Дефекты кристаллических решеток

Ознакомление с геометрическими, энергетическими, поверхностными и объемными дефектами кристаллической решетки. Рассмотрение наиболее вероятных механизмов образования вакансий по теории Френкеля. Характеристика основных особенностей вектора Бюргерса.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.11.2011
Размер файла 245,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1 Дефекты кристаллических решеток

Из термодинамики известно, что всякая система стремится к минимуму свободной энергии (F), где F является разностью между внутренней энергией системы U и связанной энергией системы ТS.

F = U - TS(1)

Внутренняя энергия системы является разностью между энергией атомов в дне потенциальной ямы и истинной энергией системы. Повышение температуры материала или появление упругих напряжений вследствие смещения атомов из равновесного состояния повышает энергию системы. Связанная энергия системы является произведением температуры (Т) на энтропию (S) системы, или меру ее беспорядка.

При смещении атома из равновесного положения, с одной стороны, возрастает внутренняя энергия системы, а с другой стороны, растёт связанная энергия, поэтому появление в кристаллической решетке дефектов может оказаться энергетически выгодным.

Все дефекты кристаллической решетки принято делить на две большие группы: геометрические дефекты и энергетические дефекты.

При появлении в решетке геометрических дефектов кристаллическая решетка локально искажается. При наличии энергетических дефектов атомы остаются на своих местах, но энергия одного или группы атомов оказывается повышенной.

В свою очередь, геометрические дефекты принято делить на точечные, линейные, поверхностные и объемные.

Протяженность точечных дефектов во всех направлениях мала. Протяженность линейных дефектов велика в одном направлении и мала в двух других направлениях. Поверхностные дефекты имеют большую протяженность по двум направлениям и малую по одному, и объемные дефекты имеют большую протяженность по всем направлениям.

1.1 Точечные дефекты решетки

К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки. Точечные дефекты показаны на рисунке.

Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой. При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий. Такой подход хорошо объясняет температурную зависимость диффузии. С ростом температуры увеличивается связанная энергия системы и растет концентрация вакансий, поэтому с ростом температуры активизируется диффузия.

Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля. Несколько позже Шоттки оценил энергию упругих искажений решетки вблизи вакансии и вблизи межузельного атома и показал, что энергия упругих искажений решетки вблизи межузельного атома существенно больше энергии искажений вблизи вакансии. Это позволило ему предложить другой механизм образования вакансий. Атом выходит на поверхность кристалла, и образующаяся вакансия мигрирует (перемещается) в глубь кристалла. Совершенно очевидно, что вероятность образования вакансий по механизму Шоттки существенно выше вероятности образования вакансий по механизму Френкеля. дефект кристаллический решетка френкель

По современным представлениям, наиболее вероятным механизмом образования вакансий является их испускание границами зерен или дислокациями.

Наличие точечных дефектов оказывает влияние не только на диффузионные процессы в материалах, но и на их электрические свойства. В металлических материалах основным носителем заряда являются свободные электроны. Поскольку кристаллическая решетка металлов упакована плотно, то распространение электронов удобнее всего представить в виде движения электронной волны. При взаимодействии электронной волны с узлами кристаллической решетки, электронная волна передает энергию находящимся в них ионам. Поглотив энергию электронной волны, ионы возбуждаются, колеблются и распространяют во все стороны дифрагированные электронные волны. Дифрагированные волны интерферируют, и образуется новая волна. В том случае, когда кристаллическая решетка правильна, ионы являются когерентными источниками дифрагированные волн, поэтому амплитуды дифрагированных волн суммируются, и формируется новая волна, амплитуда которой равна амплитуде исходной волны.

Энергия волны пропорциональна квадрату ее амплитуды, таким образом, в правильной кристаллической решетке электронная волна движется без потерь, и удельное электрическое сопротивление материала с идеальной кристаллической решеткой равно нулю. Появление в кристаллической решетке дефектов приводит к смещению некоторых ионов из равновесных положений, и дифрагированные волны становятся некогерентными. При сложении некогерентных волн амплитуда результирующей волны оказывается меньше амплитуды падающей волны, в результате у металла удельное электросопротивление становится отличным от нуля. С ростом температуры концентрация вакансий растет, а следовательно, увеличивается удельное электросопротивление. Аналогичным образом удельное электросопротивление растет при легировании металлов вследствие появления атомов примесей, искажающих кристаллическую решетку.

