Основные законы и понятия энергосбережения

Технологические характеристика теплотворной способности различных видов топлива и их особенности. Высшая и низшая теплота сгорания топлива. Выход летучих веществ и основные свойства кокса. Термодинамические расчеты в энергосбережении. Законы Г.И. Гессе.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.12.2011
Размер файла 63,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Глава 1. Виды топливно-энергетических ресурсов

1.1 Теплотворная способность различных видов топлива

1.2 Классификация топливно-энергетических ресурсов

Глава 2. Технологические характеристики топлива

2.1 Виды топлива и их особенности

2.2 Состав твердого, жидкого и газообразного топлива

2.3 Высшая и низшая теплота сгорания топлива

2.4 Условное топливо

2.5 Температура горения топлива

2.6 Теплотехническая оценка топлива

2.7 Минеральные примеси топлива

2.8 Балласт топлива

2.9 Выход летучих и свойства кокса

2.10 Коэффициент использования тепла топлива

Глава 3. Термодинамические расчеты в энергосбережении

3.1 Законы Г.И. Гессе

Заключение

Список использованной литературы

Введение

По оценке отечественных и зарубежных специалистов, одним из основных направлений улучшения экологической обстановки в мире и сохранения здоровья населения является снижение уровня потребления природных энергетических ресурсов.

Жилищно-строительная сфера потребляет около 20% всех потребляемых в стране топливоэнергетических ресурсов. Эту цифру необходимо уменьшить.

Энергосбережение - предусматривает крайне экономное расходование энергетических ресурсов, т.к. природные ресурсы исчерпаемы, дорого стоят, а их добыча в большинстве случаев наносит вред окружающей среде.

Во многих развитых странах (США, Япония и др.), после мирового энергетического кризиса, разразившегося в 70-е годы, были разработаны различные концепции по энергосбережению, в результате реализации которых годовой расход энергии в этих странах был снижен на 30-40%.

Процессы по энергосбережению начались и в России. В январе 1998 года была утверждена целевая программа «Энергосбережение России на 1998-2005 годы». В 1997 году принято постановление «О повышении эффективности использования энергетических ресурсов предприятиями бюджетной сферы».

В настоящее время практически для всех видов производств разработаны энергосберегающие, теплоутилизирующие установки и приняты другие теплозащитные меры, однако уровень энергоэффективности предприятий строительной отрасли и жилищно-коммунального хозяйства у нас в стране значительно ниже зарубежного.

Мировая практика показывает, что потребление энергии только в жилищном секторе может по крайней мере в 2 раза, если внедрять новейшие технологии производства и эксплуатации материалов и оборудования.

Глава 1. Виды топливно-энергетических ресурсов

Развиваясь, человечество начинает использовать все новые виды ресурсов (атомную и геотермальную энергию, солнечную, гидроэнергию приливов и отливов, ветряную и другие нетрадиционные источники). Однако главную роль в обеспечении энергией всех отраслей Экономики сегодня играют топливные ресурсы.

Топливно-энергетический комплекс имеет большую районо образовательную функцию. С ним напрямую связано благосостояние всех граждан России, такие проблемы, как безработица и инфляция. Наибольшее значение в топливной промышленности страны принадлежит трем отраслям: нефтяной, газовой и угольной, из которых особо выделяется нефтяная.

Нефтяные базы были опорой советского руководства. Дешевая нефть обеспечивала оттяжку структурной перестройки энергоемкой промышленности СССР. Эта нефть привязывала страны восточного блока. Валютные доходы от ее экспорта позволяли обеспечивать потребительский рынок импортными товарами. С тех пор изменилось многое. Радикально перестраивается внутренняя структура государства. Разворачивается процесс реорганизации российского административного пространства. Появляются новые региональные образования. Но нефть по-прежнему - важнейший источник валюты для страны.

Действительно, отрасли ТЭК дают не менее 60% валютных поступлений, в Россию, позволяют иметь положительное внешнеторговое сальдо, поддерживать курс рубля. Высоки доходы в бюджет страны от акцизов на нефть и нефтепродукты.

По официальным отчетам Минэнерго России, причинами резкого падения уровня добычи являются изменения в базе запасов нефти, устаревание технологии добычи, уменьшение объема работ по разработке и бурению, резкое сокращение количества новых месторождений, критическое состояние действующих мощностей ТЭК (более половины оборудования нефтедобычи имеет 50%-ный износ), неуклонное снижение инвестиций в производственные фонды топливной отрасли, а также комплекс политических, экономических и организационных проблем, многие, из которых связаны с распадом единого экономического пространства бывшего СССР: бюджетное финансирование прекратилось почти полностью, и нефтедобывающие компании были вынуждены покрывать расходы своей прибылью, что стало почти невозможно ввиду огромных налогов, повышения транспортных тарифов и кризиса неплатежей.

Нефть не используется в первоначальном виде, поэтому нефтеперерабатывающие заводы - основной ее потребитель. Они располагаются во всех районах страны, т.к. выгоднее транспортировать сырую нефть, чем продукты ее переработки, которые необходимы во всех отраслях народного хозяйства. В прошлом она из мест добычи в места потребления перевозилась по железным дорогам в цистернах. В настоящее время большая часть нефти перекачивается по нефтепроводам и их доля в транспортировке продолжает расти.

Основными видами энергетических ресурсов в современных условиях являются горючие ископаемые: газообразные (природный газ), жидкие (нефть, газовый конденсат), твердые (угли каменный и бурый, сланцы, торф, дрова), атомная энергия, гидроэнергия и энергия ветра.

В табл. приведены усредненные значения теплотворной способности некоторых видов ископаемых топлив.

