Линейная неравновесная термодинамика

Термодинамическое описание неравновесной системы. Принципы локального равновесия и симметрии кинетических коэффициентов. Закономерности перехода ламинарного течения в турбулентное. Образование ячеек Бенара в жидкости, модель самоорганизации биосферы.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 05.04.2012
Размер файла 286,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Белорусский Государственный университет

Физический факультет

ЛИНЕЙНАЯ НЕРАВНОВЕСНАЯ ТЕРМОДИНАМИКА

выполнила:

студентка 7 группы 4 курса

Ковалева Анна Ивановна

Минск 2012

Линейная неравновесная термодинамика

Линейная термодинамика необратимых процессов основана на нескольких постулатах, которые не могут быть обоснованы в рамках макроскопических представлений. Эти положения не настолько общие, чтобы их назвать началами. Вместе с тем они достаточно общи, чтобы строить неравновесную термодинамику, не конкретизируя объекта исследования с точки зрения его молекулярного строения.

Термодинамическое описание неравновесной системы. Принцип локального равновесия

В равновесной термодинамике рассматриваются системы, находящиеся в состоянии равновесия, и изучаются очень медленные (квазистатические, обратимые) процессы, протекающие через непрерывную последовательность равновесных состояний. В этих условиях переменные состояния, например давление и температура, при отсутствии внешних сил не зависят от пространственных координат. С типичным примером неравновесной системы мы встречаемся в обычных потоках газа, когда его плотность, гидродинамическая скорость и температура меняются от точки к точке. Существование градиентов этих параметров приводит к переносу массы, импульса и энергии. Возникающие процессы переноса стараются выровнять неоднородности в распределении плотности, скорости и температуры, приближая систему к равновесию. Процессы переноса характеризуются соответствующими потоками. Например, градиент температуры вызывает поток тепла, градиент плотности - поток массы и т.д. В общем случае говорят, что потоки вызываются обобщенными термодинамическими силами (градиенты температуры или концентрации - простейший пример термодинамических сил). Следует подчеркнуть, что обобщенные термодинамические силы не имеют ничего общего с силами в ньютоновском понимании этого термина.

Появление в системе потоков, вообще говоря, нарушает статистическое равновесие. Например, перенос тепла можно представить как диффузию "горячих" молекул (то есть молекул с большой энергией), а уход горячих молекул нарушает равновесное состояние в системе. Для неравновесных состояний термодинамическое описание, строго говоря, теряет смысл, поскольку, например, нельзя говорить о температуре такого состояния. Вместе с тем в любой физической системе происходят процессы, стремящиеся вернуть систему в состояние равновесия (ведь предоставленная самой себе система всегда приходит в состояние равновесия). Таким образом, происходит своеобразное противоборство между процессами переноса, нарушающими равновесие, и внутренними (релаксационными) процессами, стремящимися его восстановить. В разреженном газе внутренние процессы - это процессы столкновения.

Если процессы, возмущающие равновесие, менее интенсивны, чем процессы, которые формируют равновесие, то можно говорить с определенной степенью точности о локальном равновесии, то есть о равновесии в физически бесконечно малом объеме. Точность такого утверждения будет тем выше, чем меньше отношение скорости изменения состояния за счет внешних условий к скорости восстановления равновесия за счет внутренних релаксационных процессов.

Подчеркнем, что существование локального равновесия еще не означает малости отклонения всей системы от равновесия. Представим себе газ, заключенный между двумя плоскостями, одна из которых поддерживается при температуре 00С, а другая - при 1000С. Ясно, что эта система с конечным отклонением от равновесия, однако процесс теплопроводности настолько медленный, что в каждом физически бесконечно малом объеме столкновения практически успевают восстановить локальное равновесие.

