Исследование сил поверхностного натяжения

Сохранение объема у жидкости. Формы вещества в жидком состоянии. Молекулы, находящиеся в глубине жидкости, их поверхностное натяжение. Явление поднятия или опускания уровня жидких веществ в узких трубках в связи с действием дополнительного давления.

Рубрика Физика и энергетика
Вид доклад
Язык русский
Дата добавления 13.04.2015
Размер файла 51,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Исследование сил поверхностного натяжения

Составитель: преподаватель Ковалева Л.В.

1. Свойства жидкостей

Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда. Если сила тяжести капли уравновешивается силой Архимеда, на каплю действуют только молекулярные силы, то она принимает форму шара. В состоянии невесомости жидкость принимает шарообразную форму и вне сосуда, что было проверено космонавтами. Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения. Следовательно, расстояния между молекулами жидкости должны быть меньше радиуса молекулярного действия. Если вокруг какой-либо молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с этой молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10-12 - 10-10 сек., после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между переходами совершают колебательное движение около временного положения равновесия. Время между переходами молекулы из одного положения в другое называется временем оседлой жизни. Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.

Жидкость обладает текучестью, вызванной тем, что время действия внешней силы обычно во много раз больше времени релаксации, поэтому жидкость течет и принимает форму сосуда, в котором она находится. В небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным). В некоторых жидкостях с удлиненной формой молекул возможна единообразная ориентация их по всему объему. Такие жидкости называются жидкими кристаллами, а свойства их отличаются от обычных жидкостей.

При достаточно сильном нагревании время оседлой жизни становится очень маленьким и ближний порядок в жидкости практически исчезает.

Жидкость может обнаруживать механические свойства, присущие твердому телу. Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о поверхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.

При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость.

Сжимаемость жидкости больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.

Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при распространении в жидкости ультразвуковых волн. Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т.е. исчезают. Это явление называют кавитацией (от греческого «кавитас» - полость).

2. Поверхностное натяжение

Молекулы, находящиеся в глубине жидкости, окружены молекулами жидкости со всех сторон и их действия на эти молекулы взаимно уравновешиваются. У молекул, находящихся в поверхностном слое жидкости, на границе с газообразной средой, слабое взаимодействие с молекулами пара или воздуха над жидкостью. Им можно пренебречь. Это придает поверхностному слою жидкости (толщиной, равной радиусу сферы молекулярного взаимодействия) специфические особенности. На каждую молекулу в поверхностном слое со стороны окружающих ее молекул жидкости действуют силы по двум направлениям: вдоль (по касательной) и перпендикулярно (нормально) к поверхности жидкости. Нормальные составляющие, складываясь между собой, приводят к возникновению силы, направленной перпендикулярно поверхностному слою, в глубь жидкости. Давление молекул поверхностного слоя на соседний, расположенный ниже, слой молекул жидкости получил название молекулярного давления. Силы молекулярного давления действуют только на молекулы самой жидкости и не действуют на тело, погруженное в жидкость. Касательные составляющие молекулярных сил направлены вдоль поверхностного слоя, они сближают молекулы поверхностного слоя, и поверхностный слой оказывается в состоянии напряжения. Они получили название сил поверхностного натяжения.

Это явление связано с тем , что на молекулу А, находящуюся на свободной поверхности (рис. 1), силы притяжения со стороны окружающих молекул жидкости действуют значительно сильнее, чем со стороны паров жидкости или газа, с которым жидкость граничит.

Если условно выбрать на поверхности жидкости отрезок длиной (рис. 2), то силы поверхностного натяжения можно изобразить стрелками перпендикулярными отрезку.

Поверхностным натяжением называется величина, измеряемая отношением силы поверхностного натяжение к длине отрезка, на который действует эта сила.

Поверхностное натяжение может быть определено так же отношением работы, затраченной на создание некоторой поверхности жидкости при постоянной температуре к площади этой поверхности.

.

Поверхностное натяжение биологических жидкостей в некоторых случаях может служить диагностическим фактором. Так, например, при заболевании желтухой поверхностное натяжение мочи резко уменьшается вследствие появления моче желчных кислот. При диабете и некоторых других заболеваниях повышается содержание липазы в крови. О содержании липазы судят по изменению поверхностного натяжения раствора трибутилена при добавлении в него крови. Для определения поверхностного натяжения в медицинской практике пользуются методом отрыва капель. При медленном истечении жидкости из отверстия или из вертикальной трубки образуется капля.

