Шварцшильд предложил формулу для расчета гравитационного радиуса Черной дыры, которая следует из законов Классической механики. С тех пор эта формула и используется в астрономических расчетах, а гравитационный радиус называется Шварцшильдовским радиусом.

, (1)

где - гравитационная постоянная; - масса звезды; - скорость света.

Известно, что по мере уменьшения длины волны фотона (от инфракрасного до гамма диапазона) его энергия увеличивается примерно на 15 порядков [1]. В такой же последовательности растет и возможность фотона преодолевать силу гравитации, но формула (1) не учитывает этот факт. Поэтому у нас есть основания полагать, что при её выводе была допущена ошибка. В чем её суть?

Формула (1) была получена следующим образом. За основу было взято математическое соотношение закона всемирного тяготения [1]

, (2)

здесь: - сила гравитации; - масса фотона; - расстояние между центрами масс тел, формирующих гравитацию.

Чтобы найти гравитационный радиус звезды, при котором её гравитационное поле задерживает свет, надо найти равенство между силой гравитации и силой , движущей фотон. Однако, сделать это при полном отсутствии информации об электромагнитной структуре фотона не так просто. Поэтому за основу была взята идея равенства между энергией фотона и потенциальной энергией гравитационного поля . Если предположить, что сила гравитации совершает работу на расстоянии, равном гравитационному радиусу , то эта работа будет равна [1]

. (3)

Связь между энергией фотона , длиной его волны , частотой колебаний и скоростью определяется зависимостями [1]:

(4)

где: Дж с - постоянная Планка; .

Далее предполагалось, что фотон будет двигаться в гравитационном поле звезды со скоростью и поэтому его кинетическая энергия должна определяться соотношением При имеем

(5)

Из описанного следует, что гравитационное поле звезды будет задерживать фотон при равенстве между её потенциальной энергией (3) и кинетической энергией фотона (4), то есть

(6)

Отсюда получаем формулу для расчета гравитационного радиуса, предложенную К. Шварцшильдом

(7)

Мы уже показали, что скорость центра масс фотона изменяется в интервале длины его волны таким образом, что её средняя величина остаётся постоянной и равной скорости света [1]. Это дает нам основание определить в первом приближении силу , движущую фотон, путем деления его энергии на длину волны [1].

(8)

Приравнивая силу гравитации (2) и силу, движущую фотон (8) , имеем

(9)

Отсюда имеем

. (10)

Из изложенного следует, что для определения гравитационного радиуса Черной дыры необходимо использовать равенство между гравитационной силой и силой, движущей фотон, но не равенство энергий. Силу (8), движущую фотон, можно записать так

, (11)

где - коэффициент, величина которого зависит от используемого при расчете ускорения центра масс фотона.

Для максимального полного ускорения фотона , для максимального касательного ускорения , а для максимального значения проекции полного ускорения на ось , совпадающей с направлением движения центра масс фотона, . В прежних наших публикациях [1] мы приняли , что соответствует максимальному полному ускорению точки условной окружности радиуса [1]. Так как величина указанного коэффициента незначительно влияет на величину ускорения центра масс фотона, то для рассматриваемого нами случая примем . При равенстве между силой (8) , движущей фотон, и силой гравитации (2) гравитационного поля и учете соотношения (10), гравитационный радиус определится по формуле

. (12)

Тогда сила , движущая световой фотон с длиной волны м со скоростью м/c, будет равна

(13)

Учитывая, что масса Солнца кг, радиус Солнца м, , постоянная гравитации и обозначая массу фотона через , определим силу гравитации Солнца, действующую на пролетающий мимо фотон, по формуле [1]

(14)

Тангенс угла отклонения фотона от прямолинейного движения при его пролете вблизи Солнца будет равен (рис. 1).

Известно, неудержимое стремление Артура Эддингтона - руководителя астрофизической экспедиции по наблюдению солнечного затмения (1919г) доказать достоверность эйнштейновской теории об искривлении пространства. Если бы Эддингтон владел, излагаемой нами элементарной информацией, то он, конечно, не поехал бы в Африку, где затмение Солнца было максимально. Ему достаточно было бы рассчитать ожидаемый результат измерений по формуле (15) и убедиться в отсутствии возможности доказать достоверность эйнштейновской теории и убедиться в её полной физической ошибочности. Сделаем это за него

Если фотон с длиной волны пролетает вблизи Солнца по прямой, которая параллельна линии, соединяющей центры масс Солнца и Земли, то величина его отклонения от прямолинейного движения в окрестностях Земли будет равна [1]

(15)

где м - расстояние от Земли до Солнца.

Рис. 1. Схема к анализу искривления траектории фотона гравитационным полем Солнца: 1-Солнце; 2- Земля; 3- звезда

Наука пока не располагает приборами, способными зафиксировать величину м (рис. 1). Даже если бы удалось измерить её, то она доказала бы искривление траектории фотона, летящего от звезды, гравитационным полем Солнца, но не искривление пространства.

Гравитационный радиус Солнца, при котором оно превращается в Черную дыру, сейчас определяется по формуле (1), не учитывающей длину волны фотона [1]

(16)

Определим гравитационные радиусы Солнца для инфракрасного, светового и гамма фотонов со следующими длинами волн соответственно: , и по формуле (12).

