Физические основы специальной теории относительности

Техника преобразований уравнений Допплера. Физический смысл преобразований Эйнштейна. Первый и второй комплект преобразований СТО, их физический смысл. Эффект Допплера в релятивистской редакции. Интервал времени между событиями в системе координат.

Рубрика Физика и энергетика
Вид научная работа
Язык русский
Дата добавления 26.11.2010
Размер файла 432,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Вопрос о том, каким образом специальная теория относительности (СТО) оказалась в анналах истории мировой науки, остается открытым на протяжении уже нескольких десятилетий. Этот вопрос возникает у каждого здравомыслящего человека, когда он обращается к вытекающим из этой теории следствиям - весьма необычным и парадоксальным, с позиции нашего повседневного опыта, с точки зрения здравого смысла и объективных законов природы. И каждый раз он волей-неволей обращается к преобразованиям Лоренца, которые, при внимательном рассмотрении, оказываются некорректно преобразованными уравнениями Допплера и не имеют никакого отношения к пространственно-временным координатам тех систем отсчета, относительно которых рассматривается процесс распространения света в пространстве. И каждый раз, когда какой-нибудь «специалист» в области СТО начинает логически последовательно, как ему кажется, излагать физический смысл конкретных формул, которыми руководствуется эта самая СТО, то это уже начинает раздражать. Становится как-то неловко от понимания того, что вас начинают водить за нос. Появляется какое-то смешанное ощущение: толи вы оказались в палате вполне определенного учреждения, толи - в ситуации первоапрельского розыгрыша, когда серьезные люди с серьезной миной на лице излагают вам заведомо неверную информацию и при этом многозначительно переглядываются между собой.

Прежде чем говорить об основах СТО, следует заметить, что в арсенале СТО имеется, как будет показано ниже, два комплекта преобразований. Один из них, известный как «преобразования Лоренца», соответствует ситуации распространения света в направлении движения источника излучения, а другой - ситуации распространения света в противоположном направлении. Для удобства обращения, мы обозначили эти комплекты преобразований № 1 и № 2, соответственно. Официальная версия СТО построена в основном на первом комплекте преобразований, поскольку соответствующие ему уравнения распространения света, написанные в терминах пространственных интервалов, пакетов световых волн, напоминают уравнения Галилея. Второй комплект преобразований официальной наукой вообще не рассматривается, его как бы нет в природе. Я подозреваю, что даже не все приверженцы СТО догадываются о существовании второго, неофициального, комплекта преобразований. В этот «большой секрет для маленькой компании» посвящены, по-видимому, только «действительные члены» релятивистского сообщества.

На мой взгляд, «преобразования Лоренца» правильнее называть преобразованиями СТО или преобразованиями Эйнштейна. Сам Лоренц никогда не предпринимал попыток какой-либо коррекции уравнений Допплера, не рассматривал процесс распространения света в контексте принципа относительности и принципа постоянства скорости света относительно движущегося источника света, и не говорил о замедленном течении времени в движущейся системе координат. Он всего лишь высказал предположение о возможном сокращении линейных размеров тел в направлении их движения в связи с отрицательными, как считают некоторые исследователи, результатами опыта Майкельсона-Морли. В соответствии с этим предположением среднее время прохождения светом пространственного интервала l, ориентированного параллельно вектору движения, в оба конца, должно быть равно времени течения этого процесса в направлении, перпендикулярном вектору движения: , где .

Насильственная коррекция уравнений Допплера, под предлогом приведения их в соответствие с принципом относительности и принципом постоянства скорости света, и введение в физику положения о замедленном течении времени в движущейся системе координат - это проделки Эйнштейна, который на всякий случай предложил назвать придуманные им формулы «преобразованиями Лоренца», возложив тем самым всю ответственность за свои неуклюжие математические манипуляции на плечи Лоренца. Он так и пишет: «В дальнейшем мы будем их называть преобразованием Лоренца» [1, стр. 154]. Мы же в дальнейшем будем их называть преобразованиями СТО.

Замысел преобразований СТО

Как известно, процесс распространения света в пространстве описывается уравнениями Допплера, а преобразования Галилея описывают процесс перемещения в пространстве двух систем отсчета, пространственно-временные координаты которых никаким боком не связаны с уравнениями распространения света относительно этих систем. Оба процесса самодостаточны и не нуждаются во взаимном согласовании. Однако находится человек, который выдвигает тезис о том, что эти процессы - суть некого единого явления природы, для описания которого требуется особая система взглядов и свой математический аппарат. Этим человеком является Эйнштейн, а особой системой взглядов - СТО.

В основе СТО лежит, с одной стороны, предположение о том, что если все физические процессы протекают в покоящейся и движущейся системах координат одинаковым образом, в чем, собственно, и заключается смысл так называемого принципа относительности, то и процесс распространения света должен подчиняться этому принципу, а с другой стороны, - тезис о том, что «скорость распространения света в пустоте относительно обеих систем координат равна с» [2, стр. 71]. Это, если можно так выразиться, суть официально принятого толкования исходных позиций СТО, на основе которых были якобы выведены соответствующие преобразования пространственно-временных координат. При этом мотивы совмещения принципа относительности с принципом постоянства скорости света никак не оговорены.

В действительности же оба заявленных Эйнштейном принципа в СТО не работают. Фактически Эйнштейн попытался волевым путем привести уравнения распространения света в движущейся системе координат к такому виду, когда среднее время прохождения светом некоторого пространственного интервала l в направлении его движения в оба конца становится равным времени течения этого процесса по нормали к вектору движения . Соответственно, и средняя величина оптической длины света вдоль оси становится равной оптической длине света вдоль осей : . В итоге, как казалось Эйнштейну, выдвинутое Лоренцем и Фитцджеральдом предположение о возможном сокращении линейных размеров движущихся тел в направлении их движения в пропорции оказывается, как бы, закономерным следствием СТО. А чтобы вовсе спутать карты, Эйнштейн решил выдать преобразованные уравнения Допплера за уравнения пространственно-временных координат, по отношению к которым преобразования Галилея оказываются всего лишь предельным случаем малых скоростей.