В момент отрыва капли сила

F =2рдr

поверхностного натяжения равна силе тяжести

Q=mg=схg

капли (r - радиус шейки капли, - плотность жидкости, V - объем капли),

2рrд= сgх.

Отсюда

д= сVg/2р (l)

Измерить радиус шейки практически нельзя (это можно сделать только при фотографировании капли в момент отрыва), поэтому используя метод отрыва капель, прибегают к сравнительному способу. Если известно поверхностное натяжение стандартной жидкости, например воды, то формулу (1) можно записать.

д0=с0 V0 g /2р (2)

Взять одинаковые объемы воды и исследуемой жидкости V, и подсчитав количество капель в этих объемах можно вычислить объем одной капли.

V0= V1/n0 (воды), V= V1/n (исследуемой жидкости)

Подставив эти выражения соответственно в формулу (1) и (2) и взяв их отношение, получим

д/ д0= сn0/ с0n (3) или д= д0 сn0/ с0n (4)

Коэффициент поверхностного натяжения зависит от природы жидкости и от температуры (уменьшается при ее повышении), но не зависит от величины или формы поверхности. Единицы его измерения в СИ - Н/м, в системе СГС - дин/см.

Приведем значения поверхностного натяжения для некоторых жидкостей при температуре 20.

Таблица 1

Жидкость

д (Н/м)

Жидкость

д (Н/м)

Вода

0,0725

Ртуть

0,470

Желчь

0,0480

Сыворотка крови

0,060

Молоко

0,0500

Эфир

0,0170

Моча

0,0660

Спирт

0,022

Таблица 2

%

CuSo

Спирт

NaCl

KJ

%

Спирт

KJ

0

999

998,6

998,6

998,6

55

904,3

1630

5

1051

999,8

1034,5

1036,3

60

892,8

1731

10

1107

982,4

1071,1

10762

65

881,1

15

1167

976,0

1109,0

1120,0

70

869,3

20

1230

969,9

1148,5

1167,9

75

857,4

25

962,8

1189,7

1218

80

845,4

30

955,1

1273

85

832,7

35

946,3

1332

90

819,7

40

936,7

1397

95

806,0

45

926,4

1468

100

791,1

50

915,5

1545

3. Смачивание и несмачивание. Капиллярные явления

Молекулы жидкости, находящиеся на границе с твердым телом, взаимодействуют как с молекулами жидкости, так и с частицами твердого вещества. Если силы притяжения со стороны частиц твердого тела больше сил притяжения между молекулами самой жидкости, то молекулы жидкости прилипают к твердому телу, происходит смачивание поверхности твердого тела жидкостью. Поверхность жидкости в данном случае называется гидрофильной. При отталкивании молекул жидкости от поверхности твердого тела происходит несмачивание, а поверхность твердого тела в данном случае называется гидрофобной. Несмачивающая жидкость не протекает через малые отверстия в твердом теле.

В случае, когда межмолекулярные силы полностью скомпенсированы, капля жидкости растекается по поверхности тела до тех пор, пока не покроет всю поверхность, образуя мономолекулярный слой. Такой случай называется идеальным смачиванием. К нему можно отнести растекание спирта или воды по чистой поверхности стекла.

Под действием сил поверхностного натяжения поверхностный слой жидкости искривлен и оказывает дополнительное давление по отношению к внешнему давлению. Поверхностный слой подобен упругой оболочке, например резиной пленке. Искривленная поверхность жидкости называется мениском. У смачивающей жидкости образуется вогнутый мениск, а у несмачивающей - выпуклый. Силы поверхностного натяжения создают добавочное давление под мениском, поэтому общее давление около искривленной поверхности будет больше или меньше, чем над горизонтальной поверхностью.

