Электричество и человек

Электронная, дырочная, электронно-дырочная, ионная проводимости. Виды движения зарядоносителей. Электронная теория существования живых организмов. Механизм воздействия электрических и магнитных полей на человека. Пример положительного влияния электротока.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.10.2012
Размер файла 22,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ МЕНЕДЖМЕНТА

Кафедра инноватики и информационных технологии

РЕФЕРАТ

по дисциплине «Физика»

на тему: Электричество и человек

Оренбург 2012

Оглавление

Введение

1. Виды проводников. Типы электропроводимости

2. Электронная теория существования живых организмов

3.Влияние внешнего электрического тока на клетку и организм

Заключение

Введение

Бесконечно разнообразен мир. Бесконечно разнообразна окружающая нас природа. Бесконечно сложны и различны люди - части этой природы.

Многие физики, правда, глубоко убеждены, что в основе своей природа проста и большинство ее "загадок", все еще приводящих исследователей в недоумение, лишь свидетельствуют, что мы пока еще не способны понять язык, на котором мир рассказывает о себе.

И всё же почему именно «Человек и электричество»? Познание природы электрических явлений - величайшее достижение человеческого гения. Великий Максвелл предложил систему математических уравнений, которые красочно и лаконично описывали фундаментальные законы, лежащие в основе этих явлений, а заодно объясняли тепловое излучение и распространение радиоволн (открытых, кстати, значительно позже!).

Где же черпать энергию? Не погибнет ли наша «энергетическая» цивилизация? Уместен вопрос: электричество в нашей власти или мы в его?

Сегодня электричество стало самостоятельной отраслью естественнонаучных знаний. Оно ещё уготовит людям немало неожиданностей. Некоторые «сюрпризы» науки мы уже можем предугадать. И контуры будущего, вырисовывающиеся сегодня, грандиозны. Потому нам и захотелось рассказать об электричестве.

1. Виды проводников. Типы электропроводимости

Для возникновения и существования электрического тока необходимо наличие свободно заряженных частиц, движущихся направленно и упорядоченно. В зависимости от рода проводника эти заряженные частицы различны, а значит, различны и типы проводимости. Существуют несколько видов проводимости - электронная, дырочная, электронно-дырочная и ионная проводимости.

а) электронная проводимость:

Электронная проводимость - это способ проводимости, присущий в большей степени металлам, а также некоторым соединениям и веществам. Для него характерно наличие свободных заряженных частиц - электронов, с помощью которых при определенном факторе - наличии электрического поля - возникает электрический ток. При электронной проводимости сопротивление проводников прямо пропорционально зависит от температуры. Зависимость эта выражается линейной функцией;

б) дырочная и электронно-дырочная проводимости:

Электронно-дырочная и дырочная проводимости присущи искусственным полупроводникам. Чистые полупроводники начинают проводить ток при воздействии внешних факторов: световом, радиационном облучении и нагревании. Для придания определенного типа проводимости в кристалл чистого полупроводника вводят небольшое количество вещества, после чего в данном кристалле имеется либо избыток электронов либо их недостаток. В первом случае электроны становятся переносчиками заряда, во втором эту роль играют валентные места - дырки. В зависимости от способа переноса заряда полупроводники делят на группы: с электронно-дырочной проводимостью и с дырочной проводимостью;

в) ионная проводимость:

Вещества, обладающие ионной проводимостью, это вещества, которые в расплавах и растворах диссоциируют на заряженные частицы - ионы. Причем в жидком состоянии эти ионы обладают большой подвижностью, поэтому они являются свободными заряженными частицами, т.е. при воздействии электрического поля начинают двигаться направленно и упорядоченно - возникает электрический ток.

Вообще в природе существуют как проводники так и непроводники, к которым относятся изоляторы и полупроводники.

С развитием органической химии началось производство веществ, у которых отсутствовали свободные электроны. Эти вещества были признаны хорошими изоляторами (их противопоставляли фарфору и стеклу). В то время известны были только неорганические полупроводники. Их и использовали в технике, постепенно изучая их свойства. Органические вещества считали в основном только изоляторами, которые как нельзя лучше подходили для электротехники. Их было легко изготовить, они были простыми в употреблении и в то же время очень надежными. Но со временем при дальнейших исследованиях представление об органических веществах как об изоляторах изменилось, поскольку были найдены вещества со своеобразной формой электропроводимости. Первым таким веществом стал антрацен, при воздействии на него светом, проводимость его начинает резко увеличиваться при увеличении интенсивности освещения. Вслед за этим удивительным явлением были обнаружены и другие особенности некоторых материалов, как, например, зависимость проводимости от давления, влажности, проникающей радиации.

