Типы реакторов атомных электростанций

Изучение понятия реактора АЭС. Использование реактора на быстрых нейтронах для получения тепла и электроэнергии, а также для воспроизводства ядерного горючего. Строение реактора. Рассмотрение деятельности АЭС России. Технические проблемы безопасности.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.03.2014
Размер файла 761,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http:www.allbest.ru/

1. АЭС

АЭС - это по существу тепловые электростанции, которые используют тепловую энергию ядерных реакций.

Один из основных элементов АЭС - реактор. Во многих странах мира, используют в основном ядерные реакции расщепления урана U-235 под действием тепловых нейтронов. Для их осуществления в реакторе, кроме топлива (U-235), должен быть замедлитель нейтронов и, естественно, теплоноситель, отводящий тепло из реактора. В реакторах типа ВВЭР (водо-водяной энергетический реактор) в качестве замедлителя и теплоносителя используется обычная вода под давлением. В реакторах типа РБМК (реактор большой мощности канальный) в качестве теплоносителя используется вода, а в качестве замедлителя -- графит. Оба эти реактора находили в прежние годы широкое применение на АЭС в электроэнергетике.

Схемы АЭС в тепловой части могут выполняться в различных вариантах. На рисунке в качестве примера представлена двухконтурная схема АЭС для электростанций с реакторами ВВЭР. Видно, что эта схема близка к схеме КЭС, однако, вместо парогенератора на органическом топливе здесь используется ядерная установка. АЭС, так же как и КЭС, строятся по блочному принципу, как в тепломеханической, так и в электрической части. Ядерное топливо, запасы которого достаточно велики, обладает очень высокой теплотворной способностью (1 кг U-235 заменяет 2900 т угля), поэтому АЭС особенно эффективны в районах, бедных топливными ресурсами.

Рисунок 1

Принципиальная технологическая схема АЭС с реактором типа ВВЭР:

1 - реактор; 2 - парогенератор; 3 - турбина; 4 - генератор; 5 - трансформатор;

6-конденсатор турбины; 7 - конденсатный (питательный) насос;

8- главный циркуляционный насос. реактор ядерный нейтрон

АЭС выгодно оснащать энергоблоками большой мощности. Тогда по своим технико-экономическим показателям они не уступают КЭС (Комплексные Энергетические Системы), а в ряде случаев и превосходят их. В настоящее время разработаны реакторы электрической мощностью 440МВт и 1000МВт типа ВВЭР, а также 1000МВт и 1500МВт типа РБМК.

Перспективными являются АЭС с реакторами на быстрых нейтронах (БН), которые могут использоваться для получения тепла и электроэнергии, а также и для воспроизводства ядерного горючего. Технологическая схема энергоблока такой АЭС представлена на рисунке.

2. Реактор на БН

Рисунок 2

Принципиальная технологическая схема АЭС с реактором типа БН:

а - принцип выполнения активной зоны реактора; б - технологическая схема:

1-7- аналогичны указанным на рис. 1; 8 - теплообменник натриевых контуров;

9 - насос нерадиоактивного натрия; 10 - насос радиоактивного натрия.

Реактор типа БН имеет активную зону, где происходит ядерная реакция с выделением потока быстрых нейтронов. Эти нейтроны воздействуют на элементы из U-238, который обычно в ядерных реакциях не используется, и превращают его в плутоний Рu-239, который может быть впоследствии использован на АЭС в качестве ядерного горючего. Тепло ядерной реакции отводится жидким натрием и используется для выработки электроэнергии.

Схема АЭС с реактором БН трехконтурная, в двух из них используется жидкий натрий (в контуре реактора и промежуточном). Жидкий натрий бурно реагирует с водой и водяным паром. Поэтому, чтобы избежать при авариях контакта радиоактивного натрия первого контура с водой или водяным паром, выполняют второй (промежуточный) контур, теплоносителем в котором является нерадиоактивный натрий. Рабочим телом третьего контура является вода и водяной пар. В настоящее время в эксплуатации находится ряд энергоблоков типа БН, из них наиболее крупный БН-600.