При малых радиусах мениска, например в трубках очень малого сечения - капиллярах, избыточное давление под мениском может достигнуть значительной величины. Такое явление происходит в организме при газовой эмболии - закупорке кровеносного сосуда пузырьком газа. Это явление может привести к серьезному функциональному расстройству или даже летальному исходу. Так воздушная эмболия может возникнуть при ранении крупных вен: проникший в ток крови воздух образует воздушный пузырь, препятствующий прохождению крови. Пузырьки воздуха не должны попадать в вены при внутривенных вливаниях.

Газовые пузырьки в крови могут появиться у водолазов при быстром подъеме с большой глубины на поверхность, у летчиков и космонавтов при разгерметизации кабины или скафандра на большой высоте. Это обусловлено переходом газов крови из растворенного состояния в свободное - газообразование в результате понижения окружающего атмосферного давления. Ведущая роль в образовании газовых пузырьков при уменьшении давления принадлежит азоту, так как он обусловливает основную часть общего давления газов в крови и не участвует в газообмене организма и окружающей среды.

Явление поднятия или опускания уровня жидкости в узких трубках в связи с действием дополнительного давления называется капиллярностью. Капиллярными свойствами обладают пористые тела, например фильтровальная бумага, сухой мел, рыхлая почва и т.д. Капиллярные явления имеют большое значение для жизни растений, так как способствуют поднятию воды и питательных растворов из почвы вдоль ствола растения.

4. Физические свойства биологических мембран

жидкость молекула поверхностное натяжение

В живых клетках биологические мембраны пребывают в жидкокристаллическом состоянии. В жидком кристалле сочетаются свойства кристалла (дальний порядок организации) и жидкости (текучесть и образование капель), что приводит к возникновению качественно новых свойств.

Биомолекулярный слой фосфолипидов, образующий биомембраны, в физиологических условиях (при температуре тела и т.д.) представляет собой жидкий кристалл.

При понижении температуры и под влиянием ряда других факторов фофсфолипидный каркас приобретает свойства твердого кристалла, сохраняя биомолекулярную структуру.

В физиологических условиях текучесть биологических мембран уменьшается при повышении в них содержания холестерина, ионов кальция и магния. Местные анестетики (новокаин и родственные ему соединения) повышают степень текучести клеточных мембран, влияя на их жидкокристаллическое состояние. Оно изменяется при росте и развитии клеток, а также при некоторых патологических состояниях (раке, дистрофиях).

Характерным свойством жидких кристаллов (ЖК) является их способность к фазовым переходам, т.е. к преобразованию в твердые кристаллы (ТК) и возвращению в прежнее состояние при определенных условиях. В биологических мембранах фазовые переходы происходят в физиологических условиях под действием ряда агентов (раздражителей). Важно, что это может совершиться во всем объеме мембраны, а в небольших ее участках (там, где появляются такие агенты).

Фазовый переход представляет собой кооперативный процесс. При плавном изменении силы раздражителей физико-химические свойства мембран изменяются скачком.

Фазовый переход в фосфолипидном каркасе существенно изменяет свойства ферментов, каналов, переносчиков и других компонентов биомембраны, находящихся в том ее участке, где совершается кооперативный процесс. Там изменяется проницаемость, нарушаются биохимические реакции, рецепторные и другие процессы, которые приводят к сдвигам в физиологическом состоянии организма.

Основными формами молекулярного движения в биомембране являются латеральная миграция (перемещение молекул в плоскости мембраны, т.е. в пределах одной стороны биомолекулярного слоя) и вращение молекул вокруг собственной оси.

В отличие от вращения и латеральной миграции, перемещения молекул поперек мембраны (с одной стороны липидного бислоя на другую) совершаются очень редко. Такой вид молекулярного движения называют «флип-флоп»-перемещения.

Биомембрана как жидкокристаллическая структура с присущей ей текучестью характеризуется определенной вязкостью. При изменении температуры, молекулярного состава и других параметров биомембраны меняется ее вязкость вследствие возникновения фазового перехода: жидкий кристалл Размещено на http://www.allbest.ru/

твердый кристалл.

Вязкость биомембран претерпевает существенные изменения при многих заболеваниях, а также под действием электромагнитных излучений, ряда фармакологических препаратов, гормонов. Во многих случаях влияние на вязкость клеточных мембран зависит от изменения содержания в них холестерина. При нормальной температуре тела повышение содержания холестерина в мембранах увеличивает их вязкость, а понижение - уменьшает ее. В этом причина разжижения мембран в клетках злокачественных опухолей. Вязкость всех клеточных мембран падает под действием наркотических веществ (например, хлороформа).

