Виды энергии, источники энергии

Использование ветряного движения воздушных масс. Управляемый термоядерный синтез. Характер параметров термальных вод и технологические схемы производства электроэнергии. Экологическое воздействие возобновляемых источников энергии на природную среду.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 21.01.2014
Размер файла 557,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Виды энергии, источники энергии

Ветряное движение воздушных масс. Геотермальные тепло-планеты. Геотермальная энергетика

Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)

Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена.

Солнечные - электромагнитное излучение солнца.

Солнечный коллектор, в том числе Солнечный водонагреватель, используется как для нагрева воды для отопления, так и для производства электроэнергии.

Фотоэлектрические элементы

Гидроэнергетические - движение воды в реках или морях.

Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах - Франции, Великобритании, Канаде, России, Индии, Китае.

Волновые электростанции

Мини и микро ГЭС (устанавливаются в основном на малых реках)

Водопадные электростанции

Аэро ГЭС (конденсация/сбор водяного пара из атмосферы и гидравлический напор 2-3 км)

Биотопливные - теплоту сгорания возобновляемого топлива (например, спирта)

Биотопливо

Жидкое: Биодизель, биоэтанол.

Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты)

Газообразное: биогаз, синтез-газ.

Грозовая энергетика - это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings 11 октября 2006 года объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученой с помощью современных источников, окупаться такая установка будет за 4--7 лет.

2. Управляемый термоядерный синтез

Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.

3. Характер параметров термальных вод, технологические схемы производства электроэнергии

Температура подземных вод колеблется в широких пределах, обусловливая их состояние, влияя на состав и свойства. В соответствии с температурой теплоносителя все геотермальные источники подразделяют на эпитермальные, мезотермальные и гипотермальные.

К эпитермальным источникам обычно относят источники горячей воды с температурой 50-90 °С, расположенные в верхних слоях осадочных пород, куда проникают почвенные воды.

К мезотермальным источникам относят источники с температурой воды 100-200 °С.

В гипотермальных источниках температура в верхних слоях превышает 200 °С и практически не зависит от почвенных вод.

Тепло, получаемое из недр планеты, может использоваться как для обогрева жилых домов и производственных помещений, теплиц непосредственно, так и для производства электрической энергии. В настоящий момент наиболее распространенной является практика прямого использования геотермального тепла из-за технической простоты. Водопровод подсоединяется непосредственно к глубинной скважине, и получаемая вода используется для обогрева жилых домов, теплиц, дорог или сушки одежды. Наиболее распространён этот способ в странах, расположенных в сейсмоактивных зонах, на стыках тектонических плит. К примеру, в Японии, на Камчатке или в Исландии.

Для производства электричества из геотермальной энергии используются геотермальные электростанции. В наши дни разработаны три основные схемы получения электричества из гидротермальных источников:

-прямая схема, предполагающая использование сухого пара.

-непрямая схема, в которой используется водяной пар.

-смешанная схема, включающая в себя бинарный цикл.

Наиболее старыми и проверенными из них являются электростанции, работающие на сухом пару. На них для производства электроэнергии используется пар, поступающий непосредственно из глубинной скважины, который пропускается через турбину. Однако на сегодняшний день наиболее распространенными уже стали электростанции, основанные на непрямом типе производства электроэнергии. Для работы на этих электростанциях используются горячие подземные воды, которые под высоким давлением закачиваются в генераторные установки. Температура используемой воды в них достигает 182 градусов по Цельсию. Основным отличием геотермальных электростанций смешанного типа является то, что вода и пар никогда не соприкасаются непосредственно с турбинами установки.

В целом, в упрощенной трактовке схема работы геотермальной электростанции выглядит следующим образом: сильно разогретые подземные воды или горячий пар от них подаются в специальное устройство, в котором при помощи теплообменника создается пар, который приводит в движение турбину, вырабатывающую электричество. После отдачи тепловой энергии отработанная вода закачивается обратно в скважину, полученное тепло направляется в магистральную тепловую сеть, выработанное электричество же - в региональную электросеть.

Таким образом, геотермальные электростанции могут одновременно вырабатывать как необходимое тепло, так и электроэнергию или варьировать их производство в зависимости от сезонной потребности населения конкретной местности.

4. Основные факторы экологического воздействия возобновляемых источников энергии на различные природные среды и объекты в гидроэнергетике

В наше время достаточно известны такие проявления вредного влияния гидроэлектростанций на окружающую среду, как затопление больших территорий, переработка берегов и заиление водохранилищ, распространение синезеленых водорослей, исчезновение ценных пород рыб, появление болезнетворных микроорганизмов, размывы русел ниже гидроузлов, образование незамерзающих участков в зимнее время, сброс холодной воды в летнее время. термоядерный электроэнергия экологический

сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

5. Одноконтурные ГеоТЭС, достоинства и недостатки

В одноконтурной установке, паровая фракция выделяется из геотермальной пароводяной смеси в сепараторе и поступает на конденсационную турбину, работающую на насыщенном паре (рис. 4.1). Теплоноситель из скважины несет в себе большое количество солей и вредных газов (в том числе, сероводород H2S), присутствие которых в паровом контуре недопустимо. Поэтому необходима сепарация пара.

