Уточнённая методика расчёта режимов работы солнечных нагревателей воды ёмкостного типа

Расчёт тепловых режимов работы солнечных нагревателей воды ёмкостного типа. Использование электротепловой схемы замещения и метода узловых потенциалов. Способ определения эквивалентной температуры атмосферы с учетом влагосодержания и индекса облачности.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 02.02.2019
Размер файла 204,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.Allbest.Ru/

Размещено на http://www.Allbest.Ru/

Размещено на http://www.Allbest.Ru/

Московская государственная академия тонких химических технологий м. М.В. Ломоносова

Кафедра электротехники, электроники, микропроцессорной техники им. А.В. Нетушила

Институт энергетики АН Молдовы

Лаборатория нетрадиционных источников энергии Института энергетики АНМ

Лаборатория управляемого электропривода

Уточнённая методика расчёта режимов работы солнечных нагревателей воды ёмкостного типа

Ермуратский В. д.-х.т.н.

Ермуратский В., инженер

Ермуратский П., д.-х.т.н., профессор

г. Москва

Аннотация

Представлена уточнённая методика расчёта тепловых режимов солнечных нагревателей воды ёмкостного типа, основанная на использовании электротепловой схемы замещения и метода узловых потенциалов.

Ключевые слова: солнечные нагреватели воды, электротепловая схема замещения, солнечное излучение.

Ermuratski V., Ermuratschii V., Ermuratski P. Metoda precisг de calcul al regimului de funcюionare ale incгlzitoarilor solari de apг de tip-capacitatea

Rezumat. Este prezentatг metoda precisг de calculul a regimurilor termice a оncгlzitoarilor solare de apг de tip capacitativ bazatг pe utilizarea schemei termoelectrice echivalente єi metoda nodurilor de potenюial.

Cuvinte-cheie: оncгlzitor solar de apг, schema termoelectricг echivalentг, iradierea solara.

Ermuratski V., Ermuratski V., Ermuratski P. Refined method of computing modes of operating of capacity-type solar heaters of water

Abstract. The refined method procedure of thermal modes of solar heaters of water of the capacity type, based on use of an electro-thermal equivalent circuit and a method of central potentials is presented.

Keywords: solar heaters of water, electro-thermal equivalent circuit, solar radiation

Объект

Рассматривается солнечный нагреватель воды (СНВ), в котором конструктивно совмещены солнечный коллектор и аккумулятор горячей воды. Такие СНВ перспективны не только для индивидуальных установок [1,2], но и для достаточно крупных систем горячего водоснабжения [3].

Вместе с тем, применение традиционных методик расчёта температур, производительности, полезной энергии, изложенных в вышеуказанных работах, приводит к погрешностям, которые обусловлены неточным заданием параметров и особенностью теплообмена таких СНВ с окружающей средой. Так, при горизонтальном расположении абсорбера могут существенно увеличиться радиационные потери в атмосферу и уменьшиться радиационный теплообмен с окружающими предметами. Кроме того, в отличие, например от гелиоустановок с разделёнными элементами, СНВ рассматриваемого вида, по-другому реагируют на переменный режим облучения, связанный с затенением при переменной облачности. Возможны разные варианты конструктивного исполнения прозрачного ограждения (число слоёв, вид материала, его толщина и т.д.) и абсорбера СНВ (селективность, форма). Характеристики СНВ могут сильно зависеть от наличия экранов-рефлекторов и их углов наклона. В связи с этими особенностями возникает необходимость в уточнении существующих методик расчёта температурных режимов СНВ ёмкостного типа.

Методика расчёта температурного режима СНВ

Примем следующие упрощающие допущения: температурное поле СНВ одномерное, температура воды равна температуре абсорбера, потребление горячей воды из СНВ осуществляется во второй половине дня по завершению процесса нагрева.

