Выходные каскады усилителей

Общие сведения о выходных каскадах и способы построения однотактных каскадов. Эквивалентная схема трансформаторного каскада и выходные динамические характеристики усилителя. Анализ однотактного трансформаторного усилителя мощности и выходного каскада.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 07.01.2015
Размер файла 288,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Выходные каскады усилителей

1. Общие сведения о выходных каскадах

Выходной или оконечный каскад обычно служит для усиления сигнала по мощности. Основной отличительной чертой выходных каскадов, в отличие от предварительных, является высокий уровень входного и выходного сигналов, т.е. выходные каскады работают в режиме сильного сигнала. Причем выходной сигнал может быть выражен либо номинальной выходной мощностью при активной нагрузке, либо номинальным выходным напряжением при реактивной нагрузке.

Каскады, характеризующиеся выходной мощностью, принято называть усилителями мощности, а каскады, характеризующиеся выходным напряжением, называют выходными усилителями напряжения. Усилитель мощности должен развивать в заданной нагрузке требуемую мощность при наименьшей потребляемой энергии и допустимых нелинейных искажениях. Следовательно, усилитель мощности характеризуется следующими основными параметрами: выходной мощностью на нагрузке; коэффициентом полезного действия и коэффициентом нелинейных искажений.

Нагрузкой выходного усилителя радиовещательной аппаратуры является акустическая система с небольшим сопротивлением (4 или 8 Ом). Для передачи максимальной мощности необходимо согласовывать сопротивление нагрузки с выходным сопротивлением усилителя. Поэтому усилители мощности часто строятся по трансформаторной схеме.

На вход усилителя мощности поступает сигнал с большой амплитудой, охватывающий всю рабочую область входной характеристики усилительного элемента, вследствие чего его параметры меняются в широких пределах. Поэтому расчет усилителя мощности проводится графо-аналитическим методом, так как аналитические расчеты с использованием параметров усилительного элемента в рабочей точке дают большую погрешность.

Выделяющаяся в усилительном элементе электрическая энергия преобразовывается в тепловую и нагревает коллектор, поэтому для обеспечения надежной работы надо в мощных усилителях предусматривать системы охлаждения. Для охлаждения применяются радиаторы, продув воздушной струей и водяное охлаждение. Последние два метода применяются только в мощных усилителях передающих устройств, где выходная мощность достигает сотен Вт. Радиаторы часто применяются в выходных усилителях, построенных на транзисторах.

, (9.1)

где Р - мощность, выделяемая на транзисторе;

- допустимая температура перехода;

- максимальная температура окружающей среды;

R - тепловое сопротивление перехода корпуса.

2. Способы построения однотактных выходных каскадов

При построении выходных каскадов, прежде всего надо правильно выбрать способ подключения внешней нагрузки. Простейшим способом является непосредственное включение внешней нагрузки в выходную цепь, рис.9.1.

Рис.9.1. Выходной каскад с непосредственным включением нагрузки.

Такая схема включения нагрузки отличается простотой, отсутствием дополнительных элементов, потерь и нелинейных искажений. Однако при этом в однотактном каскаде через нагрузку протекает постоянная составляющая выходного тока, что значительно уменьшает КПД. К тому же протекание постоянной состовляющей через акустическую систему недопустимо. В этой схеме сопротивление нагрузки по постоянной и переменной составляющим равны сопротивлению внешней нагрузки:

Rн==Rнвн; Rн~= Rнвн

Второй способ подключения нагрузки может быть осуществлен через емкостную связь С1, что устраняет вышеуказанный недостаток, рис.9.2.

Рис.9.2. Выходной каскад с емкостной связью.

Этот способ построения выходных каскадов используется в импульсных усилителях напряжения, в эмиттерных и истоковых повторителях, а также находит широкое применение в операционных усилителях.

В усилителях мощности широкое применение находит трансформаторное включение. Рис.9.3.

Рис.9.3. Выходной каскад с трансформаторной связью.

Трансформатор служит выходным устройством, которое связывает выходную цепь усилителя с внешней нагрузкой и позволяет получить для усилительного элемента оптимальное сопротивление нагрузки, т.е. согласовать выход с сопротивлением нагрузки.