Зарядоносителями могут выступать как электроны, так и дырки, как было сказано выше. Причем дырочная проводимость, как и у неорганических полупроводников обуславливается присутствием весьма сильного акцептора электронов (в органических системах эту роль играет абсорбированный кислород).

Электронную проводимость придают цепочки атомов углерода, соединенных простой связью. В этих системах электроны становятся не связанными с атомами, т.е. они могут отрываться, создавая единую электронную систему. Однако некоторые вещества, имеющие простую связь между атомами углерода, не создают свободных электронов.

Изучение неорганических и органических полупроводников показало, что в них возникают следующие виды зарядоносителей:

а) атомы, которые, потеряв свой электрон с внешней оболочки, становятся положительно заряженными частицами и участвуют в переносе положительных зарядов;

б) освобожденные при этом изменении электроны, которые становятся носителями зарядов;

в) ионизированные атомы-акцепторы, т.е. атомы, захватившие у соседнего атома электрон; они тоже являются отрицательно заряженными частицами и участвуют в переносе отрицательных частиц;

г) дырки, образовавшиеся при захвате у атома валентных электронов; они начинают притягивать электроны от соседнего атома и становятся своеобразными носителями положительного электричества.

Значительно больше видов движения зарядоносителей у органических полупроводников. Здесь их перемещение представляет собой совмещение сложных явлений, одно из которых обусловлено «блуждающими» по молекуле электронами. Так как молекулы различны, то и связи их с электроном различны.

2. Электронная теория существования живых организмов

Реаниматология - наука о спасении жизни достигла очень многих успехов, и основные связаны с активностью сердца. Существуют приборы, способные регистрировать биоэлектрическую активность сердца. И вот один из работников реанимации сделал следующее наблюдение: жизнь человека угасает, но кривая, характеризующая электрическую активность сердца, сохраняет свою форму. Пока сохраняется электрическая активность сердца, борьба за жизнь продолжается, и во многих случаях её удается спасти.

Что же происходит, если наступает смерть? Появляются изменения электрической активности (фиксируемые кардиограммой), которые очень быстро нарастают, а затем электрическая активность пропадает. Беспорядочные отдельные электрические импульсы наблюдаются иногда в течение часа. Число молекул и атомов (количества вещества, из которого состоят ткани) осталось одним и тем же. Из процессов изменилось только движение зарядоносителей - электронов и ионов. Может, в этом заключается тайна смерти и жизни, и очень вероятно, что со временем исследователи установят закономерность движения зарядоносителей с процессами жизнедеятельности. Скорее всего, одно из главных отличий между живым и неживым как раз и заключается в иных молекулярных, атомных и межмолекулярных электронных связях. Отличие может быть и в разной миграции электронов от молекулы к молекуле, в своеобразном движении ионов, в результате чего появляются особый вид электропроводимости и особый вид поляризации, характеризуемые накоплением зарядоносителей, фиксируемых электрокардиограммой.

Тончайший механизм клеточной регуляции, энергетических преобразований, быстрота реакции организма в целом и отдельных анализаторов на внешние раздражители, быстрота обработки информации, оцениваемая по значению электрической активности, объяснимы наличием в основе этих процессов движения зарядоносителей, следовательно, изменениями биоэнергетических явлений на уровнях элементарных частиц. А сложнейшие биохимические обменные процессы в клетке, преобразования различных видов энергии в клетке или в ее элементах, как, например, в митохондриях, объяснимы только тем, что перенос энергии осуществляется частицами, обладающими массой, меньшей массы атома, и в первую очередь прямо и косвенно электронами. С возникновением живого организма любого вида появляются биоэлектрические импульсы, которые гаснут с гибелью организма. Причем электропроводимость живых тканей рассматривается как один из параметров, характеризующих жизнедеятельность, или главный отличительный признак живого от неживого.

Подытоживая выше сказанное, можно предположить, что молекулы живого - это молекулы, взаимосвязанные энергетикой движения зарядоносителей, миграцией электронов, обладающие специфической проводимостью, присущей только живому организму.