1.1 Теплотворная способность различных видов топлива

Наименование топлива

Теплотворная способность, ккал/кг

Газ природный

13 000

Газовый конденсат

11 000

Нефть

10 000

Уголь:

каменный

бурый

7 500 7 000

Сланцы

3 500

С тех пор как человек научился пользоваться огнем, ему понадобилось топливо. Главное назначение топлива получение тепла и света, т.е. энергии. В процессе эволюции и развития требования к ассортименту топлива росли. Первоначальными видами топлива были дрова, а также жир рыб и животных. Эти виды топлива были основными и широко применялись не только в быту, но и в промышленности и на транспорте. Сейчас сегмент топливных ресурсов, приходящихся на эти виды, резко сузился.

1.2 Классификация топливно-энергетических ресурсов

Современные виды топливо - энергетических ресурсов подразделяют по:

Агрегатному состоянию

¦ Газообразные топлива - природный газ (бытовой, сжатый, сжиженный), сжиженная пропан-бутановая смесь, водород;

¦ Жидкие - автомобильные и авиационные бензины, авиационный и осветительный керосины, дизельные топлива (летние и зимние), печные и котельные топлива;

¦ Твердые - уголь (каменный, бурый), сланцы, торф, древесина и другое растительное сырье.

Составу

Органические топлива;

Неорганические топлива.

Происхождению

Естественные (ископаемые, природные) - газ, нефть, уголь;

Искусственные - кокс (коксованием углей), искусственное жидкое топливо (ожижением или гидрогенизацией углей), биогаз - продукт газификации органических бытовых отходов;

¦ Синтетические - полученные в результате химических реакций Фишера -Тропша или Кельбеля-Энгельгарда синтетические углеводороды (газообразные, жидкие, твердые), различные неуглеводородные топлива -ракетные топлива (несимметричный диметилгидразин), ядерные топлива (плутоний).

Возобновлению

Возобновляемое топливо - гидроэнергия, геотермальная энергия, ветровая и солнечная энергия, древесина и другое растительное сырье;

Невозобновляемое топливо это синоним ископаемого топлива.

Назначению

¦ Энергетическое топливо - используют для получения тепловой и электрической энергии; т.е. первоначально из топлива получают энергию в виде тепла, перегретого водяного пара, электроэнергии, энергетического топлива. Пример: газ или мазут на ТЭС;

¦ Технологическое топливо (как сырье) - используется непосредственно в производстве и технологических процессах, установках, реакторах, агрегатах без стадии предварительно получения из топлива необходимой энергии. Пример технологического топлива: уголь в процессе коксования для получения кокса.

Отношению к топливу

Топливные энергоресурсы (газ, нефть, газовый конденсат, уголь и др.);

Не топливные энергоресурсы (гидроэнергия, энергия ветра, солнечная энергия).

Атомную энергию относят одновременно к топливному и не топливному энергетическому ресурсу.

Степени вовлечения в технологию

Первичные энергетические ресурсы - однократное использование энергетического потенциала конкретного вида энергии или топлива;

Вторичные энергетические ресурсы (ВЭР) - многократное использование энергетического потенциала конкретного вида энергии или топлива (тепло дымовых газов, сырьевых и продуктовых технологических потоков).

По виду энергии вторичные энергетические ресурсы (ВЭР) разделяют на: Топливные ВЭР - побочные горючие газы, жидкие и твердые продукты образующие при подготовке, транспортировке и переработке углеводородного или другого органического топлива (газы процессов промысловой подготовки природных углеводородов, коксовый газ, водородсодержащий газ пиролиза углеводородов, доменные и конверторные газы, отходы лесохимической промышленности); Тепловые ВЭР - тепло отходящих газов, отработанных теплоносителей (вода, водяной пар); ВЭР давления - потенциальная энергия газовых и жидкостных потоков с давлением, превышающем атмосферное.

Глава 2.Технологические характеристики топлива

Теплотворная способность топлива (теплота сгорания) Q - это количество тепла, выделяемое при полном сгорании 1 кг топлива. Для газа часто теплотворную способность рассчитывают на 1 м3.

Жаропроизводительность топлива (максимальная температура, tmax) -это наивысшая температура, которую теоретически можно достигнуть при количественном сжигании топлива в адиабатических условиях, когда потери тепла равны нулю, а тепло, выделившееся при сгорании топлива, полностью идет на нагрев продуктов сгорания.

Кроме вышеназванных характеристик топлива в теплотехнических расчетах используют следующие понятия: высшая (Qb) и низшая (Qn) теплоты сгорания топлива; объемы продуктов сгорания и воздуха при сгорании топлива; содержание Н2О, СО2 и NOх в продуктах сгорания и другие. энергосбережение топливо кокс гессе

2.1 Виды топлива и их особенности

Энергетическим топливом называются горючие вещества, которые экономически целесообразно использовать для получения в промышленных целях больших количеств тепла. Основными его видами являются органические топлива: торф, горючие сланцы, угли, природный газ, продукты переработки нефти.

По способу получения различают природные и искусственные топлива. К природным относятся натуральные топлива: уголь, сланцы, торф, нефть, природные газы. Из твердых топлив к искусственным относятся кокс, брикеты угля, древесный уголь. Из жидких - мазут, бензин, керосин, соляровое масло, дизельное топливо. Из газовых -- газы доменный, генераторный, коксовый, подземной газификации.

Торф, бурые угли, каменные угли и антрациты образовались в процессе последовательной углефикации отмершей растительной массы.

Основная выработка электрической и тепловой энергии производится на твердом топливе.

Характеристики и состав твердого топлива, в том числе выход летучих, спекаемость кокса, оказывают сильное влияние на процесс горения угля. С увеличением выхода летучих и содержания в них более реакционно-способных газов воспламенение топлива становится легче, а кокс благодаря большей пористости получается более реакционно-способным.