АЭС не имеют выбросов дымовых газов и не имеют отходов в виде золы и шлаков. Однако удельные тепловыделения в охлаждающую воду у АЭС больше, чем у ТЭС, вследствие большего удельного расхода пара, а, следовательно, и больших удельных расходов охлаждающей воды. Поэтому на большинстве новых АЭС предусматривается установка градирен, в которых теплота от охлаждающей воды отводится в атмосферу.

Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость захоронения радиоактивных отходов. Это делается в специальных могильниках, которые исключают возможность воздействия радиации на людей. Чтобы избежать влияния возможных радиоактивных выбросов АЭС на людей при авариях, применены специальные меры по повышению надежности оборудования (дублирование систем безопасности и др.), а вокруг станции создается санитарно-защитная зона.

3.Реактор типа ВВЭР-1000

Вариант размещения узлов АЭС с реакторами типа ВВЭР-1000

Рисунок 3

1-помещение реактора; 2- машинный зал; 3-площадка трансформаторов; 4 - сбросной канал (закрытый); 5 - насосные станции; 6 - водоподводящий канал (открытый); 7-ОРУ; 8 -щит ОРУ; 9 - объединенный вспомогательный корпус; 10 - дизель-электрическая станция; 11 - здание специальной водоподготовки; 12 -- административно-бытовой комплекс. ОРУ - основное реакторное устройство.

4. Гетерогенный реактор

Гетерогенный ядерный реактор -- реактор, в котором ядерное горючее конструктивно отделено от замедлителя и других элементов активной зоны.

Схематическое устройство гетерогенного реактора на тепловых нейтронах:

Рисунок 4

1 -- управляющий стержень;

2 -- биологическая защита;

3 -- теплоизоляция;

4 -- замедлитель;

5 -- ядерное топливо;

6 -- теплоноситель.

5. Строение реактора

Ядерный реактор - аппарат, в котором происходят ядерные реакции - превращения одних химических элементов в другие. Для этих реакций необходимо наличие в реакторе делящегося вещества, которое при своем распаде выделяет элементарные частицы, способные вызвать распад других ядер. Деление атомного ядра может произойти самопроизвольно или при попадании в него элементарной частицы. Самопроизвольный распад в ядерной энергетике не используется из-за очень низкой его интенсивности. В качестве делящегося вещества в настоящее время могут использоваться изотопы урана -- уран-235 и уран-238, а также плутоний-239.

В ядерном реакторе происходит цепная реакция. Ядра урана или плутония распадаются, при этом образуются два-три ядра элементов середины таблицы Менделеева, выделяется энергия, излучаются гаммакванты и образуются два или три нейтрона, которые, в свою очередь, могут прореагировать с другими атомами и, вызвав их деление, продолжить цепную реакцию. Для распада какого-либо атомного ядра необходимо попадание в него элементарной частицы с определенной энергией (величина этой энергии должна лежать в определенном диапазоне: более медленная или более быстрая частица просто оттолкнется от ядра, не проникнув в него). Наибольшее значение в ядерной энергетике имеют нейтроны. В зависимости от скорости элементарной частицы выделяют два вида нейтронов: быстрые и медленные. Нейтроны разных видов по-разному влияют на ядра делящихся элементов.

Уран-238 делится только быстрыми нейтронами. При его делении выделяется энергия и образуется 2-3 быстрых нейтрона. Вследствие того, что эти быстрые нейтроны замедляются в веществе урана-238 до скоростей, неспособных вызвать деление ядра урана-238, цепная реакция в уране-238 протекать не может.

В уране-235 цепная реакция протекать может, так как наиболее эффективно его деление происходит, когда нейтроны замедлены в 3-4 раза по сравнению с быстрыми, что происходит при достаточно длинном их пробеге в толще урана без риска быть поглощенными посторонними веществами или при прохождении через вещество, обладающее свойством замедлять нейтроны, не поглощая их.

