Гироскоп и его основные характеристики

Превращение свободного гироскопа в гирокомпас, оси вращения наружного и внутреннего кольца подвеса, отклонения полюса гироскопа от плоскости меридиана, процессионное движение, присвоение ему направляющего момента, привод главной оси в плоскость меридиана.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 12.07.2012
Размер файла 14,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Понятие гироскопа

Гироскопом называется быстровращающееся вокруг своей оси симметрии тело; ось, вокруг которой происходит вращение, может изменять свое положение в пространстве. В технике гироскоп представляет собой массивный диск, который практически во всех современных приборах приводится во вращение электрическим путем, являясь ротором электродвигателя.

Одним из способов подвеса является установка гироскопа в кардановых кольцах. Подвешенный таким образом гироскоп получает возможность поворачиваться вокруг следующих трех взаимно перпендикулярных и пересекающихся в одной точке О осей:

- оси вращения АВ самого гироскопа, называемой главной осью или осью собственного вращения;

- оси вращения СД внутреннего кольца;

- оси вращения ЕР наружного кольца подвеса.

Три возможных вращения гироскопа в кардановом подвесе являются его степенями свободы; такой гироскоп называется гироскопом с тремя степенями свободы.

Точка О пересечения указанных осей называется точкой подвеса гироскопа. Точка подвеса является единственной неподвижной точкой, вокруг которой происходит вращательное движение гироскопа.

Гироскоп с тремя степенями свободы, у которого центр тяжести всей системы, состоящей из ротора и кардановых колец, совпадает с точкой подвеса О и к которому не прикладываются внешние вращающие силы, называется уравновешенным или свободным.

Благодаря быстрому вращению свободный гироскоп приобретает интересные свойства, широко используемые во всех гироскопических приборах.

Основные свойства свободного гироскопа следующие:

а) ось вращения гироскопа обладает устойчивостью, т. е. стремится сохранить первоначально заданное ей положение относительно мирового пространства.

Устойчивость оси тем больше, чем точнее центр тяжести системы совпадает с точкой подвеса, т. е. чем лучше отбалансирован гироскоп, чем меньше силы трения в осях карданова подвеса и чем больше вес гироскопа, его диаметр и скорость вращения. Устойчивость оси вращения дает возможность использовать свободный гироскоп в качестве прибора для обнаружения суточного вращения Земли, так как по отношению к земным предметам ось может совершать кажущееся или видимое движение;

б) под действием силы, приложенной к кардановым кольцам, ось гироскопа перемещается в плоскости, перпендикулярной направлению действия силы.

Такое движение гироскопа называется прецессионным движением или прецессией. Прецессионное движение происходит в течение всего времени действия внешней силы и прекращается с прекращением ее действия.

Для определения направления прецессии пользуются, например, правилом полюсов.

Полюсом гироскопа является тот конец его главной оси, со стороны которого вращение наблюдается происходящим против часовой стрелки. Полюсом силы называется тот конец оси гироскопа, со стороны которого действие приложенной к нему внешней силы кажется происходящим против часовой стрелки. Правило полюсов формулируется следующим образом: при приложении к гироскопу момента внешней силы полюс гироскопа кратчайшим путём стремится к полюсу силы.

Произведение момента инерции гироскопа на угловую скорость его собственного вращения / называется кинетическим моментом гироскопа. Обычно кинетический момент изображается отрезком, направленным вдоль главной оси гироскопа, со стрелкой в сторону полюса гироскопа.

Угловая скорость прецессии может быть подсчитана по формуле:

M =----, /

где М -- момент внешней силы.

Превращение свободного гироскопа в гирокомпас

Если главную ось свободного гироскопа установить в плоскости меридиана, то с течением времени вследствие вращения Земли ось будет уходить из этой плоскости, совершая относительно последней видимое движение.

Земля в своем суточном движении вращается с запада на восток вокруг оси NS с угловой скоростью . Перенесем вектор угловой скорости в точку М, лежащую на земной поверхности под широтой , и разложим его по правилу параллелограмма на составляющие 1 и 2.

