Затухание ЭМВ при распространении в средах с конечной проводимостью

Уравнение для плоских волн. Связь характеристик распространения и параметры среды. Вычисление затухания в данной среде. Зависимость электрической компоненты поля от глубины проникновения. Затухание элекромагнитных волн в средах с конечной проводимостью.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 17.05.2010
Размер файла 94,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

19

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет

им. В.Н. Каразина

Радиофизический факультет

КУРСОВАЯ РАБОТА

ПО ЭЛЕКТРОДИНАМИКЕ

Затухание ЭМВ при распространении в средах с конечной проводимостью

Руководитель:

Колчигин Н.Н.

Студент группы РР-32

Бойко Ю.В.

Харьков 2004

Содержание

Введение

Основная часть

1. Вывод уравнений для плоских волн

2. Связь характеристик распространения с параметрами среды

3. Вычисление затухания в данной среде

Список использованной литературы

ЗАДАНИЕ

1.Изучить общие сведения и формулы.

2.Построить зависимость электрической компоненты поля от глубины проникновения.

3.Вычислить затухание на глубине Н=0,5 м, =10 м, в пресной воде (=80, =10-3 См/м)

Введение

Распространение электромагнитных волн широко рассматривается в литературе, но в ней большое внимание уделяется распространению волн в диспергирующих средах и законам геометрической оптики. В данной работе рассматривается связь характеристик распространения с параметрами среды и затухание элекромагнитных волн в средах с конечной проводимостью

Основная часть

1. Вывод уравнений для плоских волн

Рассмотрим электромагнитный волновой процесс, векторы и которого могут быть представлены в виде

=(,t), =(,t) (1.1)

Рис. 1.1. Направление распространения плоской волны

Здесь (рис. 1.1.) есть расстояние от начала координатной системы до плоскости

а

является постоянным единичным вектором. Так как производные по координатам будут равны

и т. д., то

(1.2)

(1.3)

Следовательно, для плоской волны уравнения Максвелла принимают вид

(1.4)

,

Последние два уравнения означают независимость проекций и на направление распространения от координаты , т. е. E =const и H=const в данный момент времени. Исследуем их поведение во времени. Для этого второе уравнение (1.4) умножим скалярно на :

Так как

то

и

или

, т.е. dH = 0, H = const.

Для исследования поведения E умножим скалярно первое из уравнений (1.4) на :

Так как

,

Получаем

Прибавим к этому равенству

Следовательно, при конечной компонента E экспоненциально убывает со временем, т. е. статическое электрическое поле не может поддерживаться внутри проводника.

Найдем уравнения для и отдельно. Для этого продифференцируем по t первое из уравнений (1.4)

Найдем из второго из уравнений (1.4), продифференцировав его по :

Получаем

Откуда

, так как

Отсюда следует

(1.6)

Аналогично

(1.7)

Эти уравнения можно решить методом разделения переменных, идем решение для комплексной амплитуды Е поля , Положив

E=f1()f2()

Получаем

(1.8)

Общее решение для f1 будет

Частное решение для f2 возьмем в виде

Таким образом, решением для будет выражение

Решая уравнение (1.7), получим аналогичное решение для

Подставив эти значения во второе из уравнений (1.4), получим

откуда

Так как в этом равенстве может принимать любые значения, коэффициенты при экспонентах должны равняться нулю:

Поэтому

(1.9)

Отсюда следует ()=0 (так как ([])=0), т. е. векторы и ортогональны к направлению и друг к другу.

2. Связь характеристик распространения с параметрами среды

Установим связь между р и k. Из (1.8) получим

(2.1)

Если задана периодичность в пространстве, т. е. k, то р можно найти из уравнения (2.1)

Тогда

где

Распространение возможно, если q действительно. Волновой процесс, в котором поверхности равных амплитуд и поверхности равных фаз являются плоскостями, называется плоской волной. Простейшим случаем плоской волны является плоская однородная волна. В плоской однородной волне плоскости равных амплитуд совпадают с плоскостями равных фаз. Фазовая скорость такой волны будет равна

Если

,

то q -- мнимое, и распространения нет: существует

пространственная периодичность по и монотонное затухание. Начальная форма волны не смещается вдоль оси , волновое явление вырождается в диффузию.

Частный случай временной зависимости р = i. Тогда

(2.2)

Таким образом, при волновое число k комплексно. Обозначим k=+i, где -- фазовая константа, -- коэффициент затухания. Тогда

(2.3)

Следовательно, при р=i имеет место волновой процесс с затуханием, если .

Исследуем фазовую скорость волны в среде с конечными и . Поскольку волновое число комплексно: k=+i, имеем

(2 считаем равным нулю).