По этим свойствам каменных углей проводят их классификацию. Ископаемые угли подразделяются на три основных типа: бурые, каменные угли и антрацит.

Бурые угли. К бурым углям марки Б относят угли с неспекающимся коксом и высоким выходом летучих, обычно более 40%, и с высшей теплотой сгораниярабочей массы без зольного угля, меньшей 5700 ккал/кг (23883 Дж/кг).

Бурые угли характеризуются высокой гигроскопической и в большинстве случаев высокой общей влажностью, пониженным содержанием углерода и повышенным содержанием кислорода по сравнению с каменными углями. Вследствие сильной балластированности золой (Ар=15-25%) и влагой (Wp=20--35%) низшая теплота сгорания[3] бурых углей пониженная МДж/кг (2500-3600 ккал/кг).

Каменные угли. К каменным углям относят угли с высшей теплотой сгорания рабочей массы без зольного угля большей 5700 ккал/кг (23883 Дж/кг) и с выходом летучих более 9%. Основная масса их спекается. Часть их с выходом летучих веществ большим 42--45% (длиннопламенные) и меньшим 17% (тощие) - не спекается.

Каменные угли обладают относительно меньшим балластом: Ар=5-15%, Wp=5--10% и более высокой теплотой сгорания МДж/кг (5500--6500 ккал/кг).

Торф является химически и геологически наиболее молодым ископаемым твердым топливом и обладает высоким выходом летучих (Vг=70%), высокой влажностью (Wр=40--50%), умеренной зольностью (Aр=5--10%), низкой теплотой сгорания МДж/кг (2000--2500 ккал/кг).

Сланцы. В Эстонии большое значение имеют горючие сланцы, добываемые открытым способом. Зольность сланцев очень большая и доходит до Aр=50-60%, влажность также повышенная Wр=l5--20%. Вследствие большого балласта их теплота сгорания низкая МДж/кг (1400--2400 ккал/кг) при высокой теплоте сгорания горючей массы МДж/кг (6500--8000 ккал/кг). Высокое содержание водорода в горючей массе Hг=7,5--9,5% обусловливает большой выход летучих у сланцев, достигающий 80--90%, и их легкую воспламеняемость.

Топливо с высокой зольностью и влажностью вследствие большого содержания внешнего балласта целесообразно использовать вблизи места его добычи для уменьшения непроизводительных транспортных расходов на перевозку большой массы золы и влаги. В этом смысле такие топлива принято называть местными. К ним, в частности, относятся некоторые бурые угли, как, например, подмосковные, башкирские, украинские, торф и сланцы.

Мазут. Из жидких топлив в энергетике используется мазут трех марок -- 40, 100 и 200. Марка определяется предельной вязкостью, составляющей при 80°С для мазута 40 -- 8,0; для мазута 100 -- 15,6; для мазута 200 -- 6,5--9,5 град. усл. вязкости (°УВ) при 100°С.

В мазуте содержится углерода 84--86% и водорода -- 11--12%, содержание влаги не превышает 3--4%, а золы -- 0,5%. Мазут имеет высокую теплоту сгорания МДж/кг (9400--9600 ккал/кг).

По содержанию серы различают малосернистый мазут Sр?0,5%, сернистый -- Sр до 2% и высокосернистый Sр до 3,5%; по вязкости -- маловязкий и высоковязкий, содержащий смолистые вещества и парафин. Наиболее вязкие сорта мазута имеют температуру застывания 25--35 0С. В связи с этим при сжигании применяется предварительный нагрев вязких мазутов до температуры 80--120°.

Природный газ. Большое значение в топливном балансе Украины имеют природные газы, представляющие собой смесь углеводородов, сероводорода и инертных газов: азота и углекислоты. Основной горючей составляющей природных газов является метан (от 80 до 98%), что обусловливает их высокую теплоту сгорания. В них инертных газов содержится немного: 0,1--0,3% С02 и 1--14% N2.

Теплота сгорания сухого природного газа МДж/м3 (8000--8500 ккал/м3).

Доменный газ образуется при выплавке чугуна в доменных печах. Его выход и химсостав зависят от свойств шихты и топлива, режима работы печи, способов интенсификации процесса и других факторов. Выход газа колеблется в пределах 1500-2500 м3 на тонну чугуна. Доля негорючих компонентов (N2 и CO2) в доменном газе составляет около 70%, что и обуславливает его низкие теплотехнические показатели (низшая теплота сгорания газа равна 3-5 МДж/м3).

При сжигании доменного газа максимальная температура продуктов сгорания (без учёта тепловых потерь и расхода теплоты на диссоциацию CO2 и H2O) равна 1400-1500 0C. Если перед сжиганием газа его и воздух подогреть, то температуру продуктов сгорания можно значительно повысить.

Ферросплавный газ образуется при выплавке ферросплавов в рудовосстановительных печах. Газ, отходящий из закрытых печей, можно использовать в качестве топливных ВЭР (вторичные энергетические ресурсы). В открытых печах в связи со свободным доступом воздуха газ сгорает на колошнике.

Выход и состав ферросплавного газа зависит от марки выплавляемого сплава, состава шихты, режима работы печи, её мощности и т.п. Состав газа: 50-90% CO, 2-8% H2, 0,3-1% CH4, O2<1%, 2-5% CO2, остальное N2. Максимальная температура продуктов сгорания равна 2080 0C. Запылённость газа составляет 30-40 г/м3.