3. Влияние внешнего электрического тока на клетку и организм

Несколько веков назад впервые было описано поражение человека током при случайном соприкосновении с токоведущими частями. Смерть наступила мгновенно. Подобные случаи смерти, вызванной электрическим током, начали регистрировать и изучать; при этом по мере расширения применения электричества число их росло. Мнение было единое - смерть наступает мгновенно, без каких-либо, как правило, признаков существенных изменений на теле. Исключение составляли случаи, когда поражение сопровождалось ожогом электрической дуги.

Важно одно: при мгновенной смерти от электрического тока, по-видимому, имеет место нарушение электропроводимости центральной нервной системы, управляющей основными, жизненно необходимыми функциями организма.

Так как все реакции, происходящие внутри организма, регулируются импульсами электрического тока, то можно предположить, что изменение последовательности подачи импульсов, их амплитуды, частоты появления и влечет за собой изменения прежде всего на клеточном уровне. Объяснить это можно только нарушением движения зарядоносителей в клетках центральной и периферической нервной систем и их связях, которое может возникнуть в ряде случаев и при очень маленьких напряжениях и токах от внешних источниках напряжения, а это нарушение приводит к полному или частичному прекращению питания клеток кислородом. Выше было показано, что в сложных биополимерных системах, энергия связи между электронами и ядром очень мала. Она может достигать 0,01 эВ и даже меньше. При токе 1 мкА, прошедшем через тело человека при электротравме, в его тканях поглощается энергия, на много порядков превышающая энергию связи электронной структуры нервной системы, и поэтому есть все основания предполагать, что даже при очень малых токах может быть нарушена электропроводимость в организме, и, как следствие, могут наступить серьезные нарушения состояния человека. Вероятно, что в результате подобного изменения нарушается усваивание кислорода клеткой и она погибает. При этом для того, чтобы необратимые изменения наступили, необходимо совсем небольшое напряжение. Самое интересное заключается в том, почему при выполнении казни преступников посредством электрического стула используя большое напряжение (от 2000) и значительные силы тока смерть наступает через долгий промежуток времени. Для ускорения ее необходимо либо увеличить напряжение в несколько раз, либо прикладывать это же напряжение на долгий срок. Вероятно, что при подаче очень высокого напряжения включается своеобразный механизм защиты - весь организм или только кожа принимает свойство полупроводника обладать огромным сопротивлением при подаче обратного напряжения, причем тело человека всегда будет обладать наибольшим сопротивлением независимо от направления тока. Возможно так своеобразно действуют особые клетки, входящие в состав организма. Это служит доказательством специфической проводимости живого организма при несомненном наличии в ней электронной и электронно-дырочной проводимостей.

Но электрический ток обладает не только смертоносным действием. Он может и помогать людям. Например, в ходе экспериментов по взаимодействию биотоков человека и электрического тока был разработан аппарат под названием «Электросон». Его действие основано на прохождении через тело человека импульсов тока с частотой в несколько сотен килогерц небольшой амплитуды. Электроды при этом накладываются на области висков. Через несколько десятков секунд после включения электрического тока человек засыпает. Результаты ученых позволяют утверждать, что данный аппарат не оказывает побочного влияния на организм человека, в противоположность наркотическим средствам, применяемым для введения человека в состояние глубокого сна, необходимого для обезболивания в процессе операции. Выход из сна в данном случае очень длителен и опасен, в то время как, отключив «электросон», пробуждение происходит течение нескольких минут без последствий для оперируемого.

Электроток может применяться и для введения лекарственных веществ через кожу. При этом процесс совершенно безболезненный и безвредный. Происходит он по свойствам электролиза. В данном случае электрический ток переносит ионы препарата в организм человека, не нарушая структуры его защитной оболочки. Называется это явление электрофорезом.

Очень интересен с точки зрения физики феномен телекинеза: перемещения предметов человеком одним усилием воли. При исследованиях было обнаружено, что в момент перемещения на руках экстрасенса присутствует своеобразный пар из заряженных частиц. Значит объяснить перемещение предметов можно используя свойства электростатического отталкивания и притягивания тел. Другое дело как образуется этот «пар». Скорее всего в этот момент клетки начинают генерировать огромное количество энергии, выходящее из организма посредством клеток-выводов, способных накапливать весьма большой заряд. Такое вполне возможно, учитывая, что емкость тела зависит от расстояния между обкладками и площадью обкладок. На коже расположено огромное количество клеток, которые вполне могут являться конденсаторами, где обкладками будут являться мембраны, а диэлектриком - какое-то органическое образование, например, цитоплазма.

