Газотурбинные электростанции

Принципиальная технологическая схема электростанции с газовыми турбинами. Простая газотурбинная установка непрерывного горения и устройство ее основных элементов. Простая газотурбинная установка прерывистого горения. Работа испарительной установки.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 18.06.2015
Размер файла 458,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Науки и Образования Республики Казахстан

Частное Учреждение Международная Бизнес Академии

Бизнес колледж

Контрольная работа

По дисциплине: «Тепловые электростанции.»

Содержание

1. Газотурбинные электростанции

2. Газотурбинные установки

2.1 Простая газотурбинная установка непрерывного горения и устройство её основных элементов

2.2 Камера сгорания

2.3 Простая газотурбинная установка прерывистого горения

3. Испарительная установка

4. Список использованной литературы

1. Газотурбинные электростанции

Основу современных газотурбинных электростанций составляют газовые турбины мощностью 25-100 МВт. Упрощенная принципиальная схема энергоблока газотурбинной электростанции представлена на рисунке 5.

Рис. 5 Принципиальная технологическая схема электростанции с газовыми турбинами КС - камера сгорания; КП -- компрессор; ГТ - газовая турбина; С - генератор; Т - трансформатор; М - пусковой двигатель

Топливо (газ, дизельное горючее) подается в камеру сгорания, туда же компрессором нагнетается сжатый воздух. Горячие продукты сгорания отдают свою энергию газовой турбине, которая вращает компрессор и синхронный генератор. Запуск установки осуществляется при помощи разгонного двигателя и длится 1--2 мин, в связи с чем газотурбинные установки (ГТУ) отличаются высокой маневренностью и пригодны для покрытия пиков нагрузки в энергосистемах. Основная часть теплоты, получаемая в камере сгорания ГТУ, выбрасывается в атмосферу, поэтому общий КПД таких электростанций составляет 25 -30 %.

Для повышения экономичности газовых турбин разработаны парогазовые установки (ПГУ). В них топливо сжигается в топке парогенератора, пар из которого направляется в паровую турбину. Продукты сгорания из парогенератора, после того как они охладятся до необходимой температуры, направляются в газовую турбину. Таким образом, ПГУ имеет два электрических генератора, приводимых во вращение: один -- газовой турбиной, другой -- паровой турбиной. При этом мощность газовой турбины составляет около 20% паровой.

2. Газотурбинные установки

Газотурбинная установка (ГТУ) состоит из двух основных частей - это силовая турбина и генератор, которые размещаются в одном корпусе. Поток газа высокой температуры воздействует на лопатки силовой турбины (создает крутящий момент). Утилизация тепла посредством теплообменника или котла-утилизатора обеспечивает увеличение общего КПД установки.

ГТУ может работать как на жидком, так и на газообразном топливе. В обычном рабочем режиме - на газе, а в резервном (аварийном) - автоматически переключается на дизельное топливо. Оптимальным режимом работы газотурбинной установки является комбинированная выработка тепловой и электрической энергии. ГТУ может работать как в базовом режиме, так и для покрытия пиковых нагрузок.

2.1 Простая газотурбинная установка непрерывного горения и устройство её основных элементов

Принципиальная схема простой газотурбинной установки показана на рисунке 1.

Рисунок 1 Принципиальна схема ГТУ: 1 - компрессор; 2 - камера сгорания; 3 - газовая турбина; 4 - электрогенератор

Компрессор 1 засасывает воздух из атмосферы, сжимает его до определенного давления и подает в камеру сгорания 2. Сюда же непрерывно поступает жидкое или газообразное топливо. Сгорание топлива при такой схеме происходит непрерывно, при постоянном давлении, поэтому такие ГТУ называются газотурбинными установками непрерывного сгорания или ГТУ со сгоранием при постоянном давлении.

Горячие газы, образовавшиеся в камере сгорания в результате сжигания топлива, поступают в турбину 3. В турбине газ расширяется, и его внутренняя энергия преобразуется в механическую работу. Отработавшие газы выходят из турбины в окружающую среду (в атмосферу).

Часть мощности, развиваемой газовой турбиной, затрачивается на вращение компрессора, а оставшаяся часть (полезная мощность) отдается потребителю. Мощность, потребляемая компрессором, относительно велика и в простых схемах при умеренной температуре рабочей среды может в 2-3 раза превышать полезную мощность ГТУ. Это означает, что полная мощность собственно газовой турбины долгий быть значительно больше полезной мощности ГТУ.