Идея о локальном термодинамическом равновесии была впервые высказана И. Пригожиным и оказалась очень плодотворной в термодинамике необратимых процессов. Это в первую очередь определяется тем, что для неравновесных состояний можно ввести функции состояния, например энтропию, которые будут зависеть от тех же переменных, от которых они зависят, когда система находится в состоянии равновесия. Это значит, что второе начало термодинамики в форме соотношения Гиббса справедливо и для неравновесных состояний, когда термодинамические функции являются функциями координат и времени.

Обосновать применимость уравнения Гиббса к неравновесным системам в рамках термодинамики необратимых процессов нельзя. Поэтому принцип локального равновесия является постулатом. Справедливость этой гипотезы в рамках феноменологического подхода можно оправдать только совпадением результатов теории с экспериментальными данными. Статистическое рассмотрение позволяет получить условия применимости соотношения Гиббса, но только в частном случае разреженного газа. Соотношение Гиббса для разреженного газа справедливо с точностью до членов первого порядка по параметру, равному отношению скорости внешнего воздействия к скорости установления равновесия, и для моментов времени, больших среднего времени свободного пробега.

Таким образом, принцип локального равновесия ограничивает класс систем, доступных термодинамическому рассмотрению. Однако это ограничение наименее сильное из всех условий, накладываемых остальными постулатами неравновесной термодинамики.

Термодинамические уравнения движения

Из опыта известно, что для широкого класса необратимых явлений и в широком диапазоне экспериментальных условий потоки являются линейными функциями термодинамических сил. Так, закон Фурье связывает поток тепла q с gradT. Аналогичную форму имеет закон Фика, устанавливающий линейную связь между потоком массы за счет диффузии и градиентом концентрации. Наряду с этими основными (прямыми) процессами существуют и побочные (их называют перекрестными процессами), которые неразрывно связаны с первыми. Например, перенос заряда под действием электрического поля, осуществляемый при движении ионов в электролите или электронов в металле, означает одновременно и перенос их кинетической энергии (тепла) и массы (диффузия). Наоборот, перенос массы под действием градиента плотности или перенос тепла под действием градиента температуры означает, если речь идет о системе заряженных частиц, одновременно и перенос заряда.

Все сказанное позволило Л. Онсагеру предположить, что при небольших отклонениях от равновесия существует линейная связь между потоками Ji, i = 1, 2, 3, _, m, и термодинамическими силами Xj, j = 1, 2, 3, _, m,

Коэффициенты Li j называются феноменологическими или кинетическими коэффициентами. Феноменологические коэффициенты Li j могут быть любыми функциями параметров состояния (температуры, давления, состава и т.д.), однако они не зависят от Ji и Xj.

Отметим, что кинетические коэффициенты Li j не определяются в неравновесной термодинамике. Явные выражения для кинетических коэффициентов можно получить только в рамках молекулярно-кинетической теории.

Ясно, что существование линейных соотношений между потоками и термодинамическими силами является сверхтермодинамической гипотезой, поскольку эти соотношения отсутствуют в обычной термодинамике. Уравнения (1) американский физик К. Эккарт назвал в 1940 году термодинамическими уравнениями движения.

В рамках термодинамики необратимых процессов определить конкретные границы применимости линейных соотношений (1) невозможно. Эксперимент показывает, что для процессов диффузии и теплопроводности линейные соотношения справедливы в достаточно широкой области параметров. Для химических реакций они справедливы в очень узкой области вблизи состояния химического равновесия.

Гипотеза о линейных связях потоков и термодинамических сил лежит в основе линейной термодинамики необратимых процессов. В нелинейной неравновесной термодинамике в термодинамических уравнениях движения необходимо учитывать члены порядка выше первого или принимать во внимание зависимость кинетических коэффициентов от термодинамических сил.

Принцип симметрии кинетических коэффициентов

Принцип симметрии Онсагера гласит, что при соответствующем выборе потоков и термодинамических сил в линейных соотношениях (1) недиагональные кинетические коэффициенты равны. Таким образом,

Li j = Lji, (2)

то есть матрица кинетических коэффициентов должна быть симметричной.