В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.

В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью. Влияние легирующих элементов на электропроводность материалов достаточно сложно и будет подробно рассмотрено при изучении полупроводниковых материалов. В общем случае следует отметить, что присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.

1.2 Линейные дефекты кристаллической решетки

Многочисленные исследования изменения структуры поверхности твердых тел при пластической деформации свидетельствуют о том, что пластическая деформация происходит путем послойного смещения одной части кристалла относительно другой. Аналогичным образом деформируется колода карт при сдвиге. Несколько позже было установлено, что сдвиг осуществляется по плотноупакованным плоскостям и в плотноупакованных направлениях.

Эти данные позволили Я.И. Френкелю оценить теоретическую прочность кристаллов исходя из предположения, что под действием механических напряжений атомы в узлах кристаллической решетки одновременно смещаются вдоль плотноупакованных плоскостей в плотноупакованных направлениях. Проведенные расчеты показали, что теоретическая прочность существенно превышает реальную прочность. Это обстоятельство позволило Френкелю предположить, что в металлах имеются легко подвижные дефекты - дислокации. На основании предположения Френкеля Тейлором, Орованом и Поляни была предложена геометрическая модель такого дефекта и начата разработка теории дислокаций. Модель дислокации, предложенная Тейлором, Орованом и Поляни, позднее названная краевой дислокацией.

Согласно этой модели, в кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва. Поэтому такую дислокацию называют краевой. Таким образом, дислокации представляют собой линейные дефекты кристаллической решетки.

Для оценки величины искажений кристаллической решетки вблизи дислокации Бюргерс предложил построить замкнутый контур вокруг участка кристалла, содержащего дислокацию, а затем построить т кой же контур на участке кристалла с правильной решеткой.

Как видно из приведенного рисунка, для построения замкнутого контура вокруг участка, содержащего дислокацию, потребовалось 23 шага. При построении аналогичного контура в области совершенного кристалла аналогичный контур не замыкается и для замыкания контура требуется еще один вектор (b), в настоящее время называемый вектором Бюргерса. Построение контура Бюргерса в участке кристалла содержащего дислокацию можно начинать из произвольной точки и в любом направлении. Однако в любом случае вектор Бюргерса оказывается перпендикулярным линии краевой дислокации

В связи с этим у Бюргерса возник вопрос: нельзя ли представить дислокацию, вектор смещения которой параллелен линии дислокации? В 1939 году он предложил геометрический образ такой дислокации и назвал ее винтовой дислокацией. Как видно из рис., при круговом движении по плоскости перпендикулярной винтовой дислокации происходит нисходящее или восходящее смещение на следующую плоскость аналогичное движение по винтовой лестнице. Поэтому такой дефект называют винтовой дислокацией

У вектора Бюргерса есть ряд особенностей:

вектор Бюргерса нонвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;

энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;

при движении решеточной дислокации с вектором Бюргерса, равным периоду трансляции решетки, кристаллическая решетка не изменяется.

При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация. Очевидно, что перемещение дислокаций вдоль плотноупакованных направлений и в плотноупакованных плоскостях осуществляется легче, чем в неплотноупакованных направлениях, вдоль которых расстояния между атомами больше. Следовательно, материалы с плотноупакованными кристаллическими решетками металлы обладают высокой пластичностью.

Присутствие в кристаллической решетке дислокаций оказывает существенное влияние на механические и электрические свойства материалов. При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Подтверждением этого положения является создание кристаллов малого диаметра, так называемых "усов". Усы практически свободны от дислокаций, и их прочность приближается к теоретической. В обычных материалах дислокации всегда присутствуют, поэтому их прочность существенно ниже теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Это связано с тем, что в ядре дислокации кристаллическая решетка искажена, а следовательно, дислокации окружены полями упругих напряжений. При увеличении плотности дислокаций поля упругих напряжений перекрываются, дислокации взаимодействуют друг с другом, и перемещение дислокаций затрудняется. Хотя прочность материалов с повышенной плотностью дислокаций всего лишь в два - три раза выше прочности материалов с обычной плотностью дислокаций, повышение прочности за счет повышения плотности дислокаций имеет большой практический интерес. Дело в том, что повышение плотности дислокаций легко провести путем холодной пластической деформации. Испокон веков прежде чем точить косу, крестьяне отбивали ее, то есть ударяли по режущей часть лезвия косы молотком. При этом режущая часть упрочнялась и меньше тупилась при работе.

Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой. Зависимость прочности металлических материалов от плотности дислокаций показана на рис.

Наличие в материале дислокаций резко повышает скорость диффузии. Это связано с тем, что дислокации могут являться источниками и стоками вакансий. При испускании вакансий дислокации переползают на плоскость лежащую выше, а при поглощении вакансий дислокации переползают на плоскость, лежащую ниже исходной плоскости. Таким образом, наличие дислокаций повышает локальную концентрацию вакансий, а следовательно, ускоряет диффузию. Опытные мастера, прежде чем затачивать жало паяльника, отбивают его. Тогда при облуживании жала припоем, олово, входящее в состав припоя, диффундирует в медное жало, и на поверхности жала образуется тонкий слой сплава меди с оловом - бронзы. Коррозионная стойкость материала повышается, и жало паяльника служит дольше.

Важно отметить, что решеточные дислокации взаимодействуют с атомами растворенных примесей или легирующих элементов. Как отмечалось выше, вблизи чужеродного атома кристаллическая решетка искажена - растянута или сжата. В ядре дислокации кристаллическая решетка также искажена: под экстраплоскостью кристаллическая решетка растянута, а над экстраплоскостью сжата. Поэтому чужеродные атомы притягиваются к дислокациям, образуя атмосферы Котрелла. При движении дислокаций вместе с ними перемещаются и атмосферы Котрелла, что приводит к затруднению движения дислокаций или к повышению прочности металлических материалов. Поэтому сплавы прочнее чистых металлов.

Искажение кристаллической решетки за счет присутствия дислокаций повышает удельное электрическое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов. Природа влияния дислокаций на электрические свойства материалов аналогична природе влияния точечных дефектов.

1.3 Поверхностные дефекты кристаллической решетки

К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен. Для понимания природы появления дефектов упаковки обратимся к геометрии заполнения кристаллической решетки в плотноупакованных материалах.

Предположим, что атомы представляют собой шары; тогда плотноупакованную плоскость можно создать, расположив атомы особым образом.

Обозначим первый слой атомов буквой А. Для создания следующей плотноупакованной плоскости необходимо поместить атомы во впадины между атомами первого слоя. Как видно из рисунка 17, имеются два вида впадин: впадины типа В и впадины типа С. Очевидно, что одновременно во впадины обоих типов атомы расположить невозможно. Предположим, что второй слой атомов расположен во впадинах типа В, обозначим этот слой атомов В. Третий слой атомов можно расположить либо во впадины, совпадающие с центрами атомов первого слоя, либо во впадины второго типа не совпадающие с атомами первого слоя. В первом случае получается чередование слоев: АВАВАВАВАВАВАВАВАВ...,

Во втором случае чередование слоев типа: АВСАВСАВСАВСАВСАВС...,

Чередование слоев типа АВАВАВ типично для гексагональной плотноупакованной решетки, чередование слоев типа АВСАВСАВС - для гранецентрированной кубической решетки. При нарушении чередования слоев внутри одной решетки появляется прослойка другой решетки:

АВСАВСАВСАВАВСАВСАВС.

При этом кристаллическая решетка искажается, и ее энергия возрастает.

Появление дефектов упаковки связано с движением частичных дислокаций. Как отмечалось выше, при появлении дислокаций кристаллическая решетка искажается, и энергия системы возрастает на величину, пропорциональную квадрату вектора Бюргерса Е b2. Поэтому дислокации могут расщепляться на две частичные дислокации, bb/2 +b/2. Это ведет к снижению энергии упругих искажений решетки вокруг дислокаций b/22 + b/22 b2.

При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки.

При движении полной решеточной дислокации с вектором Бюргерса b атомы перемещаются из одних равновесных положений в другие (например, из положения В в положение В). При этом кристаллическая решетка вдали от дислокации остается правильной. При расщеплении полной дислокации на две частичные движение частичных дислокаций приводит к образованию дефекта упаковки. При этом энергия атомов, смещенных в положение С, повышается.

В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки. Можно строго доказать, что движение пары частичных дислокаций с дефектом упаковки между ними осуществляется сложнее, чем движение полной дислокации. Поэтому материалы с низкой энергией дефекта упаковки прочнее материалов с высокой энергией дефекта упаковки.