Поскольку в естественном уране имеется достаточно большое количество веществ, поглощающих нейтроны (тот же уран-238, который при этом превращается в другой делящийся изотоп - плутоний-239), то в современных ядерных реакторах необходимо для замедления нейтронов применять не сам уран, а другие вещества, мало поглощающие нейтроны (например, графит или тяжелая вода).

Обыкновенная вода нейтроны замедляет очень хорошо, но сильно их поглощает. Поэтому для нормального протекания цепной реакции при использовании в качестве замедлителя обыкновенной легкой воды необходимо использовать уран с высокой долей делящегося изотопа - урана-235 (обогащённый уран). Обогащённый уран производят по достаточно сложной и трудоемкой технологии на горнообогатительных комбинатах, при этом образуются токсичные и радиоактивные отходы.

Графит хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании графита в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды. Тяжелая вода очень хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании тяжелой воды в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды. Но производство тяжелой воды очень трудоемко и экологически опасно.

При попадании медленного нейтрона в ядро урана-235 он может быть захвачен этим ядром. При этом произойдет ряд ядерных реакций, итогом которых станет образование ядра плутония-239. (Плутоний-239 в принципе может тоже использоваться для нужд ядерной энергетики, но в настоящее время он является одним из основных компонентов начинки атомных бомб.)

Поэтому ядерное топливо в реакторе не только расходуется, но и нарабатывается. У некоторых ядерных реакторов основной задачей является как раз такая наработка.

Другим способом решить проблему необходимости замедления нейтронов является создание реакторов без необходимости их замедлять - реакторов на быстрых нейтронах. В таком реакторе основным делящимся веществом является не уран, а плутоний. Уран же (используется уран-238) выступает как дополнительный компонент реакции - от быстрого нейтрона, выпущенного при распаде ядра плутония, произойдет распад ядра урана с выделением энергии и испусканием других нейтронов, а при попадании в ядро урана замедлившегося нейтрона он превратится в плутоний-239, возобновляя тем самым запасы ядерного топлива в реакторе. В связи с малой величиной поглощения нейтронов плутонием цепная реакция в сплаве плутония и урана-238 идти будет, причем в ней будет образовываться большое количество нейтронов.

Таким образом, в ядерном реакторе должен использоваться либо обогащенный уран с замедлителем, поглощающем нейтроны, либо необогащенный уран с замедлителем, мало поглощающем нейтроны, либо сплав плутония с ураном без замедлителя.

Рисунок 5

Тремя обязательными элементами для реакторов на тепловых нейтронах являются тепловыделитель, замедлитель и теплоноситель. Через реактор с помощью насосов (обычно называемых циркуляционными) прокачивается теплоноситель, поступающий потом или на турбину или в теплообменник (в зависимости от типа реактора).

Нагретый теплоноситель теплообменника поступает на турбину, где теряет часть своей энергии на выработку электричества. Из турбины теплоноситель поступает в конденсатор для пара, чтобы в реактор поступал теплоноситель с нужными для оптимальной работы параметрами. Также в реакторе имеется система управления, которая состоит из набора стержней диаметром в несколько сантиметров и длиной, сопоставимой с высотой активной зоны, состоящих из высокопоглощающего нейтроны материала, обычно из соединений бора. Стержни располагаются в специальных каналах и могут быть подняты или опущены в реактор. В поднятом состоянии они способствуют разгону реактора, в опущенном - заглушают его. Приводы стержней регулируются независимо друг от друга, поэтому с их помощью можно конфигурировать активность реакции в различных частях активной зоны.

Топливная кассета - конструкция из таблеток урана и собирающего их вместе корпуса толщиной 10-20 см и длиной в несколько метров, являющаяся выделителем энергии за счет распада урана. Материалом корпуса обычно является цирконий.

ТВС - тепловыделяющая сборка - топливная кассета и ее крепление. ТВС находится в активной зоне реактора.

СУЗ - система управления защитой. В основном состоит из нейтронопоглощающих стержней.