Равенства (2), которые называют соотношениями взаимности Онсагера или соотношениями симметрии, выражают свойство неравновесной системы, согласно которому если на поток Ji, соответствующий необратимому процессу i, влияет сила Xj, то на поток Jj сила Xi оказывает воздействие с тем же перекрестным коэффициентом.

Результат, выраженный соотношениями взаимности, может показаться более чем скромным. Однако это впечатление обманчиво. Соотношения взаимности сыграли громадную роль в термодинамике необратимых процессов. Значение соотношений взаимности или, точнее, физические следствия равенств (2) состоят прежде всего в том, что соотношения симметрии связывают различные физические процессы, например явление термодиффузии (эффект Соре) и обратный процесс - диффузионный термоэффект (эффект Дюфора). Таким образом, по известным характеристикам одного процесса можно предсказать характеристики другого, обратного процесса.

Теперь следует установить, что понимается под термином "соответствующий выбор" потоков и сил. Линейные соотношения между потоками и термодинамическими силами не позволяют однозначно определить потоки и силы. В термодинамике необратимых процессов принимается, что скорость приращения энтропии (производство энтропии) за счет необратимых процессов может быть представлена в виде

Равенство (3) является исходным для определения потоков и термодинамических сил. Оно по-прежнему не позволяет однозначно выбрать потоки и силы. Однако это обстоятельство теперь уже несущественно (как несуществен выбор системы отсчета при описании механического движения).

Соотношения взаимности (2) были выведены Л. Онсагером в 1931 году. В дальнейшем они были обобщены Х. Казимиром на случай термодинамических сил, которые меняют свой знак при обращении знака времени, и на векторные явления.

За открытие соотношений взаимности, которое по праву может считаться поворотным пунктом в истории термодинамики, Онсагеру (1903-1976) была присуждена Нобелевская премия по химии в 1968 году.

Выражение для производства энтропии, термодинамические уравнения движения (линейные соотношения между потоками и термодинамическими силами) и соотношения взаимности Онсагера позволяют в принципе определить эволюцию всех локальных термодинамических переменных состояния системы и установить важные соотношения между феноменологическими коэффициентами. В этом состоит одно из преимуществ последовательной формулировки термодинамики необратимых процессов.

Самоорганизация в открытых системах

Изучение открытых систем - одно из перспективных направлений термодинамики завтрашнего дня. Самоорганизация в открытых системах всегда выступала как "островок сопротивления" второму началу, которое предсказывает дезорганизацию и разрушение изначально заданной структуры в изолированной системе при эволюции к равновесию. Возникает проблема, как дополнить классическую термодинамику отсутствующей в ней теорией создания структуры.

Заслугой неравновесной термодинамики является установление того факта, что самоорганизация является общим свойством открытых систем. При этом именно неравновесность служит источником упорядоченности. Этот вывод послужил отправной точкой для идей, выдвинутых представителями Брюссельской школы во главе с И. Пригожиным.

Основная трудность, которая возникает при анализе процессов самоорганизации, состоит в том, что нельзя пользоваться представлениями линейной термодинамики необратимых процессов. Предположение о существовании линейных соотношений между потоками и термодинамическими силами здесь оказывается несправедливым, поскольку формирование структур происходит вдали от равновесия. Поясним сказанное на примерах.

Переход ламинарного течения в турбулентное

термодинамический неравновесный турбулентный

Обсудим основные закономерности перехода ламинарного течения в турбулентное на примере течения обычной воды.

При термодинамическом равновесии вода находится в покое (скорость движения равна нулю). Нарушим равновесие, создав, например, градиент давления. Вода начнет перемещаться в сторону меньших давлений, как в трубе при напоре. До некоторой критической скорости течение будет ламинарным, то есть вода будет перемещаться как бы слоями, параллельными направлению течения. В этом случае потоки и термодинамические силы связаны линейными соотношениями. Если скорость движения воды V превысит некоторое критическое значение Vс, то картина движения жидкости удивительным образом изменится: поток станет турбулентным (рис. 1). В этом состоянии, соответствующем большим отклонениям от равновесия, необходимо учитывать нелинейность, вызванную резко возросшими диссипативными процессами.