Известно, что трансформатор - это преобразователь сопротивления:

где и - токи в первичной и вторичной обмотках трансформатора;

и - напряжение на соответствующих обмотках;

- коэффициент трансформации;

и - количество витков в соответствующих обмотках.

Пересчитанное в цепь первичной обмотки сопротивление нагрузки определяется

. (9.2)

Из (9.2) можно сделать вывод, что в случае применения трансформаторной связи можно достигнуть максимальной передачи мощности и значительно повысить КПД. Однако использование трансформатора увеличивает габариты и вес, а также вносит дополнительные частотные и нелинейные искажения.

Через первичную обмотку трансформатора, включаемую в выходную цепь, подается напряжение питания на коллектор, а к вторичной обмотке подключают внешнюю нагрузку. Переменная составляющая выходного тока, проходя через первичную обмотку, создает на ней напряжение сигнала, трансформирующееся во вторичную обмотку и подающееся на внешную нагрузку. выходной каскад трансформаторный усилитель

3. Эквивалентная схема трансформаторного каскада

Эквивалентная схема трансформаторного каскада в основном определяется эквивалентной схемой трансформатора (рис.9.4.)

Рис.9.4.Эквивалентная схема трансформаторного каскада.

где r1 и r2 - сопротивления потери первичной и вторичной обмоток; и - индуктивности рассеяния;

L1 - индуктивность первичной обмотки; Ls2, r2, Uвых, Rн, C0 - параметры, приведенные в цепь первичной обмотки трансформатора и определяемые из следующих выражений:

Трансформатор является элементом связи. Он имеет сердечник из ферромагнитного материала, который позволяет при небольших размерах трансформатора получать большую основную индуктивность L1 и малую индуктивность рассеяния, что необходимо для нормальной работы схемы. Трансформатор создает связь по переменной составляющей и вместе с тем изолирует внешую нагрузку от постоянной составляющей.

Полученная эквивалентная схема сложна, и подробный анализ приводит к громоздким выражениям. Поэтому целесообразно произвести обоснованные упрощения.

Очевидно, что в области низких частот основное влияние на работу усилителя оказывает индуктивность L1, так как ее индуктивное сопротивление убывает по мере понижения частоты и шунтирует выход схемы. В области высоких частот выход схемы шунтируется емкостями, и, кроме того, здесь выходное напряжение убывает вследствие возрастания сопротивления индуктивностей рассеяния. Поэтому для получения равномерного участка амплитудно-частотной характеристики в области средних частот параметры схемы должны быть выбраны так, чтобы на средних частотах все реактивные элементы оказывали на работу схемы пренебрежимо слабое влияние. Для этого должны быть обеспечены большое значение индуктивности первичной обмотки, малые значения индуктивностей рассеяния и малое значение шунтирующей емкости.

Для выходных усилителей в цепях максимальной отдачи мощности очень важен правильный выбор рабочего режима, напряжения питания, сопротивления нагрузки и амплитуды входного сигнала. Однотактные выходные каскады работают в режиме А.

4. Выходные динамические характеристики

Динамические характеристики усилителя применяются для графоаналитического расчета и анализа выходных каскадов. Различают следующие динамические характеристики:

выходная динамическая характеристика по постоянному току;

выходная динамическая характеристика по переменному току;

входные, сквозные и проходные динамические характеристики.

Наиболее широко применяются первые два вида динамических характеристик, которые рассмотрим подробнее.

Выходной динамической характеристикой (ВДХ) называют зависимость выходного тока от выходного напряжения при наличии нагрузки в выходной цепи. Поскольку эти характеристики имеют прямую линию, их называют нагрузочными прямыми. Уравнением выходной цепи является Uвых=Е-iвыхRн. Это линейное уравнение, графиком которого является прямая линия.

Для построения нагрузочной прямой по постоянному току используются выходные статические характеристики усилительного элемента, а также при этом считаются заданными напряжение источника питания и сопротивление нагрузки. Причем различают сопротивление нагрузки по постоянному току и по переменному току . Сопротивление нагрузки в трансформаторном усилителе по переменному току значительно больше . В трансформаторном усилителе (рис.9.3.) имеет место:

(9.3.)