(17)

(18)

(19)

В обычном состоянии плотность вещества Солнца равна 1,4 кг/[1]. После сжатия плотность вещества Солнца будет зависеть от гравитационного радиуса, определяемого по формулам (16), (17), (18) и (19) соответственно

(20)

(21)

(22)

(23)

Напомним, что плотность ядер атомов оценивается величиной [1].

Теперь видно, что если Солнце сожмется до гравитационного радиуса (17), то его поле гравитации будет задерживать только излучение далекой инфракрасной области спектра. Фотоны с меньшей длиной волны оно будет пропускать свободно. Чтобы задерживались фотоны всех частот, гравитационный радиус Солнца должен быть равен (19), что вряд ли возможно, так как в этом случае плотность вещества Солнца (23) должна быть на 37 порядков больше плотности ядер атомов [1].

Таким образом, ошибка в определении гравитационного радиуса Солнца, как Черной дыры по формуле (1), не учитывающей длину волны электромагнитного излучения, составляет одиннадцать порядков (19), но астрономы до сих пор не знают этого [1].

Если в Природе есть объекты с такой сильной гравитацией, которая задерживает фотоны всех частот, то они не могут быть все черными. Их цвета должны меняться в полном соответствии с изменением цветов фотонов, которые эти объекты не могут задержать. Первыми будут задерживаться фотоны инфракрасной области спектра, затем, по мере уменьшения гравитационного радиуса, фотоны светового, ультрафиолетового, рентгеновского и гамма диапазонов. Дыра становится черной только при гравитационном радиусе, соответствующем гамма фотону с минимальной длиной волны.

Астрофизики зафиксировали, что орбитальный период объекта Лебедь Х-1 совпадает с периодом рентгеновского затмения от этого объекта. Это интересный результат, но он имеет и другие варианты интерпретации. Например, излучение рентгеновских фотонов лишь одной стороной этого объекта. В этом случае указанные периоды тоже будут совпадать.

Изложенные расчёты были опубликованы более 10 лет назад в книгах автора и многочисленных интернетовских статьях, но ни один астрофизик не проявил интерес к этим результатам. Неудобно перед будущими поколениями исследователей за наших современников, сочиняющих научные небылицы и не имеющих элементарного стремления к поиску причин противоречий, на которых они базируют эти небылицы.

Литература

1. Канарёв Ф.М. Начала физхимии микромира. 8-е издание. Краснодар, 2007. 750стр.

Размещено на Allbest.ru


Подобные документы

  • История открытия Исааком Ньютоном "Закона всемирного тяготения", события, предшествующие данному открытию. Суть и границы применения закона. Формулировка законов Кеплера и их применение к движению планет, их естественных и искусственных спутников.

    презентация [2,4 M], добавлен 25.07.2010

  • История открытия закона всемирного тяготения. Иоган Кеплер как один из первооткрывателей закона движения планет вокруг солнца. Сущность и особенности эксперимента Кавендиша. Анализ теории силы взаимного притяжения. Основные границы применимости закона.

    презентация [7,0 M], добавлен 29.03.2011

  • Законы движения планет Кеплера, их краткая характеристика. История открытия Закона всемирного тяготения И. Ньютоном. Попытки создания модели Вселенной. Движение тел под действием силы тяжести. Гравитационные силы притяжения. Искусственные спутники Земли.

    реферат [339,9 K], добавлен 25.07.2010

  • Понятие гравитационного поля как особого вида материи и его основные свойства. Сущность теории вихревых полей. Определение радиуса действия гравитационного поля. Расчет размеров гравитационных полей планет, их сравнение с расстоянием между ними.

    реферат [97,9 K], добавлен 12.03.2014

  • Физическая сущность понятий: "пространство–время", "коэффициент пропорциональности". Уточнение закона всемирного тяготения. Масса ядра и материальной оболочки Земли. Луна – "нарушитель" правил орбитального движения. Параметры орбиты нашей Галактики.

    научная работа [32,5 K], добавлен 06.12.2007

  • Явление тяготения и масса тела, гравитационное притяжение Земли. Измерение массы при помощи рычажных весов. История открытия "Закона всемирного тяготения", его формулировка и границы применимости. Расчет силы тяжести и ускорения свободного падения.

    конспект урока [488,2 K], добавлен 27.09.2010

  • Понятие работы и мощности, их измерение. Взаимосвязь между работой и энергией. Кинетическая и потенциальная энергии. Закон сохранения энергии и импульса. Столкновение двух тел. Формулы, связанные с работой и энергией при поступательном движении.

    реферат [75,6 K], добавлен 01.11.2013

  • Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.

    контрольная работа [1,7 M], добавлен 31.01.2013

  • Возникновение теории относительности. Классическая, релятивистская, квантовая механика. Относительность одновременности событий, промежутков времени. Закон Ньютона в релятивистской форме. Связь между массой и энергией. Формула Эйнштейна, энергия покоя.

    курсовая работа [194,5 K], добавлен 04.01.2016

  • Почему упало яблоко? В чем состоит закон тяготения? Сила всемирного тяготения. "Дыры" в пространстве и времени. Роль масс притягивающихся тел. Почему гравитация в космосе не такая, как на земле? Движение планет. Ньютоновская теория гравитации.

    курсовая работа [120,5 K], добавлен 25.04.2002

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.