Рис. 4.1. Тепловая схема одноконтурной ГеоТЭС

Горячая геотермальная вода направляется из сепаратора пара 5 в сетевой подогреватель 4, где ее теплота используется для теплофикации, и затем закачивается насосом 3 обратно в пласт по требованиям охраны окружающей среды и поддержания пластового давления. Обычно глубина таких обратных скважин 2 примерно такая же, как и у эксплуатационных скважин 1. Затраты на буровые работы - одна из основных статей расходов на геотермальную энергетику. Соли геотермальных вод весьма активны в коррозионном отношении, поэтому трубы должны иметь надежную защиту в виде плакирующих и полимерных покрытий.

Пар из сепаратора поступает в турбину 7, приводящую в движение электрогенератор 8. Отработавший в турбине пар направляется в конденсатор 9, в который циркуляционным насосом 10 закачивается холодная вода из окружающей среды. Конденсат сливается в местные водоемы.

Существенным недостатком одноконтурных ГеоТЭС является присутствие в геотермальном паре неконденсирующихся газов, которые не отделяются в сепараторе. По этой причине в конденсаторе невозможно создать глубокий вакуум и теплоперепад в турбине оказывается заниженным.

В ГеоТЭУ имеют место также потери энергии на собственные нужды (главным образом, на привод циркуляционного насоса, подающего воду из окружающей среды в конденсатор, и на привод насоса закачки отработанной воды в пласт), которые учитываются коэффициентом . Полный КПД установки равен произведению

где - термический КПД цикла, определяемый по соотношению (3.2), - относительный внутренний КПД турбины, - электрический КПД турбогенератора, d - расход пара, кг/с. в действующих установках он составляет 15.22%. С учетом использования для нужд теплоснабжения горячей воды, отделяемой в сепараторе, полезное использование геотермального ресурса может превышать 50%. В ГеоТЭУ имеют место также потери энергии на собственные нужды (главным образом, на привод циркуляционного насоса, подающего воду из окружающей среды в конденсатор, и на привод насоса закачки отработанной воды в пласт), которые учитываются коэффициентом . Полный КПД установки равен произведению

,

в действующих установках он составляет 15.22%. С учетом использования для нужд теплоснабжения горячей воды, отделяемой в сепараторе, полезное использование геотермального ресурса может превышать 50%.

6. Малые ГЭС их назначение, классификация, основные факторы определяющие режим работы

Малые и микроГЭС - объекты малой гидроэнергетики. Эта часть энергопроизводства занимается использованием энергии водных ресурсов и гидравлических систем с помощью гидроэнергетических установок малой мощности (от 1 до 3000 кВт). Малые ГЭС Казахстана - малые гидроэлектростанции мощностью менее 25 МВт.

Малая гидроэнергетика важна для отдаленных, труднодоступных и изолированных энергодефицитных районов, которые не подключены к Единой энергетической системе, а также для локального водоснабжения небольших городов и поселений.

Малые ГЭС отличаются экологичностью, щадящим отношением к окружающей среде, а также рядом все более востребованных косвенных эффектов, например, возможностью каптажа - накопления и последующего использования воды питьевых кондиций.

Типы мини ГЭС

Водяное колесо - это колесо с лопастями, установленное перпендикулярно поверхности воды. Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

Гирляндная мини-ГЭС - представляет собой трос, с жестко закрепленными на нем роторами. Трос перекинут с одного берега реки на другой. Роторы как бусы нанизаны на трос и полностью погружены в воду. Поток воды вращает роторы, роторы вращают трос. Один конец троса соединен с подшипником, второй с валом генератора.

Ротор Дарье - это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета.

Пропеллер - это подводный "ветряк" с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения. Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры.

Достоинства и недостатки различных систем миниГЭС

Недостатки гирляндной МГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД. Гирляндная ГЭС - это небольшая плотина. Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока.

Таким образом, с точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, необходимо выбрать конструкцию типа водяное колесо или пропеллер.

МГЭС классифицируются и в зависимости максимального использования напора воды на: высоконапорные - более 60 м;

-средненапорные - от 25 м;

-низконапорные - от 3 до 25 м.