Жизнеспособность организма страдает как при понижении, так и при повышении мембранной проницаемости, которая в свою очередь зависит от вязкости. биомембран. Ее оптимальные значения поддерживаются в клеточных мембранах, пребывающих в жидкокристаллическом состоянии.

5. Порядок выполнения лабораторной работы

«Определение коэффициента поверхностного натяжения методом отрыва капель».

1. промыть капельницу, закрепить ее вертикально в штативе и залить в нее определенный объем дистиллированной воды;

2. открыв кран, подсчитать число n0 капель воды в данном объеме. Опыт провести три раза и найти среднее значение n0;

3. залить в капельницу такой же объем раствора спирта концентрации С1 и подсчитать число n капель воды в данном объеме, повторить три раза и найти среднее значение n;

4. провести аналогичные измерения с растворами спирта других концентраций C2 и C3;

5. вычислить поверхностное натяжение д (см. формулу (4)) для различных растворов спирта, с0=1000 kg/m3;

6. результаты измерений и вычислений занести в таблицу, построить график зависимости поверхностного натяжения растворов спирта от их концентрации

д =f(C).

Таблица 3

n0

Средне значение n0

n

Средне значение n

д

1

2

3

Приборы и принадлежности:

1. Капельница, растворы спирта (50%, 70%, 90%), дистиллированная вода, стакан.

Размещено на Allbest.ru


Подобные документы

  • Исследование зависимости поверхностного натяжения жидкости от температуры, природы граничащей среды и растворенных в жидкости примесей. Повышение давления газов над жидкими углеводородами и топливом. Расчет поверхностного натяжения системы "жидкость-пар".

    реферат [17,6 K], добавлен 31.03.2015

  • Сила поверхностного натяжения, это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности. Действие сил поверхностного натяжения. Метод проволочной рамки. Роль и проявления поверхностного натяжения в жизни.

    реферат [572,8 K], добавлен 23.04.2009

  • Сущность и характерные особенности поверхностного натяжения жидкости. Теоретическое обоснование различных методов измерения коэффициента поверхностного натяжения по методу отрыва капель. Описание устройства, принцип действия и назначение сталагмометра.

    реферат [177,1 K], добавлен 06.03.2010

  • Определение водородной связи. Поверхностное натяжение. Использование модели капли жидкости для описания ядра в ядерной физике. Процессы, происходящие в туче. Вода - квантовый объект. Датчик внутриглазного давления. Динамика идеальной несжимаемой жидкости.

    презентация [299,5 K], добавлен 29.09.2013

  • Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.

    лабораторная работа [860,4 K], добавлен 07.12.2010

  • Изучение явления поверхностного натяжения и методика его определения. Особенности определения коэффициента поверхностного натяжения с помощью торсионных весов. Расчет коэффициента поверхностного натяжения воды и влияние примесей на его показатель.

    презентация [1,5 M], добавлен 01.04.2016

  • Свойства жидкостей и их поверхностное натяжение. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества. Явления смачивания и несмачивания. Краевой угол. Капиллярный эффект. Капиллярные явления в природе и технике.

    контрольная работа [1,5 M], добавлен 06.04.2012

  • Определение веса находящейся в баке жидкости. Расход жидкости, нагнетаемой гидравлическим насосом в бак. Вязкость жидкости, при которой начнется открытие клапана. Зависимость расхода жидкости и избыточного давления в начальном сечении трубы от напора.

    контрольная работа [489,5 K], добавлен 01.12.2013

  • Постоянство потока массы, вязкость жидкости и закон трения. Изменение давления жидкости в зависимости от скорости. Сопротивление, испытываемое телом при движении в жидкой среде. Падение давления в вязкой жидкости. Эффект Магнуса: вращение тела.

    реферат [37,9 K], добавлен 03.05.2011

  • Металлические расплавы и их свойства. Характеристика экспериментальных и теоретических методов изучения строения жидких металлов. Результаты дифракционного эксперимента. Современные методы электронографии поверхностных слоев металлической жидкости.

    презентация [2,6 M], добавлен 22.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.