Однако надежды автора СТО на возможность теоретического обоснования предположения Лоренца и Фитцджеральда оказались, как будет показано ниже, тщетными, а положение СТО о сокращении линейных размеров движущихся тел - следствием примитивной по содержанию и лукавой по исполнению интерпретацией соответствующих уравнений.

Техника преобразований уравнений Допплера

Как известно, скорость распространения света в движущейся системе координат различна в трех направлениях - в направлении движения системы, в направлении, противоположном направлению ее движения, и в направлении, перпендикулярном вектору движения. Соответственно, и время прохождения светом одного и того же пространственного интервала l в этих направлениях различно:

- в направлении движения ,

- в противоположном направлении ,

- в направлении, перпендикулярном вектору движения, .

Понятно, что для воплощения в жизнь идеи Эйнштейна необходимо ввести в уравнения Допплера некий коэффициент пропорциональности , при котором удовлетворялось бы требование:

(1)

Здесь: t - время прохождения светом покоящегося стержня l; - время прохождения светом движущегося стержня l, ориентированного по нормали к вектору движения; - средняя величина между временем прохождения светом движущегося стержня l в направлении его движения и временем прохождения светом того же стержня в направлении, противоположном направлению движения; - относительная скорость света по нормали к вектору движения; - средняя относительная скорость света, соответствующая времени .

Приведение уравнений распространения света в соответствие с требованием (1) можно выполнить, в принципе, тремя способами: в терминах оптической длины света, в терминах обычных параметров света и в терминах пространственно-временных параметров пакета световых волн. Первоначально Эйнштейн в своей первой основной статье по СТО [3] попробовал выполнить эту операцию путем рассмотрения процесса распространения света в терминах оптической длины света. Спустя несколько лет он вновь возвращается к этому вопросу и решает задачу уже в терминах пространственно-временных параметров пакета световых волн [4]. По-видимому, ему кто-то намекнул на то, что его первый опыт далек от совершенства, содержит элементы вольного обращения с некоторыми физическими понятиями и противоречив по результатам исполнения.

Первая попытка Эйнштейна преобразовать уравнения Допплера

Наверное, каждый, кто читал статью [3], испытал неприятное чувство неудовлетворенности от прочитанного вследствие запутанного стиля изложения материала и отсутствия четко сформулированной задачи. Это ощущение усиливается постоянными ссылками втора на принцип относительности и принцип постоянства скорости света, которые остаются только на уровне деклараций, поскольку полученные им формулы находятся в явном противоречии с этими принципами. Вот небольшой фрагмент из этой статьи:

«Пусть из начала координат (движущейся) системы k в момент времени посылается луч света вдоль оси X в точку х' и отражается оттуда в момент времени назад, в начало координат, куда он приходит в момент времени ; тогда должно существовать соотношение

,

или, выписывая аргументы функции и применяя принцип постоянства скорости света в покоящейся системе, имеем

.

Если х' взять бесконечно малым, то отсюда следует:

Необходимо заметить, что мы могли бы вместо начала координат выбрать всякую другую точку в качестве отправной точки луча света, и поэтому только что полученное уравнение справедливо для всех значений х', у, z.

Если принять во внимание, что свет вдоль осей Y и Z при наблюдении из покоящейся системы всегда распространяется со скоростью , то аналогичное рассуждение, примененное к этим осям, дает .

Так как - линейная функция, то из этих уравнений следует , где а - неизвестная пока функция ц(х) (далее эта функция опускается ввиду того, что она равна единице) и ради краткости принято, что в начале координат системы k при также и . Пользуясь этим результатом, легко найти величины . С этой целью (как этого требует принцип постоянства скорости света в сочетании с принципом относительности) нужно с помощью уравнений выразить то обстоятельство, что свет при измерении в движущейся системе также распространяется со скоростью c. Для луча света, вышедшего в момент времени в направлении возрастающих , имеем

Но относительно начала координат системы k луч света при измерении, произведенном в покоящейся системе, движется со скоростью , вследствие чего . Подставив это значение t в уравнение для , получим

.

Рассматривая лучи, движущиеся вдоль двух других осей, находим , причем ; следовательно, и . Подставляя вместо его значение (имеется в виду , получаем:

Мы не станем обсуждать вопрос о том, следует ли выражение из приведенных выше уравнений, а раскроем его физический смысл, приняв во внимание, что :

.

По-моему, это есть не что иное, как средняя величина между временем прохождения светом пространственного интервала в направлении его движения и временем прохождения светом того же интервала в противоположном направлении:

.

Величина - это половинка разницы между временем прохождения светом пространственного интервала в направлении его движения и временем прохождения светом того же интервала в противоположном направлении:

.

Очевидно, что время может быть найдено и путем сложения данной половинки с временем прохождения светом пространственного интервала в направлении, противоположном направлению движения:

.

Теперь становится понятно, что в данной работе процесс распространения света рассматривается в терминах оптической длины света, поскольку равенство выражает оптическую длину света L - некий виртуальный пространственный интервал, который проходит свет за время . А время в рассматриваемых построениях Эйнштейна, как мы только что выяснили, - это средняя величина между временем распространения света в направлении движения какого-нибудь пространственного интервала l и временем течения этого процесса в обратном направлении, т. е. некая абстрактная величина, не имеющая конкретного физического содержания в движущейся системе координат.

Наличие в приведенных выше уравнениях параметра говорит о том, что Эйнштейн де-факто заменил понятие пространственного интервала понятием пространственной координаты. Далее он совершает недопустимый, с физической точки зрения, шаг - заменяет пространственный интервал выражением , которое не имеет никакого отношения к процессу распространения света.