7. Бинарные ГеоТЭС. Верхне-Мутновская ГеоТЭС с комбинированным циклом

На данный момент, все большее распространение получают ГеоТЭС со смешанным циклом работы. Появившаяся несколько лет назад новая, разработанная австралийской компанией Geodynamics Ltd., революционная технология строительства ГеоТЭС - технология Hot-Dry-Rock, существенно повышает эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем. До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара. Австралийцы отступили от этого принципа и решили сами создать подходящий "гейзер". Для этого они отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. Поэтому если на такую глубину через скважину закачать воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл, таким образом, повторится. (Смотри рисунок 3)

Рисунок 3 - Принцип работы геотермальной электростанции с бинарным циклом

8. Гидротехнические сооружения, бетонные и грунтовые плотины. Хозяйственные, технические достоинства малых ГЭС

Гидротехническое сооружение - сооружение для использования водных ресурсов, а также для борьбы с вредным воздействием вод. В соответствии с Федеральным законом "О безопасности гидротехнических сооружений" гидротехнические сооружения - это плотины, здания гидроэлектростанций, водосбросные, водоспускные и водовыпускные сооружения, туннели, каналы, насосные станции, судоходные шлюзы, судоподъемники; сооружения, предназначенные для защиты от наводнений, разрушений берегов и дна водохранилищ, рек; сооружения (дамбы), ограждающие хранилища жидких отходов промышленных и сельскохозяйственных организаций; устройства от размывов на каналах, а также другие сооружения, предназначенные для использования водных ресурсов и предотвращения негативного воздействия вод и жидких отходов.

Плотина - гидротехническое сооружение, перегораживающее водоток или водоём для подъёма уровня воды. Также служит для сосредоточения напора в месте расположения сооружения и создания водохранилища.

Грунтовые плотины просты по конструкции, строительство их возможно в очень широком диапазоне геологических условий. Учитывая это, а также использование при возведение плотины местных строительных материалов, почти полную механизацию труда и сокращение трудозатрат, грунтовые плотины можно считать самым рапространённым типом водоподпорного сооружения. Грунтовые плотины относятся к гравитационным плотинам.

Бетонные плотины.

Гравитационные плотины.

Давление от масс воды гравитационные плотины воспринимают своей массой. Сопротивление сдвигу происходит за счёт сил трения или сцепления подошвы плотины по основанию. Вследствие этого такие плотины имеют массивный характер, чаще близкое к трапецеидальному сечение в поперечнике.

Арочные плотины.

Арочные плотины давление от масс воды передают на берега ущелья (реже - на искусственные устои). В силу этого такие плотины чаще возводятся в горной местности, где берега сложены прочными породами. Часть нагрузок арочная конструкция передаёт на основание. При этом, чем шире арка, тем больше давление на основание. Это требует увеличение ширины плотины в нижней части, и приводит к появлению арочно-гравитационных плотин. Арочные плотины с контрфорсами в нижней части арки называют арочно-контрфорсными. В них работа арки ограничивается верхней частью, что позволяет применять арочные плотины в более широком диапазоне мест расположения.

Арочно-гравитационные плотины.

Арочно-гравитационные плотины совмещают в себе свойства арочных и гравитационных плотин.

Контрфорсные.

Как и арочные плотины позволяют уменьшить массу тела плотины, её размеры за счёт более эффективной расчётной схемы. Стена в контрфорсной плотине более тонкая, чем в гравитационной благодаря её усилению с низовой стороны подпорными конструкциями (стенами).

Небольшие электростанции позволяют сохранять природный ландшафт, окружающую среду не только на этапе эксплуатации, но и в процессе строительства. При последующей эксплуатации отсутствует отрицательное влияние на качество воды: она полностью сохраняет первоначальные природные свойства. В реках сохраняется рыба, вода может использоваться для водоснабжения населения. В отличие от других экологически безопасных возобновляемых источников электроэнергии - таких, как солнце, ветер, - малая гидроэнергетика практически не зависит от погодных условий и способна обеспечить устойчивую подачу дешевой электроэнергии потребителю. Еще одно преимущество малой энергетики - экономичность К тому же сооружение объектов малой гидроэнергетики низкозатратно и быстро окупается.

9. Основные факторы экологического воздействия на природную среду и объекты в геотермальной энергетике

Использование геотермальной энергии имеет и отрицательные экологические последствия. Строительство геотермальных станций нарушает "работу" гейзеров. Для конденсации пара на геотермальных станциях используется большое количество охлаждающей воды, поэтому геотермальные станции являются источниками теплового загрязнения. При одинаковой мощности с ТЭС или АЭС геотермальная электростанция потребляет для охлаждения значительно большее количество воды, т.к. ее КПД ниже. Сброс сильно минерализованной геотермальной воды в поверхностные водоемы может привести к нарушению их экосистем. В геотермальных вода в больших количествах содержится сероводород и радон, который вызывает радиоактивные загрязнения окружающей среды.