Так как газовая турбина может работать только при наличии сжатого воздуха, получаемого только от компрессора, приводимого во вращение турбиной, очевидно, что пуск ГТУ должен осуществляться от постороннего источника энергии (пускового мотора), с помощью которого компрессор вращается до тех пор, пока из камеры сгорания не начнет поступать газ определённых параметров и в количестве, достаточном для начала работы газовой турбины.

Из приведенного описания ясно, что газотурбинная установка состоит из трех основных элементов: газовой турбины, компрессора и камеры сгорания. Рассмотрим принцип действия и устройство этих элементов.

Турбина. На рисунке 2 показана схема простой одноступенчатой турбины. Основными частями её являются; корпус (цилиндр.) турбины 1, в котором укреплены направляющие лопатки 2, рабочие лопатка 3, установленные по всей окружности на ободе диска 4, закрепленного на валу 5. Вал турбины вращается в подшипниках 6. В местах выход вала из корпуса установлены концевые уплотнения 7, ограничивающие утечку горячих газов из корпуса турбин. Все вращающиеся части, турбины (рабочие лопатки, диск, вал) составляют её ротор. Корпус с неподвижными направляющими лопатками и уплотнениями образует статор турбины. Диск с лопатками образует рабочее колесо.

Рисунок 2 Схема одноступенчатой турбины

Совокупность ряда направлявших и рабочих лопаток называется турбинной ступенью. На рисунке 3 вверху изображена схема такой турбинной ступени и внизу дано сечение направляющих и рабочих лопаток цилиндрической поверхности а-а, развернутой затем на плоскость чертежа.

Рисунок 3 Схема турбинной ступени

Направляющие лопатки 1 образуют в сечении суживающиеся каналы, называемые соплами. Каналы, образованные рабочими лопатками 2, также обычно имеют суживающуюся форму.

Горячий газ при повышенном давлении поступает в сопла турбины, где происходит его расширение и соответствующее увеличение скорости. При этом давление и температура газа падают. Таким образом, в соплах турбины совершается преобразование потенциальной энергии газа в кинетическую энергии. После выхода из сопел газ попадает в межлопаточные каналы рабочих лопаток, где изменяет свое направление. При обтекании газом рабочих лопаток давление на их вогнутой поверхности оказывается большим, чем на выпуклой, и под влиянием этой разности давлений происходит вращение рабочего колеса (направление вращение на рисунке 3 показано стрелкой u). Таким образом, часть кинетической энергии газа преобразуется на рабочих лопатках в механическую оказаться недопустимей по соображениям прочности рабочих лопаток или диска турбины. В таких случаях турбины выполняются многоступенчатыми. Схема многоступенчатой турбины показана на рисунке 4.

Рисунок 4 Схема многоступенчатой турбины: 1-подшипники; 2-концевые уплотнения; 3-входной патрубок; 4-корпус; 5-направляющие лопатки; 6-рабочие лопатки; 7-ротор; 8-выходной патрубок турбины

Турбина состоит из ряда последовательно расположенных отдельных ступеней, в которых происходит постепенное расширение газа. Падение давления, приходящееся на каждую ступень, а, следовательно, и скорость с1 в каждой ступени такой турбины, меньше, чем в одноступенчатой. Число ступеней может быть выбрано таким, чтобы при заданной окружной скорости и было получено желаемое отношение.

Компрессор. Схема многоступенчатого осевого компрессора изображена на рисунке 5.

Его основными составными частями являются: ротор 2 с закрепленными на нем рабочими лопатками 5, корпус 7 (цилиндр.), к которому крепятся направляющие лопатки 6 и концевые уплотнения 2, и подшипники 3. Совокупность одного ряда вращающихся рабочих лопаток и одного ряда расположенных за ними неподвижных направляющих лопаток называется ступенью компрессора. Засасываемый компрессором воздух последовательно проходит через следующие элементы компрессора, показанные на рисунке 5: входной патрубок 1, входной направляющий аппарат 4, группу ступеней 5, 6, спрямляющий аппарат 8, диффузор 9 и выходной патрубок 10.