Составляющая 1cos, лежащая в плоскости горизонта, называется горизонтальной составляющей земного вращения и определяет скорость вращения плоскости горизонта вокруг горизонтальной оси Мх (полуденной линии). Восточной частью плоскость горизонта опускается в пространстве, а западной частью поднимается.

Составляющая 2=sin, направленная по вертикали, называется вертикальной составляющей земного вращения. Вертикальная составляющая определяет вращение плоскости меридиана вокруг оси М (вертикали места).

На экваторе 1, а 20, т. е. горизонтальная составляющая достигает максимального значения, а вертикальная составляющая обращается в нуль. На полюсе, наоборот, 2 , a 10, т. е. вертикальная составляющая имеет максимальное значение, а горизонтальная составляющая обращается в нуль. На промежуточных широтах имеет место одновременное вращение плоскости горизонта и плоскости меридиана.

Для того, чтобы превратить свободный гироскоп в гирокомпас, необходимо сообщить ему направляющий момент, который, воздействуя на гироскоп, приводил бы его главную ось в плоскость меридиана.

Направляющий момент приобретается гироскопом благодаря ограничению одной из трех степеней свободы.

Наиболее простым способом этого ограничения является смещение центра тяжести гироскопа ниже точки подвеса. Гирокомпас, у которого центр тяжести смещен относительно точки подвеса, называется маятниковым гирокомпасом.

Гироскопическая система (гироскоп и его подвес) является основным элементом гирокомпаса; система реагирует на земное вращение и называется поэтому чувствительным элементом. Точкой подвеса гироскопической системы называют ее геометрический центр.

Рассмотрим принцип действия маятникового гирокомпаса, у которого чувствительный элемент имеет один гироскоп. Допустим, что гироскоп находится на экваторе, и в начальный момент (положение 1) главная ось гироскопа горизонтальна и направлена в плоскости восток--запад. Центр тяжести чувствительного элемента, вес которого mg, находится в точке G и смещен вниз от точки подвеса О на величину а, называемую метацентрической высотой.

Момент силы тяжести чувствительного элемента mg относительно точки подвеса О называется маятниковым моментом.

В начальном положении маятниковый момент равен нулю, так как направление силы тяжести проходит через точку подвеса.

С течением времени Земля повернется на некоторый угол , и гироскоп окажется в новом положении (положение //). При этом главная ось гироскопа, стремясь сохранить первоначально заданное ей направление, отклонится от вращающейся в пространстве плоскости горизонта OW на тот же угол .

В этом положении направление силы тяжести не пройдет через точку подвеса, и к гироскопу окажется приложенным некоторый маятниковый момент. Величина этого момента равна mga sin ; с увеличением угла она возрастает.

Под действием маятникового момента возникает прецессионное движение гироскопа вокруг оси Z. Согласно правилу полюсов полюс гироскопа А будет двигаться к точке севера плоскости горизонта, которая является полюсом силы, т. е. к плоскости меридиана.

Следовательно, гироскоп, у которого центр тяжести находится ниже точки подвеса, принципиально превращается в гирокомпас. При отведении гироскопа от плоскости меридиана у него появляется направляющий момент, стремящийся привести его главную ось в плоскость меридиана.

Значение направляющего момента определяется формулой

гироскоп меридиан гирокомпас

R=/cossin,

где I - кинетический момент гироскопа;

cos - горизонтальная составляющая земного вращения;

- угол отклонения полюса гироскопа от плоскости меридиана.

Направляющий момент достигает максимального значения на экваторе при отведении главной оси гироскопа от меридиана на 90°. С увеличением широты направляющий момент уменьшается и на полюсе обращается в нуль. Поэтому на полюсе гирокомпас работать не может.

В гирокомпасах типа «Курс» чувствительный элемент представляет собой герметически закрытый шар, называемый гиросферой. Подвес гиросферы обеспечивает возможность вращения вокруг всех трех осей. Для предупреждения вредного влияния качки гироскопическая система гиросферы смонтирована из двух гироскопов.