В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

10. Факторы, влияющие на величину стока и определяющие режим стока малых ГЭС

В первую группу включают факторы, непосредственно создающие речной сток (стокообразующие факторы) - осадки (жидкие и твердые) и подземные воды. Осадки являются основной составляющей круговорота воды в природе. Длительное отсутствие осадков ведет к прекращению речного стока и высыханию водоемов. Подземные воды питают реки в течение года. В период длительного отсутствия дождей питание рек осуществляется только за счет этих вод, заключенных в водоносные горизонты.

Косвенные факторы непосредственно не участвуют в образовании стока рек, так как не создают приходной части водного баланса, но участвуют в перераспределении и изменении его величины во времени (по месяцам, сезонам, годам) и пространстве (по территории водосбора). К этой группе относят также климатические факторы, как испарение, температура воздуха и почвы, влажность воздуха.

11. Запасы энергии биомассы и особенности и виды биотоплива

Биотопливо - топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов.

Виды топлив

Биотоплива разделяют на твердые, жидкие и газообразные. Твердые - это традиционные дрова (часто в виде отходов деревообработки) и топливные гранулы (прессованные мелкие остатки деревообработки).

Жидкие топлива - это спирты (метанол, этанол, бутанол), эфиры, биодизель и биомазут.

Газообразные топлива - различные газовые смеси с угарным газом, метаном, водородом получаемые при термическом разложении сырья в присутствии кислорода (газификация), без кислорода (пиролиз) или при сбраживании под воздействием бактерий.

Биомасса - шестой по запасам из доступных на настоящий момент источников энергии после горючих сланцев, урана, угля, нефти и природного газа. Приближённо полная биологическая масса земли оценивается в 2,4·1012 тонн.

Биомасса - пятый по производительности возобновимый источник энергии после прямой солнечной, ветровой, гидро и геотермальной энергии. Ежегодно на земле образуется около 170 млрд т. первичной биологической массы и приблизительно тот же объём разрушается.

Биомасса - крупнейший по использованию в мировом хозяйстве возобновляемый ресурс (более 500 млн т.у.т./год)

Биомасса применяется для производства тепла, электроэнергии, биотоплива, биогаза (метана, водорода).

Основная часть топливной биомассы (до 80%), это прежде всего древесина, употребляется для обогрева жилищ и приготовления пищи в развивающихся странах.

12. Типы ветроэнергетических установок. Определение мощности. Ротор Дарье

Известно много различных ветроэнергетических установок (ВЭС), но все их можно разделить на два типа: с горизонтальной и вертикальной осью вращения. Первые имеют сложную конструкцию, зато обладают более высоким коэффициентом использования энергии ветра, поэтому чаще применяются в промышленности. Вторые - более просты в конструкции, но менее продуктивны. На рынке они встречаются редко и применяются обычно в частных домах.

Горизонтальные (крыльчатые) ветроколеса

Широкое распространение получили ветроустановки с крыльчатыми ветроколесами и горизонтальной осью вращения (рис.1). Среди них наибольшее развитие получили двух- и трехлопастные ветроколеса.

Горизонтальные (крыльчатые; ВЭС - лопастные механизмы с горизонтальной осью вращения. Скорость вращения и простота изготовления обусловили широкое применение крыльчатых ветрогенераторов в промышленности. Чтобы обеспечить максимальную скорость вращения, лопасти крыльчатого ветряного генератора должны располагаться вертикально - перпендикулярно потоку воздух

При расчетной скорости ветра и выше обеспечивается работа ВЭУ с номинальной мощностью. При скоростях ветра ниже расчетной мощность ветроустановки может составлять 20-30% от номинальной и менее. При таких режимах работы происходят большие потери энергии в генераторах вследствие их низких КПД на малых нагрузках, а в асинхронных генераторах возникают, кроме того, большие реактивные токи, которые необходимо компенсировать. Для исключения этого недостатка в некоторых ВЭУ применяют генераторы с номинальными мощностями 100 и 20-30% от номинальной мощности ВЭУ

Вертикальные (роторные) ветроколеса

Другой разновидностью ветроколеса является ротор Савониуса (рис. 2). Вращающий момент возникает при обтекании ротора потоком воздуха за счет разного сопротивления выпуклой и вогнутой частей ротора. Колесо отличается простотой, но имеет очень низкий коэффициент использования энергии ветра - всего 0,10-0,15. В последние годы в ряде зарубежных стран, особенно в Канаде, начали заниматься разработкой ветродвигателя с ротором Дарье, предложенным во Франции в 1920 г. Этот ротор имеет вертикальную ось вращения и состоит из двух-чегырех изогнутых лопастей. Лопасти образуют пространственную конструкцию, которая вращается пол действием подъемных сил. возникающих на лопастях от ветрового потока. В роторе Дарье коэффициент использования энергии ветра достигает значений 0,30-0,35 В последнее время проводятся разработки роторного двигателя Дарье с прямыми лопастями.