Для расчётов энергетических показателей и характеристик солнечного нагревателя воды ёмкостного типа применена электротепловая схема замещения, показанная на рис. 1. На этом рисунке - это теплоёмкость рабочего тела; резисторы - тепловые проводимости; - источники тепла (поглощаемая прозрачным ограждением и абсорбером солнечная энергия); - температура окружающей среды; - эквивалентная температура атмосферы. Значения этих величин зависят от конструкции, геометрических размеров нагревателя, а также от условий его работы /1,2/.

Рис. 1. Электротепловая схема замещения СНВ ёмкостного типа

Температуры , и в узлах схемы замещения соответствуют точкам, расположенных на внешней и внутренней поверхности прозрачного ограждения, а также в воде.

Теплоёмкость рабочего тела солнечного нагревателя воды определяется по известному выражению:

, (1)

где , , - плотность, объём и удельная теплоёмкость воды.

Тепловые проводимости рассчитываются для каждого элемента конструкции СНВ, используя данные по определению удельных коэффициентов конвективного, кондуктивного и радиационного теплообмена, теплоотдачи, приведенные в работах [1, 4, 5] и в других источниках, соответствующие конструктивным особенностям и ориентации СНВ. Так, например радиационная тепловая проводимость (между внешней поверхностью прозрачного ограждения и атмосферой), учитывая небольшое отличие абсолютных температур и , рассчитывается по следующей формуле [4]:

, (2)

где - эквивалентная степень черноты и угловой коэффициент этой пары; - эквивалентное значение абсолютной температуры атмосферы; - апертура СНВ. Особенностью здесь является то, что и эквивалентная температура атмосферы должны определяться для условий с различной влажностью воздуха, индекса и характера облачности [1].

Проводимость равна сумме двух проводимостей, определяемых для вышеуказанной поверхности по формулам конвективного и радиационного теплообмена с окружающей средой. При этом радиационная компонента находится по формуле (2), используя соответствующие значения коэффициентов и температур. Для расчётов конвективной компоненты применялась следующая формула [4]:

(3)

где - коэффициенты, зависящие от размеров поверхности, температур и режима движения воздуха;

- скорость ветра.

Аналогично рассчитываются остальные тепловые проводимости схемы замещения. При правильно найденных параметрах считаем эту схему эквивалентной по отношению к объекту. Значения тепловых проводимостей электротепловой схемы замещения зависят от температур отдельных частей СНВ и поэтому должны рассчитываться одновременно с расчётом теплового режима.

Основная сложность обеспечения результатов расчётов близких к реальным связана с моделированием метеорологических данных. Обычной практикой является формирование условий «типичного метеорологического года» (TMY [1]). солнечный нагреватель емкостный электротепловой

Интенсивность падающего на некоторую поверхность прямого солнечного излучения зависит от ориентации этой поверхности, месяца года, времени суток и степени прозрачности атмосферы [1]. Для поверхности перпендикулярной лучам эту величину предлагается рассчитывать по следующей формуле:

, (4)

где - индексы, учитывающие прозрачность атмосферы и характеристики облачности. Значение условной массы атмосферы определялась по следующему выражению:

(5)

Координаты Солнца на небосводе (зенитный угол Солнца ( и азимут), а также плотность солнечного излучения, падающего на прозрачное ограждение СНВ рассчитываются по формулам, приведенным в работах [1,2].

Мощность источников рассчитывается в соответствии с рекомендациям работы [1], определяя пропускательную способность прозрачного ограждения как функцию угла падения солнечных лучей, а также приведенную поглощательную способность абсорбера.

Аппроксимация дневного хода температуры окружающей среды до момента начала её снижения осуществлялась экспоненциальной функцией следующего вида:

(6)

где - номер месяца года;

- начальное значение температуры воздуха;

- максимальное суточное значение температуры;

- постоянная времени экспоненты суточного хода температуры. После момента начала снижения температуры воздуха () выражение для её расчета имеет вид:

(7)

Значения параметров в формулах (6) и (7) определяются по данным метеорологических наблюдений, приведенных, например, в работах [6, 7].