В результате этого маневра и с учетом того, что и , это выражение преобразовано по странной схеме: пространственная координата х заменена произведением , а время t - отношением :

.

(2)

Даже если закрыть глаза на неправомерность вставки , то математически строгое преобразование (что называется, по полной программе) приводит к совсем другому результату, а именно - к времени прохождения светом пространственного интервала в направлении, противоположном направлению его движения:

.

Данное противоречие обусловлено заведомо (умышлено) неправильно составленными выражениями и . Здесь вместо пространственного интервала должен находиться пространственный интервал :

поскольку время следует рассчитывать относительно покоящейся системы координат. Следовательно, нет никакой необходимости придумывать новые обозначения для , соответственно. Математически грамотное выражение для среднего значения между временем прохождения светом пространственного интервала l в направлении его движения и временем течения этого процесса в обратном направлении имеет вид:

,

где - время прохождения светом пространственного интервала l в направлении движения, - половинка разницы между и временем прохождения светом того же интервала в противоположном направлении :

,

а - средняя величина между временем прохождения светом пространственного интервала l в направлении движения и временем прохождения светом того же интервала в обратном направлении:

.

Причина замены пространственного интервала пространственной координатой , а последней - выражением , с одной стороны, и некорректного преобразования выражения (2) , с другой, очевидна: Эйнштейну необходимо было зачем-то привязать уравнения распространения света к пространственным координатам, что само по себе абсурдно, а затем уже заняться преобразованием этих уравнений сообразно поставленной задаче. Эти преобразования сводятся к делению величины на коэффициент без каких-либо пояснений. Создается впечатление, что данное действие выполнено из личных побуждений автора - просто ему так захотелось. Скрытая же причина этого действия содержится в требовании (1), которое никак не оговорено в данной работе. Так появляются известные преобразования СТО:

Теперь посмотрим на уравнения, которые следуют из математически корректных преобразований. Как было показано выше, выражение следует заменить выражением . В релятивистской редакции оно принимает вид , т. е. , что и отражает замысел преобразований СТО в виде негласно сформулированного требования (1). Заметим, что время - это не собственное время движущейся системы координат, а средняя величина от времени прохождения светом пространственного интервала l в оба конца. В самом деле, если это выражение развернуть в обратном порядке, то получим половинку от суммы двух временных интервалов:

.

Здесь, в скобках, как будет показано ниже (см. табл. 1), первое слагаемое - это время прохождения светом движущегося стержня l в направлении его движения, а второе слагаемое - время прохождения светом того же стержня в обратном направлении. Величины этих параметров не противоречат элементарной логике: время распространения света вдоль некоторого пространственного интервала в направлении его движения, как и в рамках классической механики, должно быть больше такового в противоположном направлении. При желании эти параметры можно, вслед за Эйнштейном, привязать к пространственным координатам и получить лишенные физического смысла выражения:

(3)

Далее, если положить , что в СТО означает соблюдение принципа постоянства скорости света, то выражения (3) могут быть преобразованы в нечто похожее на соотношения пространственных координат:

(4)

Из этих уравнений только (3-2) и (4-2) могут претендовать на преобразования СТО. Но эти уравнения отвечают ситуации распространения света в направлении, противоположном направлению движения штрихованной системы координат, что не согласуется с исходными намерениями Эйнштейна рассматривать процесс распространения света «в направлении возрастающих », т. е. в направлении движения источника излучения.

Физический смысл преобразований Эйнштейна

Действительный физический смысл выражений (4) состоит в том, что в свернутом виде они определяют соотношения виртуальных пространственных интервалов - оптических длин света в соответствующих направлениях движущейся системы координат. При распространении света в направлении движения источника излучения оптическая длина света увеличивается в пропорции , а в обратном направлении - уменьшается в пропорции . Средняя величина для этих параметров составляет . Иными словами, присущая процессу распространения света асимметрия, относительно движущегося источника излучения, сохраняется и в рамках релятивистской механики, что находится в явном противоречии с декларируемыми в СТО принципом относительности и принципом постоянства скорости света.

Теперь обратимся к авторскому пониманию выражения (4-2). Вот что пишет Эйнштейн: «Рассмотрим твердый шар радиуса R, находящийся в покое относительно движущейся системы k, причем центр шара совпадает с началом координат системы k. Уравнение поверхности этого шара, движущегося относительно системы со скоростью V, имеет вид

Уравнение этой поверхности, выраженное через x, y, z, в момент времени t = 0 будет . Следовательно, твердое тело, которое в покоящемся состоянии имеет форму шара, в движущемся состоянии - при наблюдении из покоящейся системы - принимает форму эллипсоида вращения с полуосями

В то время как размеры шара (а следовательно, и всякого другого твердого тела любой формы) по осям Y и Z от движения не изменяются, размеры по оси X сокращаются в отношении , и тем сильнее, чем больше V» [3, стр. 18].

Приведенный отрывок, на мой взгляд, - образец математического невежества. В нем присутствуют, как минимум, три ошибки (я бы сказал заведомо ложные положения):

1. Поскольку процедура преобразования касается процесса распространения света, причем в терминах оптической длины света, то твердое тело радиусом R не имеет никакого отношения ни к этому процессу, ни к процедуре его коррекции. В данном случае речь идет о той виртуальной поверхности радиусом , которая образуется светом за время прохождения им определенного пространственного интервала R.

2. В момент времени t = 0, когда V = 0, никакой сферической поверхности света еще не существует, ни в покоящейся, ни в движущейся системах координат: . Следовательно, выражение , которое, по мнению Эйнштейна, обозначает размер полуоси эллипсоида твердого шара, а на деле - эллипсоида света в направлении движения источника излучения, в принципе некорректно: помимо подстановки t = 0 в числителе выражения , следует делать еще подстановку V = 0 в знаменателе. Тогда .