Другим видом поверхностных дефектов являются границы зерен, представляющие собой узкую переходную область между двумя кристаллами неправильной формы. Ширина границ зерен, как правило, составляет 1,5-2 межатомных расстояния. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена. Энергия границ зерен существенно зависит от угла разориентации кристаллических решеток соседних зерен. При малых углах разориентации (до 5) энергия границ зерен практически пропорциональна углу разориентировки. Такие границы называют малоугловыми. Строение малоугловых границ можно представить как скопление решеточных дислокаций.

Уменьшение расстояния между решеточными дислокациями (d) в малоугловых границах ведет к увеличению угла разориентировки () на границе = 2 arctg(b/2d), или b/d.

Участки кристалла, разделенные малоугловыми границами, принято называть субзернами. Если граница субзерен представляет собой сетку краевых дислокаций, то такую границу называют границей наклона, а если граница субзерен является скоплением винтовых дислокаций, то субграницу называют границей кручения. В общем случае, субграница может содержать компоненты кручения и наклона.

При углах разориентировки, превышающих 5, плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются, и дальнейшее описание границ при помощи решеточных дислокаций становится невозможным. Границы, описание которых невозможно при помощи дислокационной модели, называют большеугловыми границами. Участки материала, отделенные большеугловыми границами, называют зернами или кристаллитами. Тело, содержащее большеугловые границы, является поликристаллом. Основная масса промышленных материалов является поликристаллическими.

Для большеугловых границ увеличение углов разориентировки соседних зерен ведет к появлению немонотонной зависимости энергии границ от угла разориентировки.

При определенных углах разориентации соседних зерен энергия границ зерен резко снижается. Такие границы зерен называются специальными. Соответственно углы разориентации границ, при которых энергия границ минимальна, называют специальными углами.

По современным представлениям, специальные границы соответствуют высокой плотности совпадающих узлов кристаллических решеток соседних атомов.

Специальные границы обозначают символом Sn, где n показывает, на сколько узлов решетки приходится совпадающий узел. Например, 7 означает, что каждый седьмой атом на границе зерен совпадает для кристаллических решеток обоих зерен. Границы зерен, углы разориентации которых отличаются от специальных, называют произвольными или случайными.

Поскольку на границах зерен атомы смещены из равновесных положений, энергия границ зерен повышена. В том случае, когда узлы кристаллической решетки одного зерна совпадают с узлами решетки другого зерна (случай специальной границы) энергия упругих искажений снижается.

При отклонении угла разориентации от специальных углов плотность совпадающих узлов резко падает, и энергия граница должна возрастать. Однако при небольших отклонениях от специальных углов энергия границ зерен остается ниже энергии произвольных границ. Для объяснения этого факта проведем следующее рассмотрение. Если соединить совпадающие узлы соседних зерен, то получится решетка узлов совпадения. Тогда, вводя в решетку узлов совпадения зернограничные дислокации, мы изменяем, угол разориентации аналогично тому, как скопления решеточных дислокаций увеличивают разориентацию соседних субзерен. При существенном отклонении от специальной ориентировки соседних зерен плотность зернограничных дислокаций становится настолько высокой, что граница становится произвольной.

Зернограничные дислокации не только экспериментально обнаружены методом просвечивающей электронной микроскопии, но и позволяют объяснять поведение материалов при различных условиях.

Так, результаты последних исследований свидетельствуют о том, что решеточные дислокации, входя в границы зерен, разбиваются на несколько зернограничных дислокаций с малыми векторами Бюргерса. В свою очередь, несколько зернограничных дислокаций могут сливаться, образуя решеточную дислокацию. Поэтому границы зерен являются источниками и стоками решеточных дислокаций. Поскольку границы зерен, как правило, извилистые, то движение зернограничных дислокаций путем скольжения невозможно. При переползании зернограничных дислокаций происходит поглощение или выделение вакансий.

При деформации материалов при низких температурах решеточные дислокации входят в границы зерен и расщепляются на зернограничные дислокации. Поскольку подвижность вакансий при низких температурах мала, то зернограничные дислокации не могут переползать в границах на значительные расстояния и скопления зернограничных дислокаций препятствуют вхождению в границы новых решеточных дислокаций. Иначе говоря, при низких температурах граница зерен являются, в основном, барьерами для решеточных дислокаций. Поэтому прочность материалов при низких температурах высока. При измельчении зерен количество препятствий для решеточных дислокаций увеличивается, и мелкозернистые материалы более прочны, чем крупнозернистые, при низких температурах.