Конвертерный газ образуется при выплавке стали в кислородных конвертерах. Газ состоит в основном из оксида углерода, выход и состав его в течение плавки значительно изменяются. После очистки состав газа примерно таков: 70-80% CO; 15-20% CO2; 0,5-0,8% O2; 3-12% N2. Теплота сгорания газа составляет 8,4-9,2 МДж/м3. Максимальная температура сгорания достигает 2000 0С.

Коксовый газ образуется при коксовании угольной шихты. В чёрной металлургии он используется после извлечения химических продуктов.

Состав коксового газа зависит от свойств угольной шихты и условий коксования. Объёмные доли компонентов в газе находятся в следующих пределах, %: 52-62 H2; 0,3-0,6 O2; 23,5-26,5 CH4; 5,5-7,7 CO; 1,8-2,6 CO2. Теплота сгорания равна 17-17,6 МДж/м3, максимальная температура продуктов сгорания - 2070 0С.

2.2 Состав твердого, жидкого и газообразного топлива

Твердые и жидкие топлива представляют собой сложные соединения горючих элементов, молекулярное строение которых еще недостаточно изучено, и включают в себя минеральные примеси и влагу. Элементарный химический анализ этих топлив не раскрывает химической природы входящих в них соединений и поэтому не может дать достаточно полного представления об их свойствах, но позволяет рассчитать тепловой и материальный баланс горения топлива. Соответственно степени углефикации содержание углерода в органической массе топлив увеличивается, а кислорода и азота уменьшается, что способствует повышению энергетической ценности топлива.

Химический состав газообразных топлив, представляющих собой простые смеси, определяют полным газовым анализом и выражают в процентах от их объема.

Топливо в том виде, в каком оно поступает к потребителю, называется рабочим, а вещество, составляющее его, -- рабочей массой. В элементарный химический состав его, выражаемый следующим образом:

Cp+Hp+Op+Np+Spop+к+Ap+Wp=100%

входят горючие вещества: углерод С, водород Н, сера S, а также кислород О и азот N, находящиеся в сложных высокомолекулярных соединениях. Топливо содержит негорючие минеральные примеси, превращающиеся при сжигании топлива в золу А и влагу W.

Минеральные примеси и влажность одного и того же сорта топлива в разных районах его месторождения и различных местах могут быть разными, а также могут изменяться при транспортировке и хранении. Более постоянным является состав горючей массы топлива. Имея в виду это обстоятельство, для сравнительной теплотехнической оценки различных сортов топлива ввели условные понятия сухой, горючей и органической массы, составляющие которых, выраженные в процентах, обозначаются теми же символами, что и рабочая масса, но соответственно с индексами «с», «г» и «о» вместо индекса рабочей массы, «р».

Твердое топливо с установившейся в естественных условиях влажностью называется воздушно-сухим. Проба такого топлива, поступающего для лабораторного анализа, носит название аналитической пробы топлива. Основной горючей составляющей топлива является углерод, горение которого обусловливает выделение основного количества тепла. Теплота сгорания аморфного углерода 34,4 МДж/кг (8130 ккал/кг).

Водород является вторым по значению элементом горючей массы топлива, его содержание в горючей массе твердых и жидких топлив колеблется от 2 до 10%. Много водорода содержится в природном газе, мазуте и горючих сланцах, меньше всего в антраците. Теплота сгорания водорода в водяной пар -- 10,8 МДж/м3 (2579 ккал/м3).

Кислород и азот в топливе являются органическим балластом, так как их наличие уменьшает содержание горючих элементов в топливе. Кроме того, кислород, находясь в соединении с водородом или углеродом топлива, переводит некоторую часть горючих в окислившееся состояние и уменьшает его теплоту сгорания. Содержание кислорода велико в древесине и торфе. Азот при сжигании топлива в атмосфере воздуха не окисляется и переходит в продукты сгорания в свободном виде.

Сера может содержаться в топливе в трех видах: органическая Sop, колчеданная Sк и сульфатная Sc:

S=Sop+Sк+Sc.

Органическая сера входит в состав сложных высокомолекулярных органических соединений топлива. Колчеданная сера представляет собой ее соединения с металлами, чаще с железом (FeS2 -- железный колчедан), и входит в минеральную часть топлива. Органическая и колчеданная сера Sop+к при горении топлива окисляется с выделением тепла. Сульфатная сера входит в минеральную часть топлива в виде сульфатов CaS04 и FeS04 и поэтому в процессе горения дальнейшему окислению не подвергается. Сульфатные соединения серы при горении переходят в золу. В горючую массу топлива входят Sop и Sк, которые при сгорании топлива переходят в газообразные соединения SO2, и в небольшом количестве в SO3.

Содержание серы в твердых топливах обычно невелико. В нефти сера входит в состав неорганических соединений, в природных газах она практически отсутствует, в попутных газах некоторых нефтяных месторождений содержится немного серы в виде сероводорода H2S и сернистого газа SO2. Образующийся при горении топлива сернистый газ и особенно сопутствующий ему в небольшом количестве серный газ SO3 вызывают коррозию металлических частей парогенераторов и отравляют окружающую местность. Вследствие низкой теплоты сгорания -- 9,3 МДж/кг (2220 ккал/кг) присутствие серы уменьшает теплоту сгорания топлива. Поэтому сера является вредной и нежелательной примесью топлива.

2.3 Высшая и низшая теплота сгорания топлива

Всякая химическая реакция сопровождается выделением или поглощением тепла и соответственно называется экзотермической или эндотермической. Химические реакции, протекающие в процессах горения, преимущественно сильно экзотермические, некоторые реакции, как, например, реакции восстановления углекислоты, являются эндотермическими.