Заключение

проводимость электроток поле живой

В своей работе я закончил изучения механизма взаимодействия электрических и магнитных полей на человека. Но в жизни осталось очень много интересных и удивительных вещей, которые волнуют разум человека. Например, о влиянии инфразвука на живые существа. Он способен вызвать чувство необъяснимого страха или погубить живые существа - комнатные растения. Даже человек может погибнуть - этим объясняется загадочные смерти людей в море без видимых признаков насильственной смерти. Это подтверждается фактом увядания растений в атмосфере повышенного инфразвукового шума. Также интересно значение проклятия - почему же оно действует и довольно эффективно? Влияет не только инфразвук, но и обычный, воспринимаемый звук - музыка. Она способна повысить показатели удоя молока у коров, а способна ввести человека в состояние транса (свойство музыки, используемое индийскими факирами). Интересно также другое: почему люди видят привидения? Некоторые исследователи объясняют это возникновением в мозгу человека объемных голограмм под действием ультразвука или высокочастотных электромагнитных колебаний.

1. Размещено на www.allbest.ru


Подобные документы

  • Понятие об электрическом токе. Изменение электрического поля вдоль проводов со скоростью распространения электромагнитной волны. Условия появления и существования тока проводимости. Вектор плотности тока. Классическая электронная теория проводимости.

    презентация [181,7 K], добавлен 21.03.2014

  • Использование и применение квантовых точек. Кулоновские корреляции и электронно-дырочная жидкость в квантовых ямах. Теория функционала плотности, уравнение Кона-Шэма. Стационарное уравнение Шредингера: общий случай и случай трехмерного пространства.

    курсовая работа [1,5 M], добавлен 01.12.2014

  • Этапы развития науки об электричестве. Теории электрических явлений. Физика и живые организмы, их связь. Электричество в различных классах живых организмах. Исследование протекания электричества в земноводных, опыты Гальвани, Александра Вольта.

    реферат [17,9 K], добавлен 20.12.2010

  • Электронная теория проводимости металлов. Опыт американских физиков Толмена и Стюарта и советских Н.Д. Папалекси и Л.И. Мандельштама. Определение удельного заряда частицы и скорости движения электронов в проводнике. Сверхпроводимость и ее применение.

    презентация [2,2 M], добавлен 26.11.2011

  • Теория электрической проводимости и методика её измерения. Теория диэлектрической проницаемости и методика её измерения. Экспериментальные исследования электрической проводимости и диэлектрической проницаемости магнитной жидкости.

    курсовая работа [724,5 K], добавлен 10.03.2007

  • Биологическое влияние электрических и магнитных полей на организм людей и животных. Суть явления электронного парамагнитного резонанса. Исследования с помощью ЭПР металлсодержащих белков. Метод ядерного магнитного резонанса. Применение ЯМР в медицине.

    реферат [28,2 K], добавлен 29.04.2013

  • Закон полного тока. Единая теория электрических и магнитных полей Максвелла. Пояснения к теории классической электродинамики. Система уравнений Максвелла. Скорость распространения электромагнитного поля. Релятивистская трактовка магнитных явлений.

    презентация [1,0 M], добавлен 14.03.2016

  • Процессы в электрических цепях с сосредоточенными параметрами. Четырехполюсники при переменных токах. Расчет электрических полей. Теорема Гаусса и ее применение. Расчет симметричных магнитных полей. Моделирование плоскопараллельного магнитного поля.

    методичка [4,4 M], добавлен 16.10.2012

  • Зонная модель электронно-дырочной проводимости полупроводников. Расчет концентрации ионизованной примеси. Контакт двух полупроводников с различными типами проводимости. Электронно-дырочные переходы. Полупроводниковые выпрямители. Суть сверхпроводимости.

    презентация [122,7 K], добавлен 09.04.2015

  • Закономерности влияния внешних электрических полей на макроскопические характеристики горения органических топлив. Схемы наложения внешнего электрического поля на пламя. Воздействие организованных внешних полей на процесс горения углеводородных топлив.

    курсовая работа [42,6 K], добавлен 14.03.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.