Рисунок 5 Схема многоступенчатого осевого компрессора: 1-входной патрубок; 2-концевые уплотнения; 3-подшипники; 4-входной направляющий аппарат; 5-рабочие лопатки; 6-направляющие лопатки; 7-корпус 8-спрямляющий аппарат; 9-диффузор; 10-выходной патрубок; 11-ротор

Рассмотрим назначение этих элементов. Входной патрубок предназначен для равномерного подвода воздуха из атмосферы к входному направляющему аппарату, который должен придать необходимое направление потоку перед входом в первую степень. В ступенях воздух сжимается за счет передачи механической энергии потоку воздуха от вращающихся лопаток. Из последней ступени воздух поступает в спрямляющий аппарат, предназначенный для придания потоку осевого направления перед входом в диффузор. В диффузоре продолжается сжатие газа за счет понижения его кинетической энергии. Выходной патрубок предназначен для подачи воздуха от диффузора к перепускному трубопроводу. Лопатки компрессора 1 (рисунок 6) образуют ряд расширяющихся каналов (диффузоров). При вращении ротора воздух входит в межлопаточные каналы с большой относительной скоростью (скорость движения воздуха, наблюдаемая с движущихся лопаток). При движении воздуха по этим каналам его давление повышается в результате уменьшения относительной скорости. В расширяющихся каналах, образованных неподвижными направляющими лопатками 2, происходит дальнейшее повышение давления воздуха, сопровождающееся соответствующим уменьшением его кинетической энергии. Таким образом, преобразование энергии в ступени компрессора происходит по сравнению с турбиной ступенью в обратном направлении.

Рисунок 6 Схема ступени осевого компрессора

2.2 Камера сгорания

Назначение камеры сгорания заключается в повышения температуры рабочего тела за счет сгорания топлива в среде сжатого воздуха. Схема камеры сгорания показана на рисунке 7.

Сгорание топлива, впрыскиваемого через форсунку 1, происходит в зоне горения камеры, ограниченной жаровой трубой 2. В эту зону поступает только такое количество воздуха, которое необходимо для полного и интенсивного сгорания топлива (этот воздух называемся первичным).

Поступающий в зону горения воздух проходит через завихритель 3, который способствует хорошему перемешиванию топлива с воздухом. В зоне горения температура газов достигает 1300... 2000°С. По условиям прочности лопаток газовых турбин такая температура недопустима. Поэтому получающиеся в зоне горения камеры горячие газы разбавляются холодным воздухом, который называется вторичным. Вторичный воздух протекает по кольцевому пространству между жаровой трубкой 2 и корпусом 4. Часть этого воздуха поступает к продуктам сгорания через окна 5, а остальная часть смешивается с горячими глазами после жаровой трубы. Таким образом, компрессор должен подавать в камеру сгорания в несколько раз больше воздуха, чем необходимо для сжигания топлива, а поступающие в турбину продукты сгорания получаются сильно разбавленными воздухом и охлажденными.

2.3 Простая газотурбинная установка прерывистого горения

Схема установка прерывистого горения (со сгоранием при постоянном объеме) такая же, что и для установки с изобарным подводом теплоты, и показана на рисунке 1. Эта ГТУ отличается от установи непрерывного горения устройством камеры сгорания (рисунок 8).

Рисунок 8 Камера прерывистого горения: 1-воздушный клапан; 2-топливный клапан; 3-свеча зажигания; 4-сопловой (газовый) клапан

Камера сгорания ГТУ прерывистого горения имеет клапаны 1, 2 и 4, которые управляются особым распределительным механизмом.

Представим себе, что в некоторый момент времена все клапаны закрыты, и камера заполнена смесью воздуха и топлива. При помощи свечи зажигания 3 смесь воспламеняется и давление в камере повышается, так как сгорание происходит при постоянном объеме. При достижении определенного давления открывается клапан 4 и продукты сгорания поступают к соплам турбины, в которых происходит расширение газа. Давление в камере сгорания падает. После того, как давление в камере упадет до определенной величины, автоматически открывается воздушный клапан 1 и происходит продувка камеры свежим воздухом. Этот воздух проходит также через турбину и охлаждает её лопаточный аппарат.

В конце продувки сопловой клапан 4 закрывается и камера сгорания заполняется сжатым воздухом из компрессора. При работе на газообразном топливе в это же время через клапан 2 подается горючий газ. Этот процесс называется зарядкой камеры. По окончании зарядки закрываются все клапаны и происходит вспышка. Далее цикл повторяется.

Процесс изменения с течением времени давления в камере за весь цикл показан на рисунке 9.