Количество тепла, выделяющегося при полном сгорании единицы массы данного топлива зависит от того, в паровом или жидком состоянии находится влага в продуктах сгорания. Если водяной пар сконденсируется и вода в продуктах сгорания будет находиться в жидком виде, то тепло парообразования освободится и тогда количество тепла, выделяющегося при сгорании единицы массы топлива, получается больше.

Количество тепла, выделяющегося при полном сгорании 1 кг твердого или жидкого топлива или 1 м3 газового топлива, при условии, что образующиеся водяные пары в продуктах сгорания конденсируются, называется высшей теплотой сгорания топлива.

В условиях температур и парциального давления Н20 на всем протяжении газового тракта парогенератора водяные пары, содержащиеся в продуктах сгорания, не конденсируются и вместе с ними отводятся в атмосферу. Следовательно, некоторая часть тепла, выделившегося при сгорании затрачивается на образование водяного пара и не может быть использована в парогенераторе. Поэтому теплота сгорания получается меньше освобождающейся при горении химической энергии топлива.

Количество тепла, которое выделяется при полном сгорании 1 кг твердого или жидкого или 1 м3 газового топлива, за вычетом тепла парообразования водяных паров, образующихся при горении, называется низшей теплотой сгорания.

2.4 Условное топливо

Расход топлива на парогенератор данной производительности зависит от его теплоты сгорания, которая для различных топлив изменяется в больших пределах. Для сравнения по энергетической ценности и эффективности использования различных сортов топлив введено понятие об условном топливе, которому присваивается теплота сгорания, равная Qycл =29,33 МДж/кг (7000 ккал/кг).

2.5 Температура горения топлива

Тепло, выделяющееся при сгорании топлива, воспринимается продуктами сгорания, которые нагреваются до определенной температуры, называемой температурой горения. Различают калориметрическую, теоретическую и действительную температуры сгорания топлива.

В уравнение теплового баланса реального горения входят составляющие, величина которых зависит не только от теплофизических свойств топлива, но и от условий, при которых протекает горение. Например, от степени подогрева топлива и воздуха, потерь теплоты при горении, тепловосприятия в топке, коэффициента избытка воздуха.

Чтобы выявить потенциальные возможности топлива, вводят понятие горения без подогрева топлива и воздуха при идеальном адиабатическом процессе, т. е. горения с теоретическим количеством воздуха, без потерь теплоты и без теплообмена в топочной камере и с окружающей средой. Полученная в этих условиях температура продуктов сгорания называется теоретической.

Калориметрическая температура отражает влияние подогрева топлива и воздуха и коэффициента избытка расхода воздуха б на температуру адиабатического горения. Повышение температуры подогрева топлива и воздуха увеличивает приход теплоты в зону горения и повышает температуру горения, а увеличение коэффициента избытка воздуха a вызывает увеличение объема продуктов сгорания Vг, что понижает температуру горения. Поэтому в зависимости от влияния этих факторов калориметрическая температура может быть выше или ниже теоретической.

В реальных условиях не все тепло, выделяющееся при горении, идет на нагрев продуктов реакции, так как часть тепла передается экранной системе топочной камеры и некоторое количество тепла теряется в окружающую среду; кроме того, при высоких температурах происходит диссоциация части продуктов сгорания (СО2 и Н2О), сопровождающаяся поглощением тепла.

Для каждого типа топки, вида и способа сжигания топлива разработана специальная методика расчета теплообмена в топке и определения действительной температуры газов на выходе из топки.

Отношение действительной температуры горения топлива к теоретической называется пирометрическим коэффициентом.

2.6 Теплотехническая оценка топлива

Для оценки эффективности использования топлив в парогенераторах важными теплотехническими характеристиками топлив являются: содержание и состав минеральных примесей, влажность, выход летучих, свойства коксового остатка и величина теплоты сгорания. Определение этих характеристик входит в технический анализ топлива. Свойства топлива как горючего материала зависят от его химического состава, который определяется элементарным химическим анализом.

2.7 Минеральные примеси топлива

В твердом топливе значительную часть примесей составляют внешние примеси. Поэтому содержание минеральных примесей даже в одном и том же виде топлива может сильно колебаться. Основными минеральными примесями являются: силикаты (кремнезем SiO2, глинозем А1203, глина), сульфиды (преимущественно FeS2), карбонаты (СаСО3, MgCO3, FeCO3), сульфаты (CaSO4, MgS04), закиси и окиси металлов, фосфаты, хлориды, соли щелочных металлов.

В процессе горения в среде высоких температур в минеральных примесях топлива происходят физические и химические преобразования. По мере повышения температуры топлива гипс и силикаты теряют свою кристаллизационную влагу.

В интервале температур 400--600°С колчедан окисляется

4FeS2+11O2=2Fe2O3+8SO2.

Сернистый ангидрид, образующийся при окислении колчедана и органической серы, вступает в реакцию с СаСО3 и O2

2SO2+2СаСО3+O2=2СаSO4+2СO2.

При температуре выше 600°С разлагаются карбонаты по реакции типа

СаСО3=СаО+СO2

и улетучивается некоторая часть хлоридов и соединений щелочных металлов.

При температуре выше 1000°С разлагаются сульфаты

СаSO4=СаО+SO3.

При этих температурах начинается химическое взаимодействие между силикатной основой примесей и другими окислами. В окислительной среде закись железа переходит в его окись

4FеО+O2=2Fе2О3,

а в восстановительной среде -- в металл. В полувосстановительной среде закись железа может сохраниться и при определенном температурном уровне соединиться с кремнеземом, образуя легкоплавкие силикаты. Этим объясняется наблюдающееся значительное снижение температуры плавления шлаков в полувосстановительной среде.