где r1 и r2 - сопротивление потери в первичной и во вторичной обмотках; - пересчитанное в цепь первичной обмотки сопротивление нагрузки, равное . При коэффициенте трансформации , величина будет значительно выше , поэтому в трансформаторных усилителях будет выполняться соотношение .

5. Построение ВДХ для каскада с емкостной связью

При построении нагрузочной прямой различают ВДХ по постоянному току, в которой используется нагрузочное сопротивление по постоянному току Rн=, и ВДХ по переменному току, в которой используется Rн~. В начале построим нагрузочную прямую по постоянному току, уравнением которой является

Uвых=Е-iвыхRн=. (9.4)

Уравнением нагрузочной прямой по постоянному току является линейное уравнение (9.4). Следовательно, для построения этой характеристики перерисуем из справочника выходную статическую характеристику для выбранного транзистора. Для построения нагрузочной прямой достаточно определить две точки:

1. на горизонтальной оси

2. на вертикальной оси

Через эти точки проводим выходную динамическую характеристику по постоянному току. Наклон нагрузочной прямой зависит от сопротивления нагрузки , рис.9.5.

Рис.9.5. Нагрузочная прямая по постоянному току

С помощью нагрузочной прямой по постоянному току определяют рабочую точку в выходной цепи. Рабочая точка определяется как точка пересечения найденной нагрузочной прямой со статической характеристикой, соответствующей заданному смещению на управляющем электроде. Опустив перпендикуляры из рабочей точки на вертикальную и горизонтальную оси, находят постоянные составляющие тока и напряжения выходной цепи.

Рассмотрим нагрузочную прямую или выходную динамическую характеристику по переменному току, уравнением которой является

Uвых=Е-iвыхRн~,

где

.

При подаче на вход усиливаемого сигнала, имеем:

(9.5)

Из выражения (9.5) видно, что нагрузочная прямая по переменному току проходит также через рабочую точку и пересекается в ней с нагрузочной прямой по постоянному току, поэтому эту точку используют для построения нагрузочной прямой по переменному току.

Нагрузочную прямую по переменному току можно построить по двум точкам пересечения с горизонтальной и вертикальной осями (рис.9.6).

В этом случае из уравнения (9.5) получим

Рис.9.6. Нагрузочная прямая по переменному току для резисторного усилителя

6. Построение ВДХ для трансформаторного каскада

Построим нагрузочные прямые для трансформаторного каскада. Сопротивление постоянной составляющей тока выходной цепи этого каскада, равное Rн==r1 , близко к нулю, так как сопротивление потери первичной обмотки незначительно. Поэтому нагрузочную прямую по постоянному току для трансформаторного каскада строят перпендикулярно горизонтальной оси из точки Е. Определим рабочую точку как точку пересечения ВДХ= с соответствующей статистической характеристикой. При известном значении , находим на горизонтальной оси точку Uвых= и проводим нагрузочную прямую по переменному току по двум найденным точкам, рис.9.7а.

Рис.9.7. Нагрузочная прямая по переменному току для трансформаторного усилителя: а - построение; б - расчет.

Выходные динамические характеристики используются для графического расчета усилителей мощности. Зная амплитуду усиливаемого сигнала на управляющем электроде, по нагрузочной прямой определяем амплитудные значения тока выходной цепи и выходного напряжения , полезную выходную мощность:

потребляемую мощность , коэффициент полезного действия з=P~/P0 и коэффициент гармоник

, (9.6)

где а, б и в - отрезки нагрузочной прямой, определяемые по рис. 9.7,б.

Таким образом, используя выходные динамические характеристики усилителя, можно рассчитать все основные его показатели.