Мощность потерь энергии определялась как сумма потоков теплообмена СНВ с окружающей средой:

(8)

Расчёт температур в узлах электротепловой схемы замещения (Рис. 1) производится, используя метод узловых потенциалов, известный из электротехники [8]. Для того чтобы не решать систему уравнений, описывающую нестационарный тепловой процесс, связанный с учётом теплоёмкости воды, был применён следующий подход.

Интервал времени, в течение которого поглощается солнечная энергия, разбивается на ряд интервалов. Расчёт выполняется, начиная с первого интервала для которого известно начальное значение температуры воды, которое принято зависящим от месяца года или вида источника воды водопровод или, например, колодец. Система уравнений для узловых потенциалов решается как для стационарного процесса при задаваемой температуре воды (), т.е. для схемы, показанной на Рис. 1, составляется не три уравнения, а два. Температура воды на каждом интервале времени находится поисковым методом, в котором параметр поиска определяется из уравнения небаланса потоков тепла для схемы замещения:

, (9)

где - потоки тепла через проводимости (Рис. 1).

Поток тепла, нагревающего воду, рассчитывается по формуле изменения внутренней энергии массы воды:

, (10)

где - изменение температуры воды за интервал времени . Поисковый процесс производится на каждом интервале времени. При этом в качестве начального значения температуры воды для следующего интервала времени используется значение этой величины, полученное на предыдущем интервале времени.

Для расчётов температур в различных точках конструкции СНВ ёмкостного типа по вышеприведенным формулам была разработана специальная программа (среда Дельфи, язык - Паскаль). Рассчитываются также значения таких величин, как полезная мощность и энергия, потери тепла и КПД СНВ на различных интервалах времени суток, месяцев и года.

Результаты математических и физических экспериментов

Для оценки применимости предложенной методики расчёта были выполнены измерения и расчёты температуры воды двух конструкций: СНВ1 (без корпуса и теплоизоляции) и теплоизолированного СНВ2 с полимерными абсорберами при 100л/м2. На рис. 2 и рис. 3 приведены результаты экспериментов, проведенных в условиях ясных солнечных дней августа 2005.

Рис. 2. Зависимости температуры воды и воздуха от времени суток для СНВ1

Рис. 3. Зависимости температуры воды и воздуха от времени суток для СНВ2 с корпусом и теплоизоляцией с полимерным абсорбером и однослойным стеклянным ограждением

Из данных этих экспериментов следует достаточно хорошее совпадение временных зависимостей температуры воды. Систематическое расхождение данных физических и численных экспериментов вероятнее всего обусловлено неточностью определения эквивалентной температуры атмосферы, которая при расчётах была равна -7оС. Полное совпадение результатов численных и физических экспериментов имеет место при t = 0оС. На рисунках также видно, что максимальные температуры воды в этих двух конструкциях отличаются и экстремум наблюдается в разное время. В это время целесообразно производить отбор горячей воды или же теплоизолировать прозрачное ограждение СНВ для более позднего отбора.

Заключение

Разработана уточнённая методика расчёта тепловых режимов работы солнечных нагревателей воды ёмкостного типа, основанная на использовании электротепловой схемы замещения и метода узловых потенциалов. Методика позволяет учесть различные механизмы и условия теплообмена СНВ с окружающей средой, а также вариации солнечного излучения и температуры этой среды. Необходимо разработать более точный способ определения эквивалентной температуры атмосферы, учитывающий, в частности, влагосодержание воздуха, индекс облачности и её характер.

Литература

1. Duffie J.F., Beckman W.A. Solar engineering of Thermal Processes. Second Edition. N-Y., 1991. John Willy & Sons.

2. Харченко Н.В. Индивидуальные солнечные установки. М.: Энергоатомиздат, 1991.