6. Смоленская АЭС

Все оборудование контура охлаждения размещено в герметичных железобетонных боксах, выдерживающих давление до 4,5кгс/смІ. Для конденсации пара в аварийных режимах в составе системы локализации аварий предусмотрен бассейн - барботер, расположенный под реактором, с запасом воды около 3000 мі. Специальные системы обеспечивают надежный отвод тепла от реактора даже при полной потере станцией электроснабжения с учетом возможных отказов оборудования. Для нужд технического водоснабжения на реке Десна было создано искусственное водохранилище площадью 42 км, для обеспечения населения хозяйственной и питьевой водой используются подземные воды.

7. Курская АЭС

Курская АС расположена в 40 км юго-западнее г. Курска на левом берегу реки Сейм. На АС эксплуатируются четыре энергоблока с канальными реакторами PВМК-1000. Курская АС является важнейшим узлом Единой энергетической системы России. Основным потребителем является энергосистема "Центр", которая охватывает 19 областей, в основном. Центральной России. Около 30% электроэнергии, вырабатываемой Курской АЭС, используется для нужд Курской области. Курская АЭС выдает электроэнергию по 11 линиям электропередач: 2 линии (110 кВ) - для электроснабжения собственных нужд; 6 линий (330 кВ) - 4 линии для электроснабжения области; 2 для севера Украины; 3 линии (750 кВ) - 1 линия для Старооскольского металлургического комбината; 1 линия для северо-востока Украины; 1 линия для Брянской области.

Каждая очередь Курской АЭС состоит из двух энергоблоков. Энергоблок включает в себя следующее оборудование:

- уран-графитовый реактор большой мощности канального типа, кипящий со вспомогательными системами;

- две турбины К-500-65/3000;

- два генератора мощностью 500 МВт каждый.

Каждый блок имеет раздельные помещения для реакторов и их вспомогательного оборудования, систем транспортировки топлива и пультов управления реакторами. Каждая очередь имеет общее помещение для газоочистки и систем спецочистки воды. Все четыре блока Курской АЭС имеют общий машинный зал. Режим работы АЭС - базовый, водный режим - бескоррекционный, нейтральный.

Курская АЭС - станция одноконтурного типа: пар, подаваемый на турбины, образуется непосредственно в реакторе при кипении проходящего через него теплоносителя. В качестве теплоносителя используется обычная очищенная вода, циркулирующая по замкнутому контуру. Для охлаждения отработанного пара в конденсаторах турбин используется вода из пруда-охладителя. Площадь зеркала пруда-охладителя для четырех блоков - 22 квадратных километра. Источником для восполнения потерь служит р. Сейм. Подпитка осуществляется насосной станцией с четырьмя агрегатами суммарной производительностью 14 кубометров в сек.

В 1986 г. начато сооружение пятого блока третьей очереди АЭС. Необходимость в нем вызвана потребностями устойчивого электроснабжения Центра России. Доработанный проект 3-ей очереди Курской АЭС в составе одного энергоблока мощностью 1000 МВт утвержден Минатомом России в декабре 1995 года.

На 5-ом энергоблоке смонтирован реактор третьего поколения с принципиально новыми ядерно-физическими характеристиками, оснащенный новыми системами управления и защиты, который соответствует современным требованиям безопасности. Основное оборудование 5-го энергоблока по составу и типам аналогично оборудованию действующих энергоблоков, однако имеет улучшенные технические характеристики, обеспечивающие повышение надежности и безопасности при эксплуатации.

8. Билибинская АЭС

Билибинская атомная теплоэлектроцентраль - это первенец атомной энергетики в Заполярье, уникальное сооружение в центре Чукотки, обеспечивающее жизнедеятельность горнорудных и золотодобывающих предприятий Чукотки (800 км к югу от Певека, 2000 км к северу от Магадана и 12000 км от Москвы). Зима длится более 10 месяцев в году, зимняя температура иногда достигает - 55°С и зимой круглые сутки темно. Город, окруженный сотнями километров огромных озер, болот, куда добраться можно только по воздуху, или долгая дорога в 2000 км от Магадана. И то это возможно только зимой, когда земля сильно промерзает, на санях, запряженных оленями.