7. Анализ однотактного выходного каскада в режиме А

Рассмотрим принципиальную схему выходного каскада с непосредственным включением внешней нагрузки в выходную цепь усилителя (рис.9.1.). Для анализа построим нагрузочные прямые по постоянному и переменному току, которые для этой схемы совпадают, так как Rн==Rн~=Rнвн. Для выбранного транзистора возьмем из справочника семейство статических выходных характеристик. На горизонтальной оси откладываем Uвых, а на вертикальной оси точку i=E/ Rнвн. Соединив эти точки, посторим нагрузочную прямую, рис.9.8.

Рис.9.8. Анализ однотактного выходного каскада в режиме А.

Находим рабочую точку (пересечение нагрузочной прямой со статической характеристикой, соответствующей заданному смещению). Из рабочей точки опускаем перпендикуляры на горизонтальную и вертикальную оси и определяем постоянные составляющие выходного напряжения U0 и выходного тока I0. Амплитуда входного сигнала должна охватывать весь раствор семейства выходных статистических характеристик. При заданном значении амплитуд входного сигнала Iтвх графическим путем определяем амплитудное значение выходного напряжения Uтвых и выходного тока Iтвых. Затем аналитическим путем рассчитываем основные показатели выходного каскада.

Так, полезная выходная мощность P~ рассчитывается следующим образом:

P~= Iтвых Uтвых/2;

Максимальное значение амплитуды выходного тока определяется ImвыхIo, выходного напряжения - Uтвых=0,5Е. Следовательно, максимальная полезная мощность P~max=0,25 I0Е. Максимальное значение КПД определяется зmax= P~max/P0=0,25 I0Е/ I0Е=0,25, где P0= I0Е - потребляемая мощность.

Для получения максимального значения КПД сопротивление нагрузки Rнвн должно быть равным Rнвн= Uтвых/ Iтвых=0,5Е/ I0. Изменение Rнвн в любую сторону или уменьшение Iтвх уменьшают полезную мощность и КПД.

Таким образом, этот способ включения имеет малый КПД<0,25. Кроме того, через нагрузку не должна протекать постоянная составляющая I0, поэтому эта схема в однотактных усилителях применяется редко и встречается только в случае, когда в качестве нагрузки применяется реле. Но надо отметить, что непосредственное включение нагрузки находит широкое применение в двухтактных бестрансформаторных каскадах.

Резисторно-емкостное подключение внешней нагрузки Rнвн (рис.9.2) обеспечивает еще меньшее значение КПД?0,08. Простота схемы и отсутствие громоздких компонентов составляют общие черты с предыдущей схемой, однако в этой схеме устранен один из ее недостатков: постоянная составляющая выходного тока не протекает через внешнюю нагрузку. Каскады выходных усилителей с резисторно-емкостным включением внешней нагрузки используются в импульсных усилителях напряжения.

8. Анализ однотактного трансформаторного усилителя мощности в режиме А

Проведем графо-аналитический расчет основных характеристик усилителя мощности (P~, з, Кг). Для этого необходимо построить выходную динамическую характеристику для выбранного транзистора. На семействе выходных статистических характеристик построим нагрузочную прямую по постоянному току (ВДХ=). Для этого из точки Е на горизонтальной оси проведем прямую, параллельную вертикальной оси, так как Rн==r10. Обозначим рабочую точку, и, опустив перпендикуляры на горизонтальные оси, определим U0 и I0.

Сопротивление нагрузки переменной составляющей в трансформаторном каскаде равно Rн~= r1+r2+ Rн Rн, где Rн= Rнвн/n2, r2= r2/n2, n=w2/w1, w-количество витков первичной и вторичной обмоток трансформатора. Через рабочую точку и точку на горизонтальной оси равной Uвых=U0+ I0Rн~, проведем выходную динамическую характеристику по переменному току (ВДХ~) рис.9.9.

Рис.9.9. Анализ трансформаторного усилителя мощности в режиме А.

При заданной амплитуде входного сигнала определяем амплитудные значения выходного тока Iтвых и выходного напряжения Uтвых. Максимальное значение амплитуды выходного тока определяется Iтвых=I0, выходного напряжения Uтвых=U0. Следовательно, максимальная полезная мощность определяется

P~= Iтвых Uтвых/2=0,5 U0 I0,

где: = Uтвых/ U0 -коэффициент использования напряжения питания,

= Iтвых/ I0 - коэффициент использования тока покоя.