Рисунок 9 Изменение давления в зависимости от времени в камере сгорания

Здесь АВ - вспышка; ВС - расширение; СД - продувка и ДА - зарядка. По данным Хольцварта весь цикл совершается приблизительно за 1,5 с. В этих опытах давление в начале вспышки (т. А) было равно (3...4) Ч 105 Па, а в конце вспышки (т. В) оно возрастало приблизительно до 15 Ч 105 Па.

3. Испарительная установка

Испарители - устройства предназначенные для приготовления дистиллята воды для восполнения потерь воды и пара.

1 - корпус; 2 - опускная труба; 3 - труба перепуска неконденсирующихся газов; 4, 5 - дырчатые листы; 6 - жалюзийный сепаратор; 7 - штуцер для трубопровода отвода вторичного пара; 8, 9 - штуцера для подвода промывочной и питательной воды; 10 - трубопровод греющего пара; 11 - лапы греющей секции; 12 - перегородки; 13 - греющая секция; 14 - крепления; 15 - штуцер для отвода конденсата греющего пара; 16 - лаз; 17 - штуцер опорожнения и продувки

электростанция газовый турбина испарительный

В настоящее время на тепловых электростанциях применяются в основном испарители поверхностного типа. Генерация вторичного пара в этих испарителях происходит из химически очищенной деаэрированной воды. Этот пар либо отпускается внешним потребителям на ТЭЦ (при этом конденсат греющего пара, отбираемого из турбины, сохраняется в цикле электростанции, а испаритель выполняет функцию паропреобразователя), либо конденсируется в конденсаторе испарителя и в виде дистиллята используется для восполнения потерь рабочего тела в цикле.

Такого типа испарители имеют вертикальное исполнение и оснащаются паропромывочными устройствами и сепаратором.

На рис. 1 показана типовая конструкция испарителя поверхностного типа, который маркируется буквой И с указанием площади поверхности теплообмена (греющей секции), например И-350 или И-1000. Основными узлами конструкции являются корпус, греющая секция, паропромывочные устройства, водораспределительные устройства и жалюзийный сепаратор.

Работа испарителя рис.2 протекает следующим образом: первичный пар поступает в греющую секцию и, проходя в межтрубном пространстве, конденсируется на наружной поверхности труб. Конденсат пара стекает по трубам на нижнюю трубную доску греющей секции и отводится из нее.

Питательная (химически очищенная) вода поступает через регулирующий клапан в водораспределительное устройство над паропромывочным дырчатым листом, откуда по опускным трубам сливается в нижнюю часть корпуса и заполняет корпус и трубки греющей секции. За счет теплоты конденсации первичного пара происходит испарение части воды в трубках, где образуется пароводяная смесь.

1 -- выход вторичного пара; 2 -- жалюзийный сепаратор; 3 -- вход греющего пара; 4 -- вход питательной воды; 5 -- паропромывочный дырчатый лист; 6 -- водоуказательный прибор; 7 -- выход конденсата греющего пара; 8 -- спуск воды из корпуса испарителя; 9 -- продувка испарителя; 10 -- направляющая перегородка; 11 -- корпус испарителя; 12 -- греющая секция; 13 -- опускная труба

Таким образом, в трубках греющей секции создается подъемное движение воды, а в кольцевом зазоре между корпусом и греющей секцией - опускное, т.е. осуществляется естественная циркуляция жидкой фазы. Образовавшийся (вторичный) пар, пройдя через слой воды над греющей секцией, поступает в паровое пространство испарителя, проходит через слой промывочной воды над одним или двумя паропромывочными листами, жалюзийный сепаратор и отводится из испарителя.

Для обеспечения устойчивой естественной циркуляции и уменьшения выбросов капельной влаги в паровое пространство уровень воды в корпусе поддерживается выше верхней трубной доски греющей секции на 150 ч 200 мм.

Испаритель оборудован также устройствами контроля за уровнями воды над паропромывочными дырчатыми листами, а также контроля и регулирования уровня конденсата греющего пара в греющей секции. Для повышения эффективности теплообмена в греющей секции из нижней части межтрубного пространства предусмотрен перепуск в паровое пространство неконденсирующихся газов. При этом эффективный отвод газов достигается при уровне конденсата греющего пара на 50 ч 100 мм ниже газоотвода.

В корпусе испарителя предусматриваются лазы для осмотра и мелкого ремонта внутренних устройств. Сам корпус выполняется сварным из листовой стали. Крепление трубок к трубным доскам греющей секции осуществляется приваркой или вальцовкой.