При высоких температурах подвижность вакансий велика, и зернограничные дислокации, образующиеся при вхождении в границы зерен решеточных дислокаций, легко перемещаются вдоль границ зерен. Поэтому границы зерен в основном являются стоками для решеточных дислокаций. Следовательно, накопления решеточных дислокаций у границ зерен не происходит, и прочность материалов при высоких температурах снижается. Чем мельче зерна, тем больше суммарная протяженность границ зерен и меньше плотность решеточных дислокаций. Поэтому при высоких температурах мелкозернистые материалы имеют меньшую прочность, чем крупнозернистые.

Кроме того, измельчение зерен ведет к росту удельного электрического сопротивления металлических материалов и падению удельного электрического сопротивления диэлектриков и полупроводников.

1.4 Объёмные дефекты кристаллической решетки

К объёмным, или трехмерным дефектам кристаллической решетки относятся трещины и поры. Наличие трещин резко снижает прочность как материалов на металлической основе, так и неметаллических материалов. Это связано с тем, что острые края трещин являются концентраторами напряжений. Важно отметить, что при одинаковой геометрии трещин пластичность металлических материалов остается выше, чем неметаллических. Природа этого различия состоит в том, что в металлических материалах в области концентрации напряжений облегчается генерация дислокаций, и пластическая деформация материала приводит к затуплению трещин. В неметаллических материалах кристаллическая решетка упакована неплотно, подвижность дислокаций невелика, следовательно, затупление острых краев трещин за счет пластической деформации невозможно.

Присутствие в материале пор также снижает прочность металлических материалов, поскольку уменьшается истинное сечение деталей. В неметаллических материалах влияние пор на свойства материала не столь однозначно. Крупные поры снижают прочность материала, поскольку уменьшается сечение изделий. В то же время мелкие поры могут повышать прочность материалов. Это связано с тем, что при возникновении пор появляется свободная поверхность. У атомов, находящихся на свободной поверхности, количество соседей резко отлично от количества соседей атомов в глубинных слоях материала, следовательно, энергия атомов на поверхности материала повышена. Первая производная поверхностной энергии по расстоянию является поверхностным натяжением. Таким образом, на атомы, находящиеся на поверхности пор, действуют сжимающие напряжения. Неметаллические материалы с ионной или ковалентной связью между атомами хорошо сопротивляются действию сжимающих и плохо противостоят действию растягивающих напряжений. При всех реальных схемах нагружения (например, изгиб) в материале возникают как растягивающие, так и сжимающие напряжения. При наличии пор сжимающие напряжения на их поверхности компенсируют внешние растягивающие напряжения. Поэтому присутствие мелких пор ведет к росту прочности неметаллических материалов.

Поскольку энергия атомов на поверхности объёмных дефектов повышена, то они являются источником вакансий. При нагреве трещины и поры как бы "испаряются", превращаясь в вакансии. При охлаждении вакансии вновь "конденсируются". При "конденсации" вакансионного "пара" система стремится к минимуму энергии, а следовательно, к минимуму поверхностной энергии. Таким образом, при нагреве и последующем охлаждении острые трещины превращаются в сферические поры, то есть за счет чередования нагрева с охлаждением можно превращать опасные трещины в менее опасные поры.

Уменьшение сечения материала при наличии пор и трещин, а также искажение кристаллической решетки вблизи их поверхности приводит к повышению удельного электросопротивления металлических материалов. В неметаллических материалах наличие объёмных дефектов снижает удельное электросопротивление вследствие повышения подвижности ионов по вакансиям в материалах с ионной связью и облегчения выхода электронов в материалах с ковалентной связью.

1.5 Энергетические дефекты кристаллической решетки

Как отмечалось выше, один или несколько атомов в кристаллической решетке могут обладать повышенной энергией. В этом случае принято говорить об энергетических дефектах кристаллической решетки. К энергетическим дефектам решетки относятся: дырки дополнительно ионизированные ионы, дислоцированные электроны, пары электрондырка или экситоны (возбужденные атомы), фононыкванты колебаний кристаллической решетки.