Сельская местность, где в изобилии водятся дикие животные: огромные полярные волки, медведи, северные олени, лоси и росомахи. Станция состоит из четырех однотипных энергоблоков суммарной электрической мощностью 48 МВт с реакторами ЭГП-б (водно-графитовый гетерогенный реактор канального типа). Прототипами данного типа реактора послужили - реактор первой в мире АЭС в Обнинске и два реактора на Белоярской АЭС. Реакторы для станции спроектировали в Обнинском ФЭИ. Проект станции разработал Урал ТЭП.

Удачным решением надо считать блокировку технических сооружений в одном здании - главном корпусе станции; а также применение несущего каркаса здания металлоконструкций, что позволило произвести их изготовление на заводах "материка", а на месте в Билибино осуществить монтаж главного корпуса станции на все четыре блока. Все это в условиях Крайнего Севера дало возможность организовать работу станции организовать 3-х сменную непрерывную работу (включая работу в выходные дни) в помещениях с положительной температурой.

АТЭЦ работает в изолированном Чаун-Билибинском энергоузле и связана с этой системой линией передач длиной 1000 км. В состав энергоузла помимо БиАТЭЦ входит плавучая дизельная электростанция, с поэтическим названием "Северное сияние" (24 МВт) и Чаунская ТЭЦ (30,5 МВт). Общая установленная мощность системы 80 МВт. Но существующие экономические трудности края сократили потребности в электричестве. Поэтому, несмотря на проектную мощность Билибинской АЭС в 48 МВт последние пять лет, её средняя нагрузка составляла 15-25 МВт. Станция способна работать при весьма неравномерном суточном графике нагрузок энергосистемы.

БиАТЭЦ также снабжает теплом прилегающий промышленный комплекс и жилой массив, будучи единственным источником тепловой энергии в районе. Основная доля потребляемой тепловой энергии приходится на коммунально-бытовое потребление многонационального населения края, занятого в основном золотодобычей. Билибинская атомная теплоэлектроцентраль сооружена в 1974 - 1976 гг. и является комбинированным источником электрической и тепловой энергии. Она обеспечивает энергоснабжение промышленных объектов и поселков в автономном режиме. В составе ATЭЦ четыре энергоблока по 12 МВт электрической мощности каждый.

Для Билибинской ATЭЦ был разработан новый водографитовый канальный ядерный реактор ЭГП-6. При разработке и проектировании реакторной установки учитывались наличие вечной мерзлоты и необходимость работы ATЭЦ в изолированной энергосистеме.

9. Балаковская АЭС

Балаковская АЭС расположена на левом берегу Саратовского водохранилища реки Волги в 10 км северо-восточнее г. Балаково Саратовской обл. приблизительно на расстоянии 900 км юго-восточнее г. Москвы. В составе первой очереди АЭС эксплуатируются четыре энергоблока с модернизированными реакторами ВВЭР-1000 (модификация В-320), установленной электрической мощностью по 1000МВт каждый. Вторая очередь включает в себя два энергоблока с установленной электрической мощностью по 1000 МВт каждый, с соответствующим расширением вспомогательных объектов первой очереди. Связь Балаковской АЭС с Единой энергетической системой России осуществляется пятью линиями электропередача напряжением 220 кВ и пятью линиями электропередач напряжением 500 кВ, На Балаковской АЭС используется турбогенератор, включающий в себя:

- турбоустановку типа К-1000-60/1500-2 производственного объединения атомных турбин Харьковского турбинного завода с номинальной мощностью 1000 МВт и частотой вращения 1500 об./мин;

Неконтролируемое воздействие на окружающую среду вредных веществ, образующихся в результате технологического процесса на АЭС, исключено проектом. Единственным проектным нормированным источником воздействия являются выбросы через вентиляционные трубы систем вентиляции энергоблоков и спецкорпуса, обеспечивающих требуемые параметры по воздушной среде на рабочих местах персонала и в технологических помещениях. Для защиты окружающей среды от выбросов вредных веществ проектом предусмотрена система защитных барьеров, эффективность которых подтверждается величинами среднесуточных выбросов и данными о радиационной обстановке в районе расположения Балаковской АЭС за все время ее эксплуатации. Они меньше допустимых на два-три порядка. В соответствии с требованиями российских и международных нормативных документов на Балаковской АЭС и в районе ее расположения осуществляется систематический контроль за влиянием технологического процесса на окружающую среду. Он осуществляется органами государственного надзора и отделом радиационной безопасности Балаковской АЭС. Объем, периодичность и характер контроля определены действующим регламентом.