3. К моменту времени в покоящейся системе координат образуется сферическая волна света радиусом . К этому времени, в движущейся системе координат образуется асимметричный эллипсоид вращения с полуосями в виде оптических длин света, рассчитанных относительно некоторого реального пространственного интервала R. Оптическая длина света в направлении движения составляет величину , в противоположном направлении - величину , а в направлении, перпендикулярном вектору движения, - величину .

Таким образом, в движущейся системе координат мы имеем дело не с твердым шаром, а с виртуальным асимметричным эллипсоидом вращения с оговоренными выше полуосями. При этом в направлении движения системы, размеры эллипсоида по оси Х увеличиваются, а не уменьшаются, и не в пропорции , а в пропорции , и тем сильнее, чем больше V. Кстати, эта форма эллипсоида справедлива как при наблюдении из покоящейся системы координат, так и при наблюдении из движущейся системы координат.

Совершенно очевидно, что «оптическая длина света L», «длина физического тела l» и «пространственная координата x» - это совершенно разные понятия и ставить между ними знак равенства недопустимо по определению и некрасиво с точки зрения научной этики. Поэтому приведенные выше уравнения не имеют никакого отношения ни к пространственным координатам, ни к длинам физических тел - речь идет об оптической длине света.

Отдельно следует остановиться на происхождении и принятой в СТО интерпретации выражения . Как только что мы видели, оно было получено путем некорректного, частичного, преобразования выражения на момент времени t = 0, когда V = 0. В других работах Эйнштейна, например в [1, стр. 155; 2, стр. 73], оно выводится из уравнения (4-2) по схеме расчета пространственного интервала:

.

Совершенно очевидно, что этот прием, т. е. по развернутому варианту выражения (4-2), недопустим - он исключает из рассмотрения параметр Vt. Математически грамотный расчет следует осуществлять по схеме

.

В действительности же выражение является производным от среднего времени , которое было заложено в исходное требование (1), если закрыть глаза на допущенное Эйнштейном отождествление понятий «оптической длины света» и «длины физического тела». По существу, оно выражает абстрактный пространственный интервал, который существует на оси только применительно к среднему времени . В то же время - это реальная оптическая длина света относительно стержня l, ориентированного перпендикулярно вектору его движения. Поэтому формально выражение обозначает то обстоятельство, что оптическая длина света вдоль движущегося стержня больше таковой у покоящегося стержня в указанной пропорции. У Эйнштейна же понятие оптической длины света отождествляется (толи по глупости, толи намеренно) с понятием длины физического тела. В контексте этого недоразумения выражение , как и полуось в приведенном выше отрывке статьи [3], должно, казалось бы, обозначать то обстоятельство, что длина движущегося стержня больше длины покоящегося стержня. Но, вопреки здравому смыслу, в СТО это выражение интерпретируется совсем наоборот. Сам автор СТО, обращаясь к выражению , пишет: «Это означает следующее. Если стержень в покое обладает длиной , то при движении со скоростью V вдоль своей оси он будет обладать с точки зрения несопутствующего наблюдателя меньшей длиной , тогда как для сопутствующего наблюдателя длина стержня, как и прежде, равна » [5, стр. 420]. Примерно в таком же ключе это выражение интерпретируется всеми сторонниками СТО, в частности А.Н. Матвеевым [6, стр. 111], М. Борном [7, стр. 241-242], У.И. Франкфуртом [8, стр. 75], М._А. Тоннела [9, стр. 132] и другими. Такая вот странная логика у релятивистов.

Мне представляется, что придуманное Эйнштейном нелепое, к тому же поставленное с ног на голову, объяснение физического смысла простого соотношения оптических длин света в искусственно созданной, виртуальной системе координат - это плод его неудержимого стремления найти «научное» подтверждение такому же нелепому предположению Лоренца о сокращении линейных размеров физических тел в направлении их движения. Эйнштейн так и пишет: «Легко видеть, что гипотеза Г.А. Лоренца и Фитцджеральда, выдвинутая для объяснения опыта Майкельсона, получается как следствие теории относительности» [5, стр. 420].

На самом деле, «следствием теории относительности» является увеличение длины движущегося стержня, если исходить из выражения . Но самое интересное заключается в том, что предположение Лоренца о сокращении линейных размеров движущихся тел в направлении их движения не противоречит тому обстоятельству, что оптическая длина света, рассчитанная по среднему времени прохождения светом «обрезанного» стержня (туда и обратно)

всё равно больше, чем в покоящейся системе координат в пропорции (по Эйнштейну это длина покоящегося стержня, который находится в штрихованной системе координат). Просто в классической механике, без операции обрезания, эта длина еще больше и составляет , что в раз превышает величину . При этом никому в голову не приходит мысль о том, что выражение можно рассматривать как аналог длины движущегося стержня.

Таким образом, избранный Эйнштейном в работе [3] способ вывода преобразований пространственно-временных координат основан на волевом решении - приравнять среднюю относительную скорость распространения света и оптическую длину света в движущейся системе координат вдоль оси к соответствующим величинам в направлении, перпендикулярном вектору движения. Что касается отождествления Эйнштейном понятий «оптической длины света» и «длины физических тел», то это уже выходит за рамки адекватного восприятия им окружающей действительности.

Вторая попытка Эйнштейна преобразовать уравнения Допплера

Спустя 12 лет Эйнштейн наконец-таки обратил внимание на ошибочность вывода преобразований СТО с позиции оптической длины света и написал приложение к статье [4], в котором вывод преобразований построен уже на пакетах световых волн. Но и в этой работе не обошлось без противоречий и волевых приемов. Вот небольшой фрагмент из данной работы.

«Световой сигнал, распространяющийся в положительном направлении оси Х, движется в соответствии с уравнением , или (1). Так как этот же световой сигнал распространяется и относительно (движущейся системы координат) с той же скоростью с, то его движение относительно будет описываться уравнением (2). Пространственно-временные точки (события), удовлетворяющие уравнению (1), должны удовлетворять также уравнению (2). Это, очевидно, будет иметь место в том случае, если вообще выполняется соотношение (3), где - некоторая постоянная. В самом деле, согласно соотношению (3), обращение в нуль выражения означает обращение в нуль и .