Проблема перехода к турбулентности в гидродинамических течениях - одна из самых интригующих и трудных проблем в классической физике. За более чем столетнюю историю многие великие умы в области физики, механики и техники пробовали свои силы в решении имеющихся здесь задач. Однако надежного количественного описания возникновения турбулентности до сих пор нет.

Одна из самых красивых картин возникновения турбулентности предложена академиком Л.Д. Ландау в 1944 году. Зарождение турбулентности по мере увеличения скорости или числа Рейнольдса происходит, согласно Ландау, следующим образом.

По определению, число Рейнольдса:

Re = VL / н,

где н - коэффициент вязкости, деленный на плотность, а L - характерный линейный размер, фигурирующий в задаче.

С увеличением числа Рейнольдса при превышении порогового значения критической скорости или критического числа Recr некоторые из малых возмущений, которые всегда существуют вследствие флуктуаций, перестают затухать. Система теряет устойчивость и переходит в новый периодический режим. Говорят о первой бифуркации (бифуркации Хопфа). При дальнейшем увеличении числа Рейнольдса новый периодический режим опять становится неустойчивым, возникают незатухающие колебания по крайней мере еще с одной частотой и т.д. Ландау предположил, что если двигаться от стационарного течения при малых Re в область увеличения Re, то "интервалы между числами Рейнольдса, соответствующими последовательному появлению новых частот, быстро сокращаются. Что касается вновь появляющихся движений, то они имеют все более мелкие масштабы". Таким образом, согласно схеме Ландау, турбулентность есть результат последовательной потери устойчивости течений с менее сложной структурой с формированием течений с более сложной структурой.

Ячейки Бенара, модель самоорганизации биосферы

В качестве второго примера рассмотрим образование ячеек Бенара в жидкости. Ячейки Бенара в неравновесной термодинамике играют исключительную роль, поскольку в этом явлении отчетливо проявляются все основные черты термодинамики необратимых процессов.

Если слой жидкости сильно нагреть, то возникает разность (градиент) температур ?Т между нижней и верхней поверхностями (рис. 2).

Такой температурный градиент называется инверсным, так как жидкость у нижней поверхности вследствие теплового расширения имеет меньшую плотность, чем вблизи верхней поверхности. Из-за наличия силы тяжести и архимедовой выталкивающей силы такая система оказывается неустойчивой, поскольку легкий нижний слой и тяжелый верхний стремятся поменяться местами.

Однако вследствие вязкости жидкости при небольших градиентах температуры движение не возникает и тепло передается только путем теплопроводности. Лишь при достижении критического значения температурного градиента появляется конвекционный поток, обладающий характерной структурой в виде шестиугольных ячеек (рис. 3).

Внутри ячеек жидкость поднимается вверх, а по краям опускается вниз. Экспериментально наблюдать эффект Бенара можно, например, с помощью следующего простого устройства: на сковородку диаметром около 20 см, подогреваемую снизу горячей водой, наливается слой минерального масла толщиной примерно 0,5 см. Чтобы увидеть потоки в жидкости, к маслу подмешиваются мелкие алюминиевые опилки, равномерно распределенные в объеме жидкости. При достижении критического градиента в жидкости возникают потоки и образуются красивые шестиугольные ячейки.

По сравнению со слабонеоднородным распределением параметров в покоящейся жидкости конвекционные ячейки являются более высоко организованной структурой, возникающей в результате коллективного движения молекул в жидкости. Поскольку система обменивается со средой только теплом и в стационарных условиях получает (при температуре T1) такое же количество тепла q, что и отдает (при температуре T2 < T1), то выходит, что система отдает энтропию среде (?S = q / T1 - q / T2 < 0). Иными словами, внутренняя структура или самоорганизация поддерживается за счет поглощения отрицательной энтропии. По предложению Бриллюэна отрицательная энтропия называется негэнтропией.