Вертикальные (карусельные, роторные) ВЭС - лопастные механизмы с вертикальной осью вращения. Работают при низких скоростях ветра, но имеют малую эффективность. Поэтому встречаются они достаточно редко и применяются, как правило, в домашних системах. В то же время, в отличие от горизонтальных, могут работать при любом направлении ветра, не изменяя своего положения.

13. Схема биоэнергетической установки и принцип работы

Навоз на фермах собирается в сборники, откуда при помощи помпы поступает в реактор. Если одновременно в процессе участвует несколько хозяйств, то сырье с ферм поставляется на грузовиках. Растительные отходы тоже доставляются на грузовиках, перемещаются в закрытые сборники, дробятся и смешиваются с навозом.

Жидкие биологические отходы перекачиваются на биогазовую установку с помощью насосов, предварительно попадая в емкость, в которой масса гомогенезируется и подогревается до нужных температур, иногда охлаждается. Доставка твердых осуществляется по транспортерной ленте, на грузовой технике или другим способом. Их могут добавлять к жидкой массе, смешивая с ней, или помещать в шнековый загрузчик.

Гомогенизация с навозом идет в реакторе - ферментаторе, оборудованном мощными мешалками. Реактором называется герметичный резервуар, изготовленный из стали или кислостойкого железобетона, теплоизоляционный для поддержания фиксированной температуры с целью оптимизации условий сбраживания отходов благодаря жизнедеятельности микроорганизмов. В реактор бактерии вводят единожды, только при первом запуске, путем введения концентратов, добавления свежего навоза или части биомассы с другого реактора. Для перемешивания биомассы в крышке аппарата располагают наклонные миксеры или устраивают погруженные мешалки, тем самым устраняя причины появления осадка и плавающих слоев. Материалом всех перемешивающих устройств служит нержавеющая сталь. В отдельных случаях отходы перемешиваются не механически, а гидравлически, когда масса подается насосами по трубкам в слой, в среду обитания бактерий. Навоз животных - первостепенный источник микробов. Но эти микроорганизмы не приносят вреда, и в силу герметичности системы реакторы могут размещать вблизи от ферм.

Реактор подогревается теплой водой. На входе в реактор вода должна быть температурой 60°С, после реактора - около 40°С. Системой подогрева является сеть трубок внутри стенок реактора, либо на их внутренней стороне. Если биогазовая установка комплектуется когенерационной установкой, то оставшейся при охлаждении генератора рециркуляционной водой (90°С), подогревают реактор, изначально доведя её до нужного уровня (60°С). В сезон зимы биогазовой установке требуется до 70% вторичного тепла, выделенного теплоэлектрогенератором, летом - всего 10%. Если биогазовую установку эксплуатируют только с целью получения газа, теплая вода берется из водогрейного котла.

Процесс гидравлического отстаивания в реакторе в зависимости от субстратов длится по-разному: от 20 до 40 дней. Полученный биогаз или компостированный субстрат далее складируется в танкере для хранения удобрения. Биогаз хранится в специально предназначенной для этого емкости - газгольдере, где выравнивается его состав и давление. Газгольдер дополнительно накрывается тентом, между ними образуется некое пространство, куда закачивается воздух, создавая давление и теплоизоляцию. В отдельных случаях газгольдер представляет собой много-камерный мешок, который по проекту крепится либо поверх бетонного свода ремнями, либо в отведённой бетонной емкости. Затем происходит непрерывное движение газа в газовый или дизель газовый двигатель. Полученный газ преобразуется в тепло или электричество. Обеспечивая безопасность, крупные биогазовые установки оснащают блоками аварийности на тот случай, если двигатель выходит из строя, а газ нужно сжечь. Газовая система может быть оснащена конденсатоотводчиком, десульсулизатором, вентилятором и др. Работа биогазовой установки протекает с помощью средств контроля и автоматизации.

Вся система полностью автоматизирована. Автоматика контролирует деятельность насосной станции, системы подогрева, мешалок, генератора. Для управления хватит одного человека на пару часов в день, который будет вести наблюдение с компьютера.

14. Конструкции ветродвигателей и ВЭС. Зависимость мощности от скорости ветра и диаметра рабочего колеса

Известно много различных ветроэнергетических установок (ВЭС), но все их можно разделить на два типа: с горизонтальной и вертикальной осью вращения. Первые имеют сложную конструкцию, зато обладают более высоким коэффициентом использования энергии ветра, поэтому чаще применяются в промышленности. Вторые - более просты в конструкции, но менее продуктивны. На рынке они встречаются редко и применяются обычно в частных домах.