При появлении в материале дырок и дислоцированных электронов проводимость диэлектриков и полупроводников возрастает. В металлических материалах существование дырок невозможно, поскольку свободные электроны моментально заполняют их. При поглощении ионом энергии, достаточной для отрыва электрона и образования дырки, но недостаточной для переноса электрона на относительно большое расстояние от дырки, возникает пара электрон-дырка, или экситон. Экситоны электрически нейтральны, поэтому их движение не приводит к переносу заряда, однако перемещение экситонов ведет к переносу энергии. При взаимной аннигиляции дырки и электрона выделяется квант электромагнитной энергии, который, поглощаясь каким-либо ионом, вновь приводит к образованию экситона. Поскольку в состав экситона входит свободный электрон, то при появлении в кристаллической решетке экситонов прозрачность кристалла для электромагнитного излучения падает.

В процессе тепловых колебаний атомы связно смещаются относительно положений равновесия. По кристаллу движутся упругие волны теплового возбуждения. Подобно тому, как волны электромагнитного излучения трактуются с точки зрения квантовой физики как частицы фотоны, тепловые волны можно рассматривать как квазичастицы упругих колебаний фононы. Перемещение фононов приводит к переносу тепловой энергии и определяет теплопроводность материалов. Важно отметить, что в металлических материалах подвижность фононов существенно выше по сравнению с неметаллическими. Это связано с тем, что смещение положительно заряженного иона из положения равновесия вызывает локальное изменение электрического поля и смещение электронов. В свою очередь, смещение электронов приводит к смещению ионов. В итоге электронфононого взаимодействия подвижность фононов, а следовательно, и теплопроводность металлических материалов оказывается существенно выше, чем у неметаллических материалов. Любое изменение структуры металлических материалов, приводящее к затруднению распространения электронных волн (легирование, измельчение зерен, повышение плотности дислокаций), имеет следствием понижение теплопроводности металлических материалов.

Размещено на Allbest.ru


Подобные документы

  • Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.

    дипломная работа [566,1 K], добавлен 09.01.2014

  • Главные черты линейных колебаний: одномерная цепочка с одним и двумя атомами в ячейке. Трехмерный кристалл. Фононы. Акустическая и оптическая ветки колебаний. Энергия колебаний и теплоемкость кристаллической решетки: модель Эйнштейна и модель Дебая.

    курсовая работа [219,4 K], добавлен 24.06.2008

  • Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.

    контрольная работа [2,9 M], добавлен 22.10.2009

  • Удельное сопротивление полупроводников. Строение кристаллической решетки кремния. Дефекты точечного типа и дислокации. Носители заряда и их движение в электрическом поле. Энергетические уровни и зоны атома. Распределение носителей в зонах проводимости.

    презентация [150,3 K], добавлен 27.11.2015

  • Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.

    лекция [2,0 M], добавлен 13.03.2007

  • Классификация твердых тел по электропроводности. Процесс образования пары электрон - дырка. Преимущества использования кремния в качестве полупроводникового материала. Структура кристаллической решетки типа "алмаз". Электронно-дырочный p-n-переход.

    презентация [823,2 K], добавлен 09.07.2015

  • Тепловое движение частиц твердого тела. Развитие теории теплоемкости и теплопроводности кристаллической решетки материала. Основные механизмы переноса тепла в твердом теле. Фотоны. Фотонный газ. Электронная теплопроводность. Закон Видемана-Франца.

    курсовая работа [242,1 K], добавлен 24.06.2008

  • Динамика и теплоемкость кристаллической решетки. Особенности объяснения зависимости теплоемкости от температуры с помощью закона Дюлонга–Пти, модели Эйнштейна, модели приближения Дебая. Основные положения квантовой теории гармонического кристалла.

    реферат [123,6 K], добавлен 06.09.2015

  • Рассмотрение понятия и видов диэлектриков, особенностей их поляризации. Описание потока вектора электрического смещения. Изучение теоремы Остроградского-Гаусса. Расчет электрических полей в различных аппаратах, кабелях. Изменение вектора и его проекций.

    презентация [2,3 M], добавлен 13.02.2016

  • Понятие фононов в физике. Фононы как истинные степени свободы в кристаллическом твердом теле. Основы теории динамики кристаллической решетки. Статистика, описывающая фононы, – статистика Бозе-Эйнштейна. Фононный спектр и плотность фононных состояний.

    курсовая работа [295,4 K], добавлен 15.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.