Совершенно аналогичное рассуждение, примененное к световым лучам, распространяющимся в отрицательном направлении оси Х, приводит к условию (4). Складывая и вычитая соотношения (3) и (4) и при этом вводя для удобства вместо постоянных и , новые постоянные , , получаем

и .

(в оригинале допущена опечатка )

(5)

Наша задача была бы решена, если бы были известны постоянные а и b; последние определяются из следующих соображений. Для начала координат системы все время , следовательно, согласно первому уравнению (5), имеем . Обозначая через V скорость, с которой начало координат системы движется относительно , находим (6).

Далее, из принципа относительности ясно, что с точки зрения системы длина некоторого единичного масштаба, покоящегося относительно , должна быть точно такой же, как и длина такого же масштаба, покоящегося относительно , с точки зрения . Чтобы знать, как ведут себя точки оси , с точки зрения системы , нам надо лишь сделать «моментальный снимок» системы из системы ; это значит, что вместо t (время системы ) мы должны подставить некоторое определенное значение его, например, . Тогда из первого уравнения (5) получим . Следовательно, две точки оси , расстояние между которыми при измерении в системе равно 1 (), на нашей моментальной фотографии находятся на расстоянии (7). Но если моментальный снимок делается из системы (), то, исключая t из уравнений (5) при помощи равенства (6), получаем

.

(8)

Отсюда заключаем, что две точки на оси , находящиеся на расстоянии, равном единице (относительно ), на нашей моментальной фотографии разделены расстоянием

.

(7а)

Так как, согласно сказанному выше, обе моментальные фотографии должны быть идентичны, то в соотношении (7) должно быть равно в соотношении (7а), так что получаем

.

(7б)

Равенства (6) и (7б) определяют постоянные а и b. Подставляя выражения для а и b в уравнения (5), получаем первое и четвертое уравнения, приведенные в § 11:

(9) и

Итак, мы получили преобразование Лоренца для событий на оси . Оно удовлетворяет условию » [4, стр. 588-590].

Некорректность построений заключается в том, что в момент времени , когда , имеет место равенство . Поэтому определение и возможно лишь в области , где , так как при распространении света «в положительном направлении оси Х» , а «в отрицательном направлении оси Х» (см. табл. 1). Следовательно, приравнивание выражений (7) и (7а) - это математически запрещенный прием для процесса распространения света в области . Отсюда налицо очевидное противоречие между выражениями , (8) и (9):

по выражению : , откуда ,

по выражению (8): , откуда ,

а по выражению (9): , откуда .

В свою очередь, исходное требование , в котором волевым решением принято и , дает , откуда . Таким образом, мы видим, что и вторая попытка Эйнштейна совместить принцип относительности с принципом постоянства скорости света оказалась сплошным недоразумением.

Преобразование уравнений Допплера по методу А.Н. Матвеева и М. Борна

Более изящный, как может показаться, вывод преобразований СТО приведен в учебнике А.Н. Матвеева [6]. На первый взгляд, эта процедура не вызывает сомнений и создается впечатление, что речь идет действительно о каких-то преобразованиях пространственно-временных координат двух систем отсчета, одна из которых считается условно покоящейся, а другая - движущейся, либо в сторону возрастающих значений х, либо в противоположную сторону.

Однако при внимательном рассмотрении этого вопроса обнаруживается, во-первых, что эти манипуляции не связаны с пространственными координатами, а во-вторых, что эти манипуляции являются, мягко говоря, математически некорректными. Дабы не отправлять читателя к первоисточнику, приведем небольшую выдержку из этого учебника, в которой заключен основной смысл исходных позиций релятивистской механики.

«Пусть в момент времени, когда начала координат совпадают, и когда часы, находящиеся в началах координат, показывают время , из них испускается световой сигнал. Распространение света в штрихованной и нештрихованной системах координат описывается равенствами: , в которых учтено, что в обеих системах скорость света имеет одно и то же значение с» [6, стр. 104]. Далее эти равенства подставляются в уравнения Галилея, а последние приводятся в соответствие с принципом относительности.

Подвох состоит в том, что равенства математически некорректны: здесь - это пространственные координаты покоящейся и движущейся систем отсчета, а - это величины, имеющие двойственный физический смысл. С одной стороны, как мы только что видели у Эйнштейна [3], под этими величинами понимается оптическая длина света, и вовлечение их в этом качестве в процедуру преобразований приводит к противоречивому результату. С другой стороны, их можно рассматривать как виртуальные пространственные интервалы, которые определяют протяженность пакета световых волн в соответствующих обстановках.

Так, длину пакета световых волн в покоящейся системе координат можно выразить в виде , где - длина волны, - период излучения, - собственная частота излучения источника света, n - любое целое число. В движущейся системе координат этот же пакет равен в направлении движения источника света и в направлении, противоположном направлению движения источника света. Поэтому равенства , как уравнения распространения света, являются математическим абсурдом, а как требование постоянства скорости света - откровенным лукавством.

Действительным уравнением распространения света в покоящейся системе координат является выражение , которое для пакета световых волн можно записать в виде . Распространение света в движущейся системе координат описывается, как известно, тремя уравнениями:

- в направлении движения источника света - уравнением ,

- в противоположном направлении - уравнением ,

- в направлении, перпендикулярном вектору движения, - уравнением .

Для пакета световых волн интересующее нас уравнение следует записать в виде , принимая во внимание, что и .

Предпринятая Матвеевым и Борном подстановка равенств в уравнение Галилея дает выражение , которое, как мы только что видели, является производным от уравнения распространения света в направлении движения источника излучения , и означает то обстоятельство, что процесс распространения света в процедуре вывода преобразований СТО рассматривается в терминах пространственных интервалов пакетов световых волн, а не в терминах оптической длины света, как в работе [3].