Потребляемая мощность P0=I0Е=I0U0. Коэффициент полезного действия определяется з=P~max/P0=0,5. При полном использовании напряжения питания и тока покоя Iтвых=I0, Uтвых=U0. Поэтому максимальный коэффициент полезного действия будет равен зmax=0,5

Таким образом, однотактный трансформаторный усилитель мощности в режиме А обеспечивает КПД до значения 0,5. Мощность рассеивания на коллекторе Pк=P0-P~. В случае отсутствия входного сигнала P~=0, то есть в режиме молчания, следовательно, Pк=P0. Вся потребляемая мощность рассеивается на коллекторе и вызывает разогрев транзистора, что является большим недостатком однотактного усилителя мощности.

Для определения коэффициента гармоник используется сквозная динамическая характеристика. Построение сквозной динамической характеристики и расчет коэффициента гармоник необходимо рассмотреть самостоятельно.

Размещено на Allbest.ru


Подобные документы

  • Выбор и обоснование структурной схемы усилителя гармонических сигналов. Необходимое число каскадов при максимально возможном усилении одно-двухтранзисторных схем. Расчет выходного каскада и входного сопротивления транзистора с учетом обратной связи.

    курсовая работа [692,9 K], добавлен 28.12.2014

  • Данные для расчёта усилителя напряжения низкой частоты на транзисторах. Расчёт усилительного каскада на транзисторе с общим эмиттером. Расчёт выходного усилительного каскада - эмиттерного повторителя. Амплитудно-частотная характеристика усилителя.

    курсовая работа [382,1 K], добавлен 19.12.2015

  • Расчет каскада транзисторного усилителя напряжения, разработка его принципиальной схемы. Коэффициент усиления каскада по напряжению. Определение амплитуды тока коллектора транзистора и значения сопротивления. Выбор типа транзистора и режима его работы.

    контрольная работа [843,5 K], добавлен 25.04.2013

  • Анализ бесконтактного трансформаторного датчика. Электромагнитные поля, изучаемые в электроразведке. Электромагнитные зондирования и профилирования. Подземные методы электроразведки. Выбор и обоснование материала бесконтактного трансформаторного датчика.

    курсовая работа [56,7 K], добавлен 11.10.2012

  • Общие технические характеристики используемого транзистора, схема цепи питания и стабилизации режима работы. Построение нагрузочной прямой по постоянному току. Расчет параметров элементов схемы замещения. Анализ и оценка нелинейных искажений каскада.

    курсовая работа [1,0 M], добавлен 27.12.2013

  • Трехполосный усилитель мощности звуковой частоты на основе операционного усилителя, его технологические особенности и предъявляемые требования. Расчет величин усилителя и анализ его оптимальности в программе "Multisim". Средства электробезопасности.

    курсовая работа [615,2 K], добавлен 13.07.2015

  • Схема выпрямителя с фильтром с указанием напряжения и токов в обмотках трансформатора, вентилях и нагрузке, полярности клемм. Схема усилительного каскада с учетом заданного типа транзистора, усилителя с цепью обратной связи и источниками питания.

    контрольная работа [585,2 K], добавлен 13.04.2012

  • Принципы и обоснования выбора схемы усилителя постоянного тока, его внутреннее устройство и взаимосвязь элементов. Двухтактный эмиттерный, эмиттерный и истоковый повторитель. Источник тока для выходного каскада. Принципы реализации обратной связи.

    контрольная работа [1,4 M], добавлен 10.06.2014

  • Конструирование электронных схем, их моделирование на ЭВМ на примере разработки схемы усилителя постоянного тока. Балансная (дифференциальная) схема для уменьшения дрейфа в усилителе постоянного тока. Режим работы каскада и данные элементов схемы.

    курсовая работа [1,4 M], добавлен 27.08.2010

  • История развития электротехники - науки, изучающей практическое применение электричества. Решение задач на определение коэффициента усиления усилителя по мощности; определение внутреннего сопротивления лампового триода, входящего в состав усилителя.

    контрольная работа [1,0 M], добавлен 04.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.