2.8 Балласт топлива

Негорючие минеральные примеси и влага являются внешним балластом твердого топлива. Своим присутствием минеральные примеси и влага уменьшают содержание горючей массы в единице массы рабочего топлива; кроме того, при сжигании топлива на испарение влаги затрачивается определенное количество тепла. Поэтому с увеличением зольности и влажности уменьшается теплота сгорания топлива, увеличивается его расход у потребителя, соответственно увеличиваются расходы на добычу и перевозку.

По происхождению различают три вида минеральных примесей.

Первичные примеси в составе материнского вещества перешли в топливо из углеобразователей. Эти примеси связаны с органической массой топлива. По количеству их обычно немного, они равномерно распределены по всей массе топлива и не могут быть удалены из него.

Некоторое количество примесей внесено в топливо в процессе углеобразования как наносы ветром и водой. Эти примеси, называемые вторичными, распределены в топливе менее равномерно, иногда встречаются в виде тонких прослоек. Первичные и вторичные минеральные примеси являются внутренними примесями топлива.

Третичные примеси попадают в топливо в виде породы при его добыче от внешнего минерального окружения вырабатываемого пласта и распределены в топливе неравномерно, сравнительно легко отделяются и являются внешними примесями.

2.9 Выход летучих и свойства кокса

Одними из наиболее важных теплотехнических характеристик топлив являются величина выхода летучих и свойства коксового остатка.

При нагревании твердых топлив происходит распад термически нестойких сложных, содержащих кислород углеводородистых соединений горючей массы с выделением горючих газов: водорода, углеводородов, окиси углерода и негорючих газов -- углекислоты и водяных паров. Выход летучих веществ определяют нагреванием пробы воздушно-сухого топлива в количестве 1 г без доступа воздуха при температуре 850°С в течение 7 мин. Выход летучих, определенный как уменьшение массы пробы испытываемого топлива за вычетом содержащейся в нем влаги, относят к горючей массе топлива.

У разных топлив состав и теплота сгорания летучих веществ различны. По мере увеличения химического возраста топлива содержание летучих веществ уменьшается, а температура их выхода увеличивается. При этом вследствие уменьшения количества инертных газов теплота сгорания летучих веществ увеличивается. Для сланцев выход летучих составляет 80--90% от горючей массы; торфа -- 70%. Для бурых углей -- 30--60%, каменных углей марок Г и Д -- 30--50%. У тощих углей и антрацитов выход летучих мал и соответственно равняется 11--13 и 2--9%. Поэтому содержание летучих веществ и их состав могут быть приняты в качестве признаков степени углефикации топлива, его химического возраста.

Для торфа выход летучих начинается при температуре примерно 100°, бурых и жирных каменных углей -- 150--170°, горючих сланцев -- 230°С, тощих углей и антрацитов ~400°С и завершается при высоких температурах -- 1100--1200°С.

После отгонки летучих веществ из топлива образуется так называемый коксовый остаток. При содержании в угле битуминозных веществ, которые при нагревании переходят в пластическое состояние или расплавляются, порошкообразная проба угля, испытываемого на содержание летучих, может спекаться и вспучиваться. Способность топлива при термическом разложении образовывать более или менее прочный кокс называется спекаемостью. Торф, бурые угли и антрацит дают порошкообразный кокс. Каменные угли с выходом летучих 42--45% и тощие угли с выходом летучих менее 17% дают порошкообразный или слипшийся коксовый остаток.

Угли, образующие спекшийся коксовый остаток, являются ценным технологическим топливом и используются в первую очередь для производства металлургического кокса. Кокс в виде спекшегося или сплавленного остатка получается нагреванием измельченного до размеров 3--3,5 мм угля при температуре 1000°С без доступа воздуха. Свойства кокса зависят от состава органических соединений горючей массы топлива и содержания летучих веществ в нем.

2.10 Коэффициент использования тепла топлива

В общем случае не все тепло, выделяющееся при сгорании топлива, используется по назначению. Так, при работе парогенератора часть тепла Q1 расходуется на производство пара, а другая - теряется с уходящими газами, шлаком, передается в окружающую среду процессами теплообмена или вовсе не используется из-за химического и механического недожога топлива[5]. Поэтому отношение Q1 к низшей теплоте сгорания топлива Qнр называется коэффициентом полезного действия парогенератора, который по своей физической сущности является коэффициент использования тепла топлива.

Будем называть отношение количества теплоты, использованного по назначению, к выделившейся при этом низшей теплоты сгорания топлива коэффициентом использования тепла топлива. Количество тепла, выделяющегося при полном сгорании 1 кг твердого или жидкого топлива или 1 м3 газового топлива, при условии, что образующиеся водяные пары в продуктах сгорания конденсируются, называется высшей теплотой сгорания топлива. Индекс “p” здесь и далее обозначает величины, характеризующие рабочее топливо. Количество тепла, которое выделяется при полном сгорании 1 кг твердого или жидкого или 1 м3 газового топлива, за вычетом тепла парообразования водяных паров, образующихся при горении, называется низшей теплотой сгорания топлива.

Здесь индекс «оp+к» обозначает то, что ведется учет как органической, так и колчеданной серы. Колчеданная сера содержится в пирите (FeS2), именуемом железным колчеданом. При химическом недожоге имеем горючие компоненты топлива, не прореагировавшие из-за плохо организованного процесса горения (например, при недостатке окислителя).

Механический недожог возникает при быстром удалении не прореагировавших остатков топлива из зоны горения.

Глава 3. Термодинамические расчеты в энергосбережении

Самым простым и распространенным путем получения из топлива тепла является сжигание топлива. Как правило, сжигание топлива проводят в воздухе, в котором содержание кислорода составляет около 21% об. Все реакции горения любых видов топлива в кислороде являются экзотермическими, т.е. протекание таких реакций сопровождается выделением тепла. Тепловой эффект реакции зависит от условий, в которых протекает реакция горения. Поэтому тепловые эффекты при постоянном объеме или постоянном давлении различны. Выделяющееся тепло реакции, если она проводится при постоянном давлении, называют энтальпией и обозначают АН.