3. Tsilingiris P.T. Design, analysis and performance of low-cost plastic film large solar water heating systems. Solar Energy 60, 5, (1997) 245-256.

4. Дульнев Г.Н., Семяшкин Э.М. Теплообмен в радиоэлектронных аппаратах. Л. Энергия,- 1968, - 359с.

5. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. Изд. 4. М. Энергоиздат. 1981. 417 с.

6. Климат Кишинёва / Под ред. В.Н. Бабиченко, Т.Г. Шевкун / - Л., Гидрометеоиздат, 1982

7. Лассе Г.Ф. Климат Молдавской ССР Л. Гидрометеоиздат. 1978.

8. Основы теории цепей / Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил и др.-М.: Энергия, 1975.

Размещено на allbest.ru


Подобные документы

  • Описание схемы трёхфазной цепи в однолинейном исполнении. Рассмотрение особенностей режимов работы нейтралей и схем соединения фаз приёмников. Расчёт цепи методом узловых потенциалов. Вычисление значений токов основных ветвей прямой последовательности.

    курсовая работа [919,0 K], добавлен 10.12.2015

  • Требования к качеству электроэнергии. Перспективы развития электроэнергетики Казахстана. Анализ режимов работы электрических сетей. Расчет режимов работы РП-115. Схема замещения РП-115 в минимальном режиме, с учетом перспективного роста нагрузок.

    курсовая работа [1,5 M], добавлен 08.04.2014

  • Солнечно-водородная энергетика. Фотокатализ и фотосенсибилизация. Биофотолиз воды. Основные принципы работы солнечных батарей. Фотокаталитические системы разложения воды. Солнечное теплоснабжение. Перспективы развития фотоэлектрических технологий.

    реферат [66,3 K], добавлен 10.07.2008

  • Расчёт газовой турбины на переменные режимы (на основе расчёта проекта проточной части и основных характеристик на номинальном режиме работы газовой турбины). Методика расчёта переменных режимов. Количественный способ регулирования мощности турбины.

    курсовая работа [453,0 K], добавлен 11.11.2014

  • Принцип работы тахометрического счетчика воды. Коллективный, общий и индивидуальный прибор учета. Счетчики воды мокрого типа. Как остановить, отмотать и обмануть счетчик воды. Тарифы на холодную и горячую воду для населения. Нормативы потребления воды.

    контрольная работа [22,0 K], добавлен 17.03.2017

  • Область применения солнечных коллекторов. Преимущества солнечных установок. Оптимизация и уменьшение эксплуатационных затрат при отоплении зданий. Преимущества использования вакуумного солнечного коллектора. Конструкция солнечной сплит-системы.

    презентация [770,2 K], добавлен 23.01.2015

  • Расчёт переменных режимов газовой турбины на основе проекта проточной части и основных характеристик на номинальном режиме работы турбины. Принципиальная тепловая схема ГТУ с регенерацией. Методика расчёта переменных режимов, построение графиков.

    курсовая работа [1,2 M], добавлен 06.06.2013

  • Составление схемы замещения электрической сети и определение её параметров. Расчёт режимов коротких замыканий. Выбор типа основных и резервных защит сети. Устройство резервирования отказа выключателя. Выбор основных типов измерительных трансформаторов.

    дипломная работа [1,7 M], добавлен 15.02.2016

  • Особенности соединения типа "звезда", порядок проектирования и изготовления сменного модуля для проведения лабораторных работ по его изучению. Понятие четырехполюсников и порядок определения режимов их работы, методика расчета специальных коэффициентов.

    курсовая работа [2,7 M], добавлен 21.11.2009

  • Общая характеристика Юго-Восточных электрических сетей. Составление схемы замещения и расчет ее параметров. Анализ установившихся режимов работы. Рассмотрение возможностей по улучшению уровня напряжения. Вопросы по экономической части и охране труда.

    дипломная работа [430,3 K], добавлен 13.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.