Другое фигурирующее в преобразованиях [6] выражение является производным от уравнения распространения света в ситуации приближения приёмника к неподвижному источнику излучения или . В самом деле, последнее уравнение можно записать также в виде , что идентично . Тогда для пакета волн последнее выражение принимает вид . Совершенно очевидно, что выражение нельзя отождествлять с уравнением Галилея , потому что параметр в уравнении распространения света - это регистрируемый приёмником пакет периодов излучения, который в уравнении Галилея отсутствует за ненадобностью.

Принципиальное отличие уравнений и от уравнений Галилея заключается в том, что, во-первых, первые относятся к процессу распространения света и не содержат в себе пространственных координат, а вторые - к механическому процессу перемещения одной системы отсчета относительно другой. Во-вторых, фигурирующие в них значки «штрих» имеют разный смысл. В преобразованиях Галилея значок «штрих» над символом х означает принадлежность данной координаты к движущейся системе отсчета, причем масштаб параметров х и в обеих системах одинаков. В уравнениях Допплера этим значком отмечаются величины тех или иных параметров с точки зрения приёмника света, т. е. измеренные им величины, а сам приёмник может находиться как в состоянии покоя, так и в состоянии движения.

В частности, уравнение выражает то обстоятельство, что, с точки зрения покоящегося наблюдателя (приёмника), который, кстати сказать, расположен далеко от начала координат, в области бесконечно больших величин х, пространственный интервал пакета световых волн, образующихся движущимся (к приёмнику) источником излучения, меньше такого же пакета волн, генерируемых покоящимся источником излучения в указанной пропорции, поскольку в направлении движения источника света частота на приёмнике увеличивается в пропорции , а длины волн уменьшаются в пропорции .

Уравнение , записанное в виде , выражает то обстоятельство, что, с точки зрения движущегося наблюдателя, регистрируемый им пространственный интервал пакета световых волн меньше такового в ситуации, когда приёмник неподвижен, поскольку при движении приёмника к покоящемуся источнику света уменьшение длины пакета световых волн происходит за счет сокращения периода одной волны в пропорции .

А вот Эйнштейн вывернул бы наизнанку смысл этих выражений и дал бы примерно следующее пояснение к выражению : если пространственный интервал в покое обладает длиной , то при движении со скоростью V он будет обладать с точки зрения несопутствующего наблюдателя большей длиной , тогда как для сопутствующего наблюдателя длина интервала, как и прежде, равна . Нелепость подобного толкования, как и приведенного выше изречения Эйнштейна в отношении длины движущегося «стержня», очевидна и не нуждается в комментариях.

Первый комплект преобразований СТО

Итак, исходными уравнениями для вывода преобразований СТО в [6] были выбраны два уравнения: уравнение распространения света в направлении движения источника излучения , т. е. при движении его к неподвижному наблюдателю, и уравнение распространения света в ситуации приближения приёмника к неподвижному источнику света .

Заметим, что эта пара уравнений как-то не вяжется с кинематикой уравнений Галилея, которые описывают процесс удаления одной системы координат от другой.

Выпишем эти уравнения в двух вариантах: в параметрах процесса распространения света, принимая во внимание, что , и в пространственных интервалах пакетов световых волн, как это сделано в [6]:

(5)

и

(6)

Далее, вслед за А.Н. Матвеевым, вводим коэффициент пропорциональности в правые части уравнений для приведения их якобы в соответствие с принципом относительности, поскольку входящие в эти уравнения величины , в варианте (5), и , в варианте (6) асимметричны. Затем путем умножения левых и правых частей этих уравнений друг на друга находим искомый коэффициент:

(7)

откуда ;

(8)

откуда .

Казалось бы, процедура согласования исходных уравнений с принципом относительности не вызывает сомнений. Однако при внимательном рассмотрении первого варианта уравнений обнаруживается, что параметр в уравнении (5-1) не равен параметру в уравнении (5-2). Следовательно, процедура сокращения параметров в уравнении (7) некорректна. Аналогичное несоответствие обнаруживается и во втором варианте уравнений. Здесь величина в уравнении (6-1) не равна величине в уравнении (6-2). Следовательно, и в этом случае процедура сокращения параметров в уравнении (8) некорректна.

Физический смысл рассматриваемого приёма согласования уравнений имеет, как и в работе [3], силовой подтекст. Только в данном случае речь идет не об оптической длине света, а о частотах и периодах излучения. Иными словами, для уравнений (5) требуется подобрать такой коэффициент пропорциональности, при котором соблюдалось бы равенство :

,

откуда . Тогда частота излучения на приёмнике становится одинаковой как в ситуации приближения источника света к неподвижному приёмнику:

,

так и в ситуации приближения приёмника к неподвижному источнику света:

.

Точно так же и для уравнений (6) требуется соблюдение равенства пакетов периодов :

,

откуда . Тогда пакет периодов излучения на приёмнике становится одинаковым как в ситуации приближения источника света к неподвижному приёмнику:

,

так и в ситуации приближения приёмника к неподвижному источнику света:

,

что находится в полном согласии с требованием .

Примерно в том же ключе уравнения (6) «приводятся» в соответствие с принципом относительности и Максом Борном [7, стр. 232], с той лишь разницей, что его коэффициент вводится в левые части уравнений и , а требование (1) принимает вид

Суть от этого не меняется: расчет коэффициентов пропорциональности путем перемножения оговоренных выше уравнений друг на друга математически некорректен, а сами уравнения не нуждаются в этих коэффициентах. Иными словами, уравнения распространения света не могут быть согласованы с принципом относительности, что и следовало ожидать, поскольку сам факт существования в природе эффекта Допплера априори исключает процесс распространения света из списка других процессов, которые протекают одинаковым образом, как в условиях покоящейся системы координат, так и в условиях движущейся системы координат. И не понимать этого могут только очень «зашторенные» люди.