Зона наблюдения охватывает территорию радиусом 30 км вокруг Балаковской АЭС. Содержание радионуклидов в объектах внешней среды, радиационная обстановка во всех населенных пунктах зоны наблюдения и в городе Балаково, объемная радиоактивность воды пруда-охладителя АЭС и реки Волги находятся в пределах средних величин, характерных для Европейской части территории России. Это позволяет сделать вывод о том, что за время эксплуатации Балаковская АЭС не оказывала влияния на окружающую среду. В соответствии с действующим законодательством в 1992 году были проведены научно-общественная и государственная экологическая экспертизы проекта первой очереди Балаковской АЭС. Обе экспертизы подтвердили возможность эксплуатации первой очереди в составе четырех энергоблоков.

10. Проблемы развития энергетики

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии. Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых энергоресурсов - угля, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.

Масштаб добычи и расходования энергоресурсов, металлов, воды и воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов стремительно сокращаются. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов.

Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем.

Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5 %, ежегодно образуется до 400 млн тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год.

Использование энергии атомного ядра и развитие атомной энергетики частично снимает остроту этой проблемы. Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее 20 век атомным, стало существенным складом к запасам энергетического ископаемого топлива. Запасы урана в земной коре оцениваются огромной цифрой - 1014 тонн. Однако основная масса этого богатства находится в рассеяном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4109 тонн. В тоже время богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн.

Ежегодные потребности в уране составляют, по современным оценкам, 104 тонны естественного урана. Так что эти запасы позволяют, как сказал академик А.П. Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время". Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды и воздуха.

Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте. Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации, что позволяет устранить возможность возникновения парникового эффекта с тяжелыми экологическими последствиями глобального потепления. Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АЭС, атомная энергетика не создаст особых транспортных проблем, поскольку требует минимальных транспортных расходов, что освобождает общество от бремени постоянных перевозок огромных количеств органического топлива.

11. Проблемы безопасности

Чеpнобыльская катастpофа и дpугие аваpии ядеpных pеактоpов в 1970 и 1980-е годы, помимо прочего, ясно показали, что такие аваpии часто непpедсказуемы. Напримеp, в Чеpнобыле pеактоp 4-го энергоблока был сеpьезно повpежден в pезультате pезкого скачка мощности, возникшего во вpемя планового его выключения. Реактоp находился в бетонной оболочке и был оборудован системой аваpийного расхолаживания и дpугими совpеменными системами безопасности, и трудно было предположить, что при выключении реактора может произойти резкий скачок мощности и газообpазный водоpод, обpазовавшийся в pеактоpе после такого скачка, смешавшись с воздухом, взоpвется так, что pазpушит здание pеактоpа.

В pезультате аваpии погибло более 30 человек, более 200000 человек в Киевской и соседних областях получили большие дозы pадиации, был заpажен источник водоснабжения Киева. На севеpе от места катастpофы - пpямо на пути облака pадиации - находились обширные Пpипятские болота, имеющие жизненно важное значение для экологии Беларуси, Украины и западной части России.

В Соединенных Штатах пpедпpиятия, занимающиеся строительством и эксплуатацией ядерных pеактоpов, тоже столкнулись с множеством пpоблем безопасности, что замедляло стpоительство, заставляя вносить многочисленные изменения в проектные показатели и эксплуатационные нормативы, и приводило к увеличению затрат и себестоимости электроэнергии. По-видимому, было два основных источника этих тpудностей. Один из них - недостаток знаний и опыта в этой новой отрасли энергетики. Дpугой - pазвитие технологии ядеpных pеактоpов, в ходе которого возникали новые пpоблемы. Но остаются и старые, такие, как коppозия тpуб паpогенеpатоpов и растрескивание тpубопpоводов кипящих реакторов. Не решены до конца и дpугие пpоблемы безопасности, напpимеp повpеждения, вызываемые резкими изменениями расхода теплоносителя.