Например, реакцию сжигания углеводородного топлива общей формулы CnHm в кислороде (О2) до углекислого газа (СО2) и воды (Н2О) в химической термодинамике принято записывать следующим образом:

Vi CnHm + V2O2 = V3CO2 + V4H2O + АН (2.1)

где Vt - стехиометрические коэффициенты.

3.1 Законы Г.И. Гесса

Количество тепла, которое можно получить из топлива, вычисляют согласно термохимическим законам Г.И. Гесса. На основе экспериментальных данных было установлено, что тепловой эффект химической реакции не зависит от пути (механизма) реакции, а определяется только природой и состоянием исходных реагентов и конечных продуктов реакции.

В соответствии с законами Гесса, теплота любой химической реакции (АН) равна сумме теплот образования конечных продуктов (\П1АНо6р)П за минусом суммы теплот образования исходных веществ (\И1АНбр)И

АН = 1(УП1АНобр)П - 1(^1АНобр)И (2.2)

Для сопоставления протекания различных реакций используют стандартные значения теплоты образования соединений. Стандартной теплотой образования соединения называют теплоту реакции образования одного моля конкретного соединения из простых веществ в стандартных условиях и обозначают символом (АН Т обр). Теплота образования из простых веществ для углеводородов означает образование из углерода (С) и водорода (Н2). Стандартные значения теплоты образования различных соединений содержатся в специальных справочниках. В них для температуры 298К (25 оС) и давления 1 атм приведены стандартные значения теплоты образования разнообразных химических соединений и органических топлив, которые обозначаются символом (АН298 °бР).

Зависимость теплоты реакции от температуры

Большинство данных по теплоте реакций, приведенных в справочной литературе, относится к температуре 298К. Для расчета энтальпии (теплового эффекта) реакции при другой температуре используют уравнение Кирхгофа в интегральном виде:

где ЛСР - изменение теплоемкости при постоянном давлении в интервале температур от 298К до Т.

Из уравнения видно, что для определения теплового эффекта реакции при температуре Т, необходимо знать его величину при другой температуре, например, при 298К, и зависимость теплоемкостей реагентов и продуктов реакции в температурном интервале от 298К до Т.

Темпоемкость вещества - это физическая величина, характеризующая способность вещества увеличивать свою температуру при нагреве. Теплоемкость вещества при постоянном давлении (СР) выражается отношением энтальпии к температуре (дифференциальное уравнение Кирхгофа):

CP = (дИ / дТ) (2.4)

и численно равна количеству тепла, которое необходимо для нагреванияединицы массы вещества на 1 градус. Наиболее употребительной единицей измерения СР является кал/моль-град или Дж/моль-град.

Теплоемкость /-го вещества зависит от температуры. Поэтому втермохимических и теплотехнических расчетах используют либо экспериментальные значения СР для различных температур, либо проводят ее расчет по уравнению:

C/p = a/ + b/ Т + c/2 (2.5)

где а, b, c - коэффициенты уравнения зависимости теплоемкости от температуры. Значения коэффициентов уравнения приведены в справочниках.

Теплоемкость при постоянном давлении При протекании химической реакции исходные реагенты превращаются в продукты реакции, в результате чего происходит изменение теплоемкости (АСр):

АСр = 1(^Ср)п - 1(^Ср)и (2.6)

Очевидно, что изменение теплоемкости АСр также можно представить в виде уравнения вида:

A CP = A a + А bT + А cT 2\ (27)

где Аа, Ab, Ac - алгебраическая сумма соответствующих коэффициентов уравнений вида (2.5) для исходных реагентов и продуктов реакции с учетом стехиометрических коэффициентов для продуктов (V7,) и исходных реагентов (Vйi) соответственно.

После подстановки уравнения (2.4) в (2.2) и интегрирования в пределах от 298К до Т с учетом (2.7) получим выражение (2.8):

AH° = A H °98 +А a (T - 298) +А b/2(T 2 - 298 2 ) +А c/3 (T3 - 2983 ) (2.8)

Достаточно часто для проведения оценочных расчетов вместо достаточно громоздкого уравнения (2.8) используют выражение (2.9):

AH0 -AH 098 + (A Cp )298 +T (T - 298) (2.9)

со средней теплоемкостью (АСР)298+Т в интервале температур 298К -г Т.

Для оценочных расчетов в качестве (АСР)298^Т можно использовать среднее арифметическое значение теплоемкостей при температурах 298К и Т.

Таким образом, для расчета энтальпии (теплоты) химической реакции сжигания топлива при температуре Т необходимо знать: теплоемкости реагентов и продуктов реакции при температурах 298К и Т; энтальпию (теплоту) реакции при температуре 298К.

Заключение

В настоящее время человечество переживает углеводородную эру. Нефтяная отрасль является главной для мировой экономики. В нашей стране эта зависимость особенно высока. К сожалению, российская нефтяная промышленность находиться сейчас в состоянии глубокого кризиса. Было перечислено немало ее проблем. Каковы же перспективы развития отрасли? Если продолжать хищническую эксплуатацию месторождений вкупе с большими потерями при транспортировке и нерациональной нефтепереработкой, то будущее нефтяной промышленности представляется весьма мрачным. Уже сегодня сокращение темпов производства составляет в среднем 12 -15% в год, что чревато полным развалом стратегически важной для державы отрасли. Дальнейшее экстенсивное развитие нефтяной промышленности уже невозможно. Например, большие объемы нефти Восточной Сибири труднодоступны из-за сложного геологического строения, требуют огромных инвестиций в добычу. Следовательно, будут прирастать слабо. Эффект от геологоразведки выше в Западной Сибири, однако в этом регионе высокопродуктивные месторождения уже значительно истощены.