Ячейки Бенара, если говорить упрощенно, как бы в миниатюре воспроизводят условия, необходимые для существования жизни на Земле. Земля получает высококачественную энергию от Солнца, перерабатывает энергию, что сопровождается ростом энтропии, и выбрасывает ее в космическое пространство вместе с наработанной энтропией. Именно это обстоятельство обеспечивает жизнедеятельность на Земле.

Заключение

Среди всех научных дисциплин термодинамика выделяется аксиоматической строгостью и общностью своих основополагающих начал. О глубине и общности начал термодинамики прежде всего свидетельствует тот факт, что квантовая революция, изменившая облик всей физики, практически не затронула термодинамики. Одно из основных достоинств термодинамики заключается в универсальности ее выводов, которые не привязаны к каким-либо конкретным системам. Это обстоятельство позволяет применять термодинамику для анализа самых разных объектов живой и неживой природы, включая социальную сферу. Потенциал термодинамики огромен и отнюдь не исчерпан, поэтому ее экспансия в смежные области науки неизбежна.

Размещено на Allbest.ru


Подобные документы

  • Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.

    презентация [571,8 K], добавлен 06.04.2015

  • Современное учение об открытых системах и необратимых физических процессах. Нелинейная и неравновесная термодинамика необратимых процессов как основа современной концепции самоорганизации. Особенности синергетики как науки, теория автоволновых процессов.

    реферат [29,2 K], добавлен 05.06.2015

  • Интерес физиков к биологии и тяга к физическим методам исследования в биологических дисциплинах. Крупнейшие события в истории физической химии. Техническое перевооружение физиологии. Термодинамика систем вблизи равновесия (линейная термодинамика).

    контрольная работа [17,8 K], добавлен 07.03.2011

  • Экстремальные свойства термодинамических потенциалов. Условия равновесия и устойчивости пространственно однородной системы. Общие условия равновесия фаз в термодинамических системах. Фазовые переходы.

    лекция [153,2 K], добавлен 25.07.2007

  • Движение частиц жидкости в виде суммы неких упорядоченными форм. Тип движения жидкости в цилиндрических ячейках, выполняющий функции организатора. Нарушение симметрии направлений в результате случайной флуктуации и устойчивость цилиндрических ячеек.

    реферат [1,1 M], добавлен 26.09.2009

  • Обновление состояний, вычисление событий и структура связанных ячеек. Оптимальное количество ячеек. График зависимости времени симуляции от количества ячеек. Модель течения газа в среде с фильтрами: рабочая область; инициализация входных параметров.

    курсовая работа [86,4 K], добавлен 12.01.2011

  • Рассмотрение и нахождение основных характеристик плоского стационарного ламинарного течения вязкой несжимаемой жидкости при параболическом распределении скоростей (течение Пуазейля и течение Куэтта). Общий случай течения между параллельными стенками.

    курсовая работа [1,5 M], добавлен 28.12.2010

  • Описание адиабатически изолированной системы. Изменения энтропия азота в изохорном процессе. Фазовые равновесия и фазовые переходы. Элементы технической термодинамики, понятие об идеальных и неидеальных растворах. Расчет КПД двигателя Стирлинга.

    контрольная работа [263,2 K], добавлен 24.05.2015

  • Гидростатическое давление. Следствия, вытекающие из уравнения Бернулли. Ламинарное и турбулентное течение. Эксперимент Рейнольдса с краской. Основы молекулярно-кинетической теории и термодинамики. Агрегатные состояния, переходы. Способы передачи энергии.

    презентация [1,8 M], добавлен 26.08.2015

  • Теория неустойчивых колебаний и методы борьбы с ними. Процесс возникновения турбулентности. Равновесный и неравновесный порядок. Конвективные ячейки Бенара. Переходы от порядка к хаосу на примере явления Бенара. Лазер как пример перехода "хаос – порядок".

    контрольная работа [149,0 K], добавлен 09.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.