Из конструктивных характеристик на мощность ветроколеса основное влияние оказывают его диаметр, а также форма и профиль лопастей. Мощность мало зависит от числа лопастей. Частота вращения ветроколеса пропорциональна быстроходности и скорости ветра и обратно пропорциональна диаметру. На величину мощности влияет также высота расположения центра колеса, так как скорость ветра зависит от высоты. Мощность ВЭУ, как отмечалось, пропорциональна скорости ветра в третьей степени. При расчетной скорости ветра и выше обеспечивается работа ВЭУ с номинальной мощностью. При скоростях ветра ниже расчетная мощность ветроустановки может составлять 20-30% от номинальной и менее. При таких режимах работы происходят большие потери энергии в генераторах вследствие их низких КПД на малых нагрузках, а в асинхронных генераторах возникают, кроме того, большие реактивные токи, которые необходимо компенсировать. Для исключения этого недостатка в некоторых ВЭУ применяют генераторы с номинальными мощностями 100 и 20-30% от номинальной мощности ВЭУ.

15. Принципиальная схема энергетической установки для сжигания бытовых отходов

16. Ветроэнергетический потенциал. Факторы воздействия ВЭС на природную среду

По экспертным оценкам, ветроэнергетический потенциал Казахстана оценивается в 920 млрд. кВтч электроэнергии в год.

Выбросы в атмосферу

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО 2, 9 тонн SO2, 4 тонн оксидов азота[39].

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО 2 на 1,5 миллиарда тонн[40].

Влияние на климат

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например, в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее

Шум

Ветряные энергетические установки производят две разновидности шума:

механический шум - шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)

аэродинамический шум - шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

Низкочастотные вибрации

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.

Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.[44]

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы, возможно, заниматься сельским хозяйством или другой деятельностью

Вред, наносимый животным и птицам

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков[47].

Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Радиопомехи

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала[48]. Чем крупнее ветроустановка, тем большие помехи она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

17. Технология получения энергии биомассы. Биосинтез

Технология термоудара

Сущность термоудара в мгновенном (со скоростью порядка 104 град/сек) нагреве вещества до границ его существования в конденсированной фазе. При этом происходят следующие процессы:

· "взрывное" вскипание: переход низкомолекулярных жидкостей, в т.ч. и воды, в газообразное состояние;

· газификация вследствие высокоскоростного пиролиза высоко - молекулярных соединений с образованием газовой фазы пиролизного газа.

При приближении параметров перерабатываемого вещества к параметрам границы существования его в конденсированной фазе межмолекулярное взаимодействие становится пренебрежимо малым. Газовая фаза образуется с существенным изменением энергетической составляющей процесса. Например, вода при "взрывном" высокотемпературном пиролизном вскипании переходит в газовую фазу без поглощения и выделения энергии.

Метод термоудара может лежать в основе как собственно процесса, например, при переработке древесины, так и использоваться в качестве конкретной стадии, например, при переработке несортированных твердых бытовых отходов, где термоудар используется для отделения органической части от неорганической.

18. Ресурсы солнечной энергетики. Способы использования солнечной энергии. Экологические последствия создания СЭС

Способы получения электричества и тепла из солнечного излучения:

· фотовольтаика - получение электроэнергии с помощью фотоэлементов (Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.);

· гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделятьсолнечные системы концентрирующего типа (CSP - Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч солнца. Этот луч солнца используется как источник тепловой энергии для нагрева рабочей жидкости, которая расходуется для электрогенерации по аналогии с обычными ТЭЦ или накапливается для сохранения энергии[3]. Преобразование солнечной энергии в электричество осуществляется с помощью тепловых машин:

· паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

· Двигатель Стирлинга - тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.;

· термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).

· солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Экологические последствия:

Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

19. Развитие систем аккумулирования энергии. Источники ВЭР

Гидроаккумулирующие станции (ГАС) используются с 1929 г. ГАС состоит из 2 больших резервуаров, разнесенных по высоте. Для аккумулирования энергии вода закачивается в верхний резервуар. Для выдачи энергии вода сливается в нижний через гидротурбину с генератором.

Пневматические аккумуляторы. Compressed Air Energy Storage (caes) - аккумулирование энергии с помощью сжатого воздуха: Caes использует непиковую энергию для сжатия и хранения воздуха в воздухонепроницаемом подземном резервуаре или пещере. При пиковой нагрузке запасенный воздух выпускается из пещеры и пропускается через турбину с генератором.

Пневмоаккумуляторы - устройства, накапливающие газ и отдающие ее в моменты наибольшего расходования с преобразованием в другие виды энергии или без этого преобразования.