По этим и другим причинам России необходимо реформировать нефтяную промышленность. Для этого в первую очередь нужно:

1) Пересмотреть систему налогообложения, существенно снизив налоги на нефтепроизводителей, однако, установить высокие штрафы за нерациональное использование природных богатств и нарушение экологии.

2) Менее жестко регулировать цены внутри страны, поддерживая их несколько ниже мирового уровня. Экспорт же нефти за рубеж вести только по мировым ценам.

3) Частично восстановить централизованное управление отраслью, вытекающее из самой структуры нефтяной промышленности и имеющее много положительных моментов (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления.

4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса.

5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность.

6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая представителей предприятий, добывающих, перерабатывающих и транспортирующих нефть и газ. Это позволит приостановить хаотичные бартерные сделки, подрывающие интересы государства.

7) Создать необходимую систему нормативных актов, обеспечивающую твердую законодательную базу для работы с иностранными компаниями по совместной разработке наиболее сложных месторождений.

8) Стабилизировать объемы геологоразведочных работ с целью восполнения запасов нефти и газа.

Список использованной литературы

1.Е.В. Вавилова «Экономическая география и регионалистика», издание второе, Москва,2004г.

2.Нефть Сибири в политике и экономике России и мира//Международная жизнь. №10., 2000г.

3.«Топливно-энергетический комплекс» Москва, Менатеп №4-9, 2001г

4.«Нефтяная промышленность» Москва, ВНИИОЭНГ №1, 2002г.

5.Кривоногов Б.М. Повышение эффективности сжигания газа и охрана окружающей среды. - М.: Недра, 1986. - 280 с.

6.Кулиш О.Н. Разработка и промышленное внедрение методов некаталитической очистки газовых выбросов от оксидов азота аминосодержащими восстановителями / Автореферат дисс. докт. техн. Наук - М.: ГАНГ им. И.М. Губкина, 1996. - 45 с.

7.Кутепов А.М., Бондарева Т.И., Беренгартен М.Г. Общая химическая технология.- М.: ИКЦ «Академкнига», 2003.- 528 с.

8.Литвак В.В., Силич В.А., Яворский М.И. Региональный вектор энергосбережения. - Томск, STT, 1999. - 320 с.

9.Лунин А.Ф., Голубева И.А., Гулякевич Т.Д. Основы безотходных химико- технологических процессов. -М.: ГАНГ, 1994. - 112 с.

Размещено на Allbest.ru


Подобные документы

  • История развития процессов получения и использования энергии. Существующие виды топлива. Технологические свойства жидкого топлива. Применение газообразного топлива в различных отраслях народного хозяйства. Тепловое действие электрического тока.

    реферат [27,1 K], добавлен 02.08.2012

  • Методика расчета горения топлива на воздухе: определение количества кислорода воздуха, продуктов сгорания, теплотворной способности топлива, калориметрической и действительной температуры горения. Горение топлива на воздухе обогащённым кислородом.

    курсовая работа [121,7 K], добавлен 08.12.2011

  • Сравнение видов топлива по их тепловому эффекту. Понятие условного топлива. Теплота сгорания твердого и жидкого топлива. Гомогенное и гетерогенное горение. Процесс смешивания горючего газа с воздухом. Воспламенение горючей смеси от постороннего источника.

    реферат [14,7 K], добавлен 27.01.2012

  • Описание парового котла. Состав и теплота сгорания топлива. Расчёт объемов и энтальпий воздуха, теплосодержания дымовых газов и продуктов сгорания, потерь теплоты и расхода топлива, топочной камеры, теплообмена в топке и конвективных поверхностей нагрева.

    курсовая работа [1000,2 K], добавлен 19.12.2015

  • Сущность топлива, его разновидности и применение. Основные процессы горения жидких, твердых и газообразных топлив. Содержание летучих веществ в ископаемом твердом топливе. Время протекания физических процессов. Температура кипения жидких топлив.

    реферат [64,9 K], добавлен 04.12.2014

  • Расчет горения топлива (смесь коксового и доменного газов). Определение теоретически необходимого и действительного количества воздуха, количества продуктов сгорания, их процентного состава и калориметрической температуры. Характеристика видов топлива.

    контрольная работа [38,9 K], добавлен 28.04.2013

  • Характерные особенности воздушно-реактивных и турбореактивных двигателей, основные предъявляемые требования. Показатели качества реактивного топлива, фракционный состав и плотность, вязкость кинематическая и теплота сгорания, нагарообразующие свойства.

    презентация [78,4 K], добавлен 26.06.2014

  • Описание котлоагрегата до перевода на другой вид топлива. Характеристика принятых к установке горелок. Обоснование температуры уходящих газов. Расчет объемов воздуха и продуктов сгорания при сжигании двух видов топлива. Тепловой баланс и расход топлива.

    дипломная работа [3,3 M], добавлен 13.06.2015

  • Понятие о смесеобразовании. Основные классификации двигателей внутреннего сгорания. Смесеобразование и сгорание топлива в цилиндрах дизеля. Фракционный состав топлива, вязкость, температурные характеристики. Задержка самовоспламенения и распыливание.

    курсовая работа [1,9 M], добавлен 11.03.2015

  • Основные понятия. Температура. Первый закон термодинамики. Термохимия. Второй закон термодинамики. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.

    лекция [202,7 K], добавлен 03.12.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.