На этом можно было бы закончить анализ преобразований СТО и отправить эти преобразования в корзину, поскольку сама идея согласования уравнений Допплера с принципом относительности нереализуема априори, а процедура вывода преобразований СТО математически некорректна. Но мы сделаем вид, что процедура согласования уравнений выполнена математически грамотно, и продолжим погружение в математические манипуляции СТО с целью установления действительного физического смысла конкретных формул, помня при этом о том, что эти формулы вообще не имеют право на существование.

Из уравнения (5-1), с учетом коэффициента , находим соотношение между собственной частотой источника излучения и частотой на приёмнике:

(9)

что в терминах периодов волн означает

(10)

Принимая во внимание, что и , выражения (9) и (10) могут быть преобразованы в соотношения длин волн:

(11)

Далее, если учесть, что для пакета световых волн справедливы соотношения

(12)

и что в СТО «узаконены» равенства , мы можем формально переписать уравнения (10) и (11) в виде:

(13)

и

(14)

помня о том, что в данном случае речь идет не о пространственных координатах, а о пространственных интервалах пакетов световых волн и соответствующих им пакетах периодов излучения. И наконец, еще раз принимая во внимание равенства , уравнения (13) и (14) можно развернуть и обнаружить нечто похожее на известные всем преобразования СТО:

(15)

(16)

Совершенно очевидно, что эти уравнения не являются соотношениями каких-то пространственно-временных координат, как принято считать в СТО. Уравнения (15) выражают соотношение наблюдаемых и собственных виртуальных пространственных интервалов, пакетов световых волн, а уравнения (16) - соотношение соответствующих временных параметров этих пакетов покоящегося и движущегося источника излучения в направлении его движения. Отсюда следует простой и ясный вывод: никакого собственного времени в движущейся системе координат, даже в рамках релятивистской механики, не существует. Время абсолютно и едино для всех систем отсчета. В уравнениях (16) время - это продолжительность пакета регистрируемых приёмником периодов излучения , размер которого естественным образом уменьшается в направлении движения источника света по сравнению с таким же пакетом в покоящейся системе координат.

Понятно, что в обратном порядке свертывание формул (15) и (16) следует проводить, полагая и , а не и , поскольку рассматривается процесс распространения света, а не процесс перемещения одной системы координат относительно другой. В противном случае мы получим асимметричный результат. В частности, если свернуть выражение (16-2) при , следуя рекомендации Эйнштейна [3, стр. 19], а не при , как требует «принцип постоянства скорости света», то получим , откуда , что не согласуется с принципом относительности. А свертывание тем же способом выражения (16-1) вообще приводит к неизвестным в СТО соотношениям:

С «пространственными координатами» получается еще более нелепая ситуация, если при свертывании выражений (15) следовать рекомендациям Эйнштейна, т. е. полагать, что и :

Таким образом, мы видим, что манипуляция выражениями (15) и (16) с использованием вставок и дает асимметричный результат (нарушается принцип относительности) и пренебрегает требованием постоянства скорости света в редакции СТО. Но на это почему-то никого не обращает внимания: ни автор СТО, ни его последователи, когда пользуются выражением .

Теперь, вводим коэффициент пропорциональности в уравнение (5-2) и находим частоту на движущемся приёмнике в ситуации, когда источник света неподвижен:

(17)

Как видим, эти соотношения идентичны соотношениям частот при движущемся источнике света (9). Следовательно, и вытекающее из него соотношение периодов излучения будет идентично соотношению (10), которое, при соответствующих подстановках, может быть преобразовано в выражение (13). Что касается соотношений длин волн (11), то их вывод из (17) некорректен, поскольку при неподвижном источнике излучения, длины волн не меняются - процесс распространения света в данной ситуации описывается уравнением . Иными словами, при неподвижном источнике света, перемещение наблюдателя в пространстве, как и в классическом варианте эффекта Допплера, никак не влияет на длины воспринимаемых этим наблюдателем волн.

Таким образом, введение коэффициента пропорциональности в уравнения Допплера можно рассматривать как некое административное решение, следствием которого является замена регистрируемых приёмником частот в ситуации (5-1) и в ситуации (5-2), одним выражением без какого-либо обоснования. Тогда требование (1) будет реализовано. Но это требование никак не связано с совмещением принципа относительности с принципом постоянства скорости света относительно обеих систем отсчета.

Второй комплект преобразований СТО

Этот комплект преобразований выводится из другой пары уравнений Допплера: уравнения

(18)

которое описывает процесс распространения света в направлении, противоположном направлению движения источника излучения, т. е. при удалении последнего от неподвижного приёмника, и уравнения

(19)

которое описывает процесс распространение света от неподвижного источника излучения с точки зрения удаляющегося приёмника. В терминах пространственных интервалов пакетов световых волн уравнение (18) принимает вид , а уравнение (19) - вид .

Если мы проделаем с этими уравнениями те же манипуляции, какие были проделаны с рассмотренной выше парой уравнений, не смотря на то, что частота в уравнении (18) не равна частоте в уравнении (19), то получим тот же коэффициент пропорциональности , но прямо противоположные (уравнениям первого комплекта) базовые соотношения частот

и периодов излучения

Из этих соотношений, принимая во внимание (12), нетрудно перейти к соотношениям пространственных и временных интервалов пакетов световых волн:

Последние уравнения, с учетом равенств , могут быть преобразованы в подобие соотношений пространственно-временных координат:

Как можно заметить, в свернутом виде эти уравнения являются антиподами уравнений первого комплекта, что и следовало ожидать, поскольку они моделируют прямо противоположные ситуации процесса распространения света. В обобщенном виде оба комплекта преобразованных уравнений Допплера сведены в таблице 1. Здесь черным цветом оконтурены те выражения, которые составляют суть официальной версии СТО, а синим цветом - те выражения, которые в этой теории считаются уравнениями так называемого релятивистского эффекта Допплера. Более подробно речь о них пойдет ниже.