Химические аккумуляторы - устройства для получения электрического тока и напряжений в результате химической реакции, как правило, в группе из однотипных батарей (многоразовых гальванических элементов), соединенных электрически и конструктивно. В настоящее время широко используются в аэрокосмической технике

Маховики в настоящее время используются для множества побочных применений. Для хранения энергии исследования начаты сравнительно недавно. Маховик состоит из махового колеса, которое вращается с очень высокой скоростью и имеет связь с электрическим аппаратом, который может работать или как двигатель или как генератор.

Сверхпроводящие аккумуляторы - электронакопительные системы, состоящие из бесконечно длинного (замкнутого) проводника с нулевым сопротивлением

Конденсаторные аккумуляторы - системы, накапливающие электрические заряды, состоящие из двух и более подвижных или неподвижных электродов (обкладок), разделенных диэлектриком

Теплоаккумуляторы - устройства, накапливающие тепло, предназначенное для покрытия пиков тепловой нагрузки или для получения других видов энергии.

Плазмоидные аккумуляторы для хранения большого количества энергии используют, по мнению авторов разработок, свойства и способность плазмы создавать долгоживущие сгустки энергии в виде шаровой молнии

Вторичные топливно-энергетические ресурсы (ВЭР) - топливно-энергетические ресурсы, полученные как отходы или побочные продукты (выбросы) производственного технологического процесса. . Утилизация (использование) ВЭР позволяет получить большую экономию топлива и снизить затраты на создание энергосберегающих установок.

Вторичные энергетические ресурсы разделяют на: горючие; тепловые; и избыточного давления (Таблица 4).

1. Горючие ВЭР - это горючие газы и отходы одного производства, которые могут быть применены непосредственно в виде топлива в других производствах.

2. ВЭР избыточного давления - это потенциальная энергия покидающих установку газов, воды, пара с повышенным давлением, которая может быть еще использована перед выбросом в атмосферу.

3. Тепловые ВЭР - это физическая теплота отходящих газов, отработанных в технологических установках; теплота рабочих тел систем охлаждения технологических установок.

20. Использование теплоты отработавших газов. Теплообменники для отработавших газов

В целях повышения тепловой экономичности сушильных установок в ряде случаев представляется целесообразным использовать теплоту конденсата от калориферов сушилки, тепло отходящих газов от топки сушилки или от других агрегатов, а также тепло влажного воздуха, уходящего из сушилки. Наиболее рационально использовать эти вторичные тепловые ресурсы в самой сушильной установке, например для подогрева воздуха тепловых завес в конвейерных сушилках, не имеющих дверей, или для подогрева материала перед его поступлением в сушилку и т. п., так как при этом обеспечивается полная синхронность работы калориферов сушилки и теплоуловителей. Меньшая экономичность, но все же достаточная в ряде случаев для того, чтобы устанавливать теплоуловители, получается в том случае, если эти вторичные тепловые ресурсы используются для каких-либо других технологических нужд предприятия или для отопительновентиляционных установок цеха, где установлена сушилка.

21. Принцип действия СЭС с солнечными прудами

СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной системой ориентации, однако их можно сооружать только в районах с жарким климатом

В солнечном пруду происходит одновременное улавливание и накапливание солнечной энергии в большом объеме жидкости. Обнаружено, что в некоторых естественных соленых озерах температура воды у дна может достигать 70 оС. Это обусловлено высокой концентрацией соли. Солнечная энергия, проникающая через всю массу жидкости в солнечном пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости, в результате чего температура ее может достигать 90-100 оС, в то время как температура поверхностного слоя остается на уровне 20 оС. Благодаря высокой теплоемкости воды в солнечном пруду за летний сезон накапливается большое количество теплоты, и вследствие низких тепловых потерь падение температуры в нижнем слое в холодный период года происходит медленно, так что солнечный пруд служит сезонным аккумулятором энергии. Теплота к потребителю отводится из нижней зоны пруда

Обычно глубина пруда составляет 1-3 м. На 1 м 2 площади пруда требуется 500-1000 кг поваренной соли, ее можно заменить хлоридом магния.

Наиболее крупный из существующих солнечных прудов находится в местечке Бейт-Ха-Арава в Израиле. Его площадь составляет 250 000 м 2. Он используется для производства электроэнергии. Электрическая мощность энергетической установки, работающей по циклу Ренкина, равна 5 МВт. Себестоимость 1 кВт.ч электроэнергии значительно ниже, чем на СЭС других типов.