4. Список использованной литературы

1. Смешивающие подогреватели паровых турбин / В.Ф. Ермолаев, В.А. Пермяков, Г.И. Ефимочкин, В.Л. Вербицкий. М.: Энергоиздат, 1982.

2. Стерман Л.С., Лавыгин В.М., Тишин С.Г. Тепловые и атомные электрические станции. М.: Энергоатомиздат, 1996.

3. Теплообменное оборудование паротурбинных установок: Отраслевой каталог. М.: НИИЭИНФОРМЭНЕРГОМАШ, 1984.

4. Кутепов A.M., Стерман Л.С., Стюшин Н.Г. Гидродинамика и теплообмен при парообразовании. М.: Высшая школа, 1983.

5. Рихтер Л.А., Елизаров Д.П., Лавыгин В.М. Вспомогательное оборудование тепловых электростанций. М.: Энергоатомиздат, 1987.

6. Цветков Ф.Ф., Керимов Р.В., Величко В.И. Задачник по тепломассообмену. М.: Изд - во МЭИ, 1987.

7. Справочник по теплообменникам. В 2х-т.: Пер. с англ./ Под ред. Б.С.Петухова, В.К.Шикова. М.: Энергоатомиздат, 1987.

8. Пермяков В.А., Левин Е.С., Дивова Г.В. Теплообменники вязких жидкостей, применяемые на электростанциях. Л.: Энергоатомиздат, 1983.

Размещено на Allbest.ru


Подобные документы

  • Простая газотурбинная установка непрерывного горения, устройство её основных элементов. Назначение камеры сгорания: повышение температуры рабочего тела за счет сгорания топлива в среде сжатого воздуха. Простая газотурбинная установка прерывистого горения.

    реферат [1,6 M], добавлен 16.09.2010

  • Принцип работы газотурбинных установок. Принципиальная схема газотурбинной установки типа ТА фирмы "Рустом и Хорнсби", ее компоновка, габаритный чертеж. Техническая характеристика установки, преимущества и недостатки. Конструктивная схема камеры сгорания.

    контрольная работа [2,2 M], добавлен 19.12.2010

  • Получение электроэнергии при сжигании различного топлива. Газотурбинная и паросиловая установки. Образование в камере сгорания продуктов горения. Сочетание паровых и газовых турбин. Повышение электрического КПД. Примеры парогазовых электростанций.

    презентация [5,3 M], добавлен 03.04.2017

  • Схема работы атомных электростанций. Типы и конструкции реакторов. Проблема утилизации ядерных отходов. Принцип действия термоядерной установки. История создания и разработка проекта строительства первой океанской электростанции, перспективы применения.

    реферат [27,0 K], добавлен 22.01.2011

  • Расчет теплоты на сушку влажного материала. Конвективная установка непрерывного действия для сушки ленточных и листовых материалов. Схема одноступенчатой аэрофонтанной установки, ее преимущества. Сушильная установка с кипящим слоем, ее теплообмен.

    учебное пособие [9,3 M], добавлен 22.09.2015

  • Расчет прибрежной электростанции, обеспечивающей основную подачу электроэнергии для поселка. Выбор ветроэнергетической установки. Роза ветров в выбранном поселке. Сила ветра по шкале Бофора. Технические параметры ветрогенератора FD 20, его выработка.

    курсовая работа [2,5 M], добавлен 05.06.2015

  • Нахождение параметров для основных точек цикла газотурбинной установки, который состоит из четырех процессов, определяемых по показателю политропы. Определение работы газа за цикл и среднециклового давления. Построение в масштабе цикла в координатах.

    контрольная работа [27,4 K], добавлен 12.09.2010

  • Технологическая схема электростанции. Показатели ее тепловой экономичности. Выбор начальных и конечных параметров пара. Регенеративный подогрев питательной воды. Системы технического водоснабжения. Тепловые схемы и генеральный план электростанции.

    реферат [387,0 K], добавлен 21.02.2011

  • Схема измерений при тепловом испытании газотурбинных установок. Краткое описание применяемых измерительных устройств. Преобразователи, конечные приборы, система сбора данных. Алгоритм обработки результатов теплового испытания газотурбинных установок.

    лабораторная работа [2,3 M], добавлен 22.12.2009

  • Принципиальная схема турбины К-150-130 для построения конденсационной электростанции. Расчёт параметров воды и пара в подогревателях, установки по подогреву воды, расхода пара на турбину. Расчёт регенеративной схемы и проектирование топливного хозяйства.

    курсовая работа [384,4 K], добавлен 31.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.