Таблица 1. Два комплекта преобразованных уравнений Допплера

КОМПЛЕКТ № 1

сближение источника света и приёмника, или распространение света в направлении движения источника излучения

КОМПЛЕКТ № 2

расхождение источника света и приёмника, или распространение света в направлении, противоположном направлению движения источника излучения

в параметрах света

относительная скорость света

время прохождения светом движущегося пространственного интервала l

оптическая длина света

в пространственно-временных параметрах пакетов световых волн

или

или

средние параметры

;

Таким образом, мы установили, что преобразования СТО выведены из уравнений распространения света, в которых длины волн заменены виртуальными пространственными интервалами - пакетами световых волн, а периоды излучения - соответствующими временными пакетами. При этом официальная версия СТО построена на уравнениях распространения света в направлении движения источника излучения, поскольку развернутые варианты новых уравнений напоминают уравнения Галилея. А поскольку в данной ситуации длины волн и периоды их излучения на приёмнике сокращены относительно покоящейся системы координат, то и преобразования СТО отражают ту же тенденцию: . Но это никак не связано с преобразованиями Галилея.

У Эйнштейна же, в первой его работе [3], эти построения были основаны на представлениях об оптической длине света, что привело, естественно, к прямо противоположным соотношениям (3) и (4), поскольку время прохождения светом некоторого пространственного интервала в направлении его движения всегда больше времени течения этого процесса в обратном направлении. Но если оперировать средними величинами в двух подходах, то параметры и оказываются идентичными:

Следуя элементарной логике, СТО должна была бы строиться на всех уравнениях первого комплекта, поскольку именно этот комплект формул был выведен из уравнения , которое в преобразованном для пакета волн виде , напоминает уравнение Галилея . Иными словами, помимо уравнений пространственно-временных координат (15) и (16), эта теория должна была бы опираться на уравнение (9) , как выражение «темпа хода движущихся часов», и соответствующий этому уравнению параметр времени . Однако, вопреки здравому смыслу, Эйнштейн принимает очередное нелепое решение: он выбирает для этих параметров два несовместимых между собой выражения: и . Это противоречие проходит красной нитью через всю канву СТО и вынуждает Эйнштейна, а также и всех популяризаторов данной теории, прибегать к весьма изворотливым приемам интерпретации математически несовместимых формул. Причина «рождения» выражения элементарно проста - оно, в виде раскрытого, с точностью до величин второго порядка, выражения , потребовалось Эйнштейну для еще более нелепого положения СТО об уменьшении частоты источника излучения на вращающемся диске, в контексте так называемого принципа эквивалентности [4, Приложение III].

Эффект Допплера в релятивистской редакции

Надо сказать, что сам факт признания в СТО явления Допплера, пусть даже и в несколько иной математической интерпретации, является вопиющим отступлением от принципа относительности и принципа постоянства скорости света, согласно которым скорость распространения света в движущейся системе координат, относительно ее элементов, должна быть одинакова во всех направлениях и равна скорости света в покоящемся мировом пространстве. Следовательно, ни о каком частотном или волновом смещении света не может быть и речи. Но об этом противоречии сторонники СТО предпочитают помалкивать.


Подобные документы

  • Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.

    лекция [212,8 K], добавлен 28.06.2013

  • Различная запись преобразования Лоренца. Следствия преобразований. Парадоксы кинематики специальной теории относительности: одногодок (модифицированный парадокс близнецов), антиподов, "n близнецов", расстояний и пешеходов. Итоги теории относительности.

    реферат [230,7 K], добавлен 03.04.2012

  • Инерциальные системы отсчета. Классический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности Эйнштейна. Релятивистский закон изменения длин промежутков времени. Основной закон релятивистской динамики.

    реферат [286,2 K], добавлен 27.03.2012

  • Анализ основных научных и мировоззренческих идей физика-теоретика и крупного общественного деятеля Альберта Эйнштейна. Основополагающие принципы и постулаты специальной и общей теории относительности. Основы квантовой теории и релятивистской космологии.

    реферат [18,5 K], добавлен 14.12.2010

  • Принцип относительности Г. Галилея для механических явлений. Основные постулаты теории относительности А. Эйнштейна. Принципы относительности и инвариантности скорости света. Преобразования координат Лоренца. Основной закон релятивистской динамики.

    реферат [119,5 K], добавлен 01.11.2013

  • Положения теории относительности. Релятивистское сокращение длин и промежутков времени. Инертная масса тела. Причинно-следственные связи, пространственно-временной интервал между событиями. Единство пространства и времени. Эквивалентность массы и энергии.

    контрольная работа [25,0 K], добавлен 16.12.2011

  • Преобразования Галилея и Лоренца. Создание специальной теории относительности. Обоснование постулатов Эйнштейна и элементов релятивистской динамики. Принцип равенства гравитационной и инертной масс. Пространство-время ОТО и концепция эквивалентности.

    презентация [329,0 K], добавлен 27.02.2012

  • Возникновение теории относительности. Классическая, релятивистская, квантовая механика. Относительность одновременности событий, промежутков времени. Закон Ньютона в релятивистской форме. Связь между массой и энергией. Формула Эйнштейна, энергия покоя.

    курсовая работа [194,5 K], добавлен 04.01.2016

  • История появления новой релятивистской физики, положения которой изложены в работах А. Эйнштейна. Преобразования Лоренца и их сравнение с преобразованиями Галилея. Некоторые эффекты теории относительности. Основной закон и формулы релятивистской динамики.

    контрольная работа [90,2 K], добавлен 01.11.2013

  • Общая теория относительности с философской точки зрения. Анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Эксперимент с лифтом и эксперимент "Поезд Эйнштейна". Основные принципы Общей Теории Относительности (ОТО) Эйнштейна.

    реферат [42,9 K], добавлен 27.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.