Описанный эффект достигается благодаря тому, что по глубине солнечного пруда поддерживается градиент поваренной соли, направленный сверху вниз, т.е. весь объем жидкости как бы разделен на три зоны, концентрация соли по глубине постепенно увеличивается и достигает максимального значения на нижнем уровне. Толщина этого слоя составляет 2/3 общей глубины водоема. В нижнем конвективном слое концентрация соли максимальна и равномерно распределена в объеме жидкости. Итак, плотность жидкости максимальна у дна пруда и минимальна у его поверхности в соответствии с распределением концентрации соли. Солнечный пруд служит одновременно коллектором и аккумулятором теплоты и отличается низкой стоимостью по сравнению с обычными коллекторами солнечной энергии. Отвод теплоты из солнечного пруда может осуществляться либо посредством змеевика, размещенного в нижнем слое жидкости, либо путем отвода жидкости из этого слоя в теплообменник, в котором циркулирует теплоноситель. При первом способе меньше нарушается температурное расслоение жидкости в пруду, но второй способ теплотехнически более эффективен и экономичен.

Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах конденсирования воздуха абсорбционного типа, для производства электроэнергии.

22. Проект солнечной космической электростанции

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите. Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ, лазерноеизлучение), и передавать на поверхность в "концентрированном" виде. В этом случае на поверхности необходимо наличие "приёмника", воспринимающего эту энергию[12].

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

· средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга;

· средства передачи энергии на землю, например, через СВЧ или лазер;

· средства получения энергии на земле, например, через ректенны.

Лунный пояс

Проект космической энергетики, представленный компанией Shimizu в 2010 году. По задумке японских инженеров это должен быть пояс, из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.[14]

Солнечные панели

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производится прямо на Луне. Для этого можно использовать лунный грунт из которого можно делать солнечные батареи.[15]

Передача энергии

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн, и приниматься ректеннами здесь на земле. Второй способ передачи который может использоваться это передача световым лучом с помощью лазеров и прием свето-уловителем на земле.[

Преимущества системы

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

23. Использование теплоты низкого потенциала. Тепловые насосы

Тепловой насос - устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой. Термодинамически тепловой насос аналогичен холодильной машине, только наоборот. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель - теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.

В процессе работы компрессор потребляет электроэнергию. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

В зависимости от источника отбора тепла тепловые насосы подразделяются на:

1) Геотермальные (используют тепло земли, наземных либо подземных грунтовых вод

а) замкнутого типа

Горизонтальные

Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,20 м и более)[7]. Такой способ является наиболее экономически эффективным для жилых объектов при условии отсутствия дефицита земельной площади под контур.

Вертикальные

Коллектор размещается вертикально в скважины глубиной до 200 м[8]. Этот способ применятся в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.

Водные

Коллектор размещается извилисто либо кольцами в водоеме (озере, пруду, реке) ниже глубины промерзания. Это наиболее дешевый вариант, но есть требования по минимальной глубине и объёму воды в водоеме для конкретного региона.

б) открытого типа

Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю.

2) Воздушные (источником отбора тепла является воздух)


Подобные документы

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Атомная энергетика. Переход к альтернативным источникам энергии. Доказанные запасы нефти в мире. Проблема исчерпания запасов органических природных энергоресурсов. Обеспечение сохранности природы, чистоты воды и воздуха. Управляемый термоядерный синтез.

    презентация [1,5 M], добавлен 23.05.2014

  • Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат [3,0 M], добавлен 18.10.2013

  • Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа [135,3 K], добавлен 07.03.2016

  • Изучение истории рождения энергетики. Использование электрической энергии в промышленности, на транспорте, в быту, в сельском хозяйстве. Основные единицы ее измерения выработки и потребления. Применение нетрадиционных возобновляемых источников энергии.

    презентация [2,4 M], добавлен 22.12.2014

  • Проблемы энергетики. Атомная энергетика. Нефть и уголь. Проблемы развития. Альтернативные источники энергии. Основные причины перехода к АИЭ. Энергия солнца. Ветер. Водород. Управляемый термоядерный синтез. Гидроэнергия. Геотермальная.

    курсовая работа [39,3 K], добавлен 09.09.2007

  • Описания ветроэнергетики, специализирующейся на преобразовании кинетической энергии воздушных масс в атмосфере в любую форму энергии, удобную для использования в народном хозяйстве. Изучение современных методов генерации электроэнергии из энергии ветра.

    презентация [2,0 M], добавлен 18.12.2011

  • Солнечная, ветряная, геотермальная энергия и энергия волн. Использование альтернативной энергии в России. Исследование параметров солнечной батареи и нестандартных источников энергии. Реальность использования альтернативной энергии на практике.

    реферат [3,8 M], добавлен 01.01.2015

  • Изучение современных альтернативных источников энергии. История развития технологии термоядерного синтеза в России и за рубежом. Технология термоядерного синтеза, анализ ее эффективности в будущем, сравнение с другими альтернативными источниками энергии.

    презентация [2,2 M], добавлен 10.05.2010

  • Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа [317,6 K], добавлен 19.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.