Гироскопы расположены в гиросфере под углом 90° друг к другу и под углом 45° к линии NS гиросферы. Гироскопы связаны между собой кривошипом, а с оболочкой гиросферы -- пружинами и могут вращаться вокруг своих вертикальных осей.

Кинетический момент одного из гироскопов направлен на северо-восток, второго--на северо-запад.

Разложим по правилу параллелограмма кинетические моменты на их составляющие по осям OW и NS (рис. 6). Составляющие по оси OW взаимно уничтожатся, а составляющие по оси NS сложатся. Поэтому систему двух гироскопов можно рассматривать как одногироскопную, суммарный кинетический момент которой направлен по оси NS и равен формуле

H 2/ cos 45О 2/.

Следовательно, поведение гиросферы при вращении Земли будет аналогично поведению чувствительного элемента одногироскопного маятникового гироскопа.

Размещено на Allbest.ru


Подобные документы

  • Элементарное представление о гироскопе, его основные свойства, принцип работы и применение в технике. Теорема Резаля. Направление оси свободного гироскопа в инерциальной системе отсчета. Регулярная прецессия тяжелого гироскопа, правило Жуковского.

    презентация [310,0 K], добавлен 09.11.2013

  • Понятие и главное свойство гироскопа (волчка). Основное допущение элементарной теории. Сущность теоремы Резаля. Особенности движения волчка при воздействии внешних сил. Изучение закона прецессии гироскопа. Определение момента гироскопической реакции.

    презентация [554,7 K], добавлен 02.10.2013

  • Магнитоэлектрические датчики момента. Исследование математической модели динамически настраиваемого гироскопа с газодинамической опорой ротора, учитывающей угловую податливость скоростной опоры. Уравнения движения динамически настраиваемого гироскопа.

    дипломная работа [2,0 M], добавлен 12.04.2014

  • Общее понятие гироскопа, его важнейшие свойства. Основное допущение элементарной теории. Реакция гироскопа на внешние силы. Момент гироскопической реакции, сущность теоремы Резаля. Оценка воздействия мгновенной силы на направление оси гироскопа.

    презентация [415,9 K], добавлен 30.07.2013

  • Разработка новой математической модели микромеханического гироскопа камертонного типа на подвижном основании. Анализ уравнений движения данного гироскопа. Нахождение угловой скорости прецессии волновой картины колебаний, иллюстрирующей биение резонатора.

    дипломная работа [5,7 M], добавлен 19.07.2012

  • Анализ режимов работы гироскопа при малой угловой скорости основания. Составление уравнений движения с помощью принципа Гамильтона-Остроградского и Эйлера. Характеристика свободных колебаний гироскопа на подвижном основании с учетом и без учета трения.

    дипломная работа [5,3 M], добавлен 08.07.2012

  • Классификация магнитных систем и устройств. Трёхосный динамически настраиваемый гироскоп. Реализация передаточной функции для гироскопа в программной среде VisSim. S-БАР трехосный гироскоп. Установка набора карт для 200-800 уровня Flybarless Вертоле.

    курсовая работа [2,1 M], добавлен 16.11.2014

  • Основы динамики вращений: движение центра масс твердого тела, свойства моментов импульса и силы, условия равновесия. Изучение момента инерции тел, суть теоремы Штейнера. Расчет кинетической энергии вращающегося тела. Устройство и принцип работы гироскопа.

    презентация [3,4 M], добавлен 23.10.2013

  • Методика определения момента инерции тела относительно оси, проходящей через центр масс. Экспериментальная проверка аддитивности момента инерции и теоремы Штейнера. Зависимость момента инерции от массы тела и ее распределения относительно оси вращения.

    контрольная работа [160,2 K], добавлен 17.11.2010

  • Свойство волчка сохранять неизменным направление оси своего вращения. Секстан Флерие для измерения географической широты местоположения корабля во время шторма. Гироскоп и его основные свойства. Использование гироскопических приборов в авиации, их виды.

    учебное пособие [802,6 K], добавлен 22.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.