12. Выводы

Тремя обязательными элементами для реакторов на тепловых нейтронах являются тепловыделитель, замедлитель и теплоноситель. Через реактор с помощью насосов (обычно называемых циркуляционными) прокачивается теплоноситель, поступающий потом или на турбину или в теплообменник (в зависимости от типа реактора)

Ежегодные потребности в уране составляют, по современным оценкам, 104 тонны естественного урана. Так что эти запасы позволяют, как сказал академик А.П. Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время". Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды и воздуха.

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии. Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых энергоресурсов - угля, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.

Библиографический список

wikipedia.ru.org/wiki/АЭС

www.rosatom.ru

www.stroyka.ru/centbuildings/detail.php

Размещено на Allbest.ru


Подобные документы

  • Использование ядерного топлива в ядерных реакторах. Характеристики и устройство водоводяного энергетического реактора и реактора РБМК. Схема тепловыделяющих элементов. Металлоконструкции реактора. Виды экспериментальных реакторов на быстрых нейтронах.

    реферат [1,0 M], добавлен 01.02.2012

  • Історія створення ядерного реактора. Будова та принципи роботи реактора-розмножувача та теплового реактора. Особливості протікання ланцюгової та термоядерної реакцій. Хімічні і фізичні властивості, способи одержання і застосування урану і плутонію.

    реферат [488,7 K], добавлен 23.10.2010

  • Конструкция и эксплуатация единственного в России быстрого реактора БН-600. Соответствие энергоблока № 3 Белоярской АЭС требованиям нормативных документов по безопасности в атомной энергетике. Использование оружейного плутония в быстрых реакторах.

    доклад [164,8 K], добавлен 31.10.2012

  • Принцип действия ядерного реактора. Строение защиты реактора, механизмы его управления и защиты. Сервопривод ручного и автоматического управления. Исследование биологической защиты реактора. Оборудование бетонной шахты: основные сборочные единицы.

    реферат [130,5 K], добавлен 13.11.2013

  • Предназначение и конструктивные особенности ядерного энергетического реактора ВВЭР-1000. Характеристика и основные функции парогенератора реактора. Расчет горизонтального парогенератора, особенности гидравлического расчета и гидравлических потерь.

    контрольная работа [185,5 K], добавлен 09.04.2012

  • Снижение интенсивности ионизирующих излучений в помещениях. Бетонная шахта реактора. Теплоизоляция цилиндрической части корпуса реактора. Предотвращение вибрации конструкционных элементов активной зоны реактора. Годовая выработка электроэнергии.

    дипломная работа [4,8 M], добавлен 11.05.2012

  • Конструкция реактора и выбор элементов активной зоны. Тепловой расчет, ядерно-физические характеристики "холодного" реактора. Многогрупповой расчет, спектр и ценности нейтронов в активной зоне. Концентрация вещества в гомогенизированной ячейке реактора.

    курсовая работа [559,9 K], добавлен 29.05.2012

  • Прообраз ядерного реактора, построенный в США. Исследования в области ядерной энергетики, проводимые в СССР, строительство атомной электростанции. Принцип действия атомного реактора. Типы ядерных реакторов и их устройство. Работа атомной электростанции.

    презентация [810,8 K], добавлен 17.05.2015

  • Нейтронно-физический и теплогидравлический расчёт уран-графитового реактора. Параметры нестационарных и переходных процессов. Эффекты реактивности при отравлении реактора. Расчёт нуклидного состава и характеристик, связанных с выгоранием топлива.

    курсовая работа [1,5 M], добавлен 20.12.2015

  • Теплотехническая надежность ядерного реактора: компоновка, вычисление геометрических размеров его активной зоны и тепловыделяющей сборки. Определение координат и паросодержания зоны поверхностного кипения. Температура ядерного топлива по высоте ТВЭл.

    курсовая работа [1,2 M], добавлен 18.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.