В общем случае 1 также комплексно:

,

где , , , -- действительные числа. Отсюда получаем выражение фазовой скорости

Действительно, так как

представляет скорость, с которой движется плоскость постоянной фазы

=const

то

Откуда

Для определения степени затухания и фазовой скорости нужно вычислить и . Из уравнений (2.3) получаем

Введем обозначение

тогда

или

Здесь нужно оставить знак +, так как -- действительное число

(2.4)

Аналогично получим для

(2.5)

Отсюда находим фазовую скорость

(2.6)

Зависимость фазовой скорости от частоты сложная: если , , не зависят от частоты, то с увеличением фазовая скорость увеличивается, т. е. в сложной волне гармоники убегают вперед.

Рассмотрим зависимость поглощения , определяемого равенством (2.5), от электрических характеристик среды. Член представляет отношение , так как . Следовательно,

Но , поэтому при tg<<1

Ограничившись двумя членами разложения, получим

(2.7)

Следовательно, по поглощению волны можно определить tg:

при (единица длины) получаем

Измеряется в неперах

или в децибелах

где P -- мощность.

В случае малых tg зависимость от частоты пренебрежимо мала, так как

В случае tg>> 1 формулы (2.4), (2.5) можно упростить и привести к виду

Фазовая скорость

3. Вычисление затухания в данной среде

Электромагнитная волна =10м проникает в воду пресного водоема (=80, =10-3См/м) на глубину 0,5м.

, tg<<1

1/м

, на глубине 0,5 м

Список использованной литературы

1. Семенов А.А. Теория электромагнитных волн.-М.: Изд-во МГУ,1968.

2. Вайнштейн Л.А. Электромагнитные волны.-М.:Сов.Радио, 1957.

3. Баскаков С.И. Электродинамика и распространение волн.-М.: Высш.шк., 1992.

4. Бреховских Л.М. Волны в слоистых средах.-М.: Наука ,1973.

5. Тамм И.Е. Основы теории электричества.-М.: Наука, 1989.


Подобные документы

  • Аанализ характеристик распространения электромагнитного поля с векторными компонентами электрической и магнитной напряженности, как составляющих единого электродинамического поля в виде плоских волн в однородных изотропных материальных средах.

    реферат [121,1 K], добавлен 16.02.2008

  • Основные методы описания распространения электромагнитных волн в периодических средах с использованием волновых уравнений. Теории связанных волн, вывод уравнений. Выбор метода для описания генерации второй гармоники в периодически поляризованной среде.

    дипломная работа [1,1 M], добавлен 17.03.2014

  • Изучение уравнения электромагнитного поля в среде с дисперсией. Частотная дисперсия диэлектрической проницаемости. Соотношение Крамерса–Кронига. Особенности распространения волны в диэлектрике. Свойства энергии магнитного поля в диспергирующей среде.

    реферат [111,5 K], добавлен 20.08.2015

  • Параметры упругих гармонических волн. Уравнения плоской и сферической волн. Уравнение стоячей волны. Распространение волн в однородной изотропной среде и принцип суперпозиции. Интервалы между соседними пучностями. Скорость распространения звука.

    презентация [155,9 K], добавлен 18.04.2013

  • Преобразование исходной системы уравнений к расчётной форме. Зависимость длины волны от скорости распространения. Механизмы возникновения волн на свободной поверхности жидкости. Зависимость между групповой скоростью волн и скоростью их распространения.

    курсовая работа [451,6 K], добавлен 23.01.2009

  • Распространение волн в упругой среде. Уравнение плоской и сферической волны. Принцип суперпозиции, разложение Фурье и эффект Доплера. Наложение встречных плоских волн с одинаковой амплитудой. Зависимость длины волны от относительной скорости движения.

    презентация [2,5 M], добавлен 14.03.2016

  • Экспериментальные исследования распространения радиоволн в лесных средах. Частотная зависимость ослабления радиоволн лесом, зависимость их поглощения от расстояния. Теория боковых волн, их исследование в лесных покровах. Методика проведения измерений.

    дипломная работа [3,1 M], добавлен 02.01.2012

  • Исследование оптических характеристик интерференционных покрытий. Физика распространения электромагнитных волн оптического диапазона в диэлектриках. Интерференция электромагнитных волн в слоистых средах. Методики нанесения вакуумно-плазменных покрытий.

    дипломная работа [6,1 M], добавлен 27.06.2014

  • Базовые сведения о необычном эффекте туннельной интерференции полей волн произвольной физической природы, проявление которой необходимо при изучении и физико-математическом моделировании условий распространения указанных волн в поглощающих средах.

    реферат [43,6 K], добавлен 30.01.2008

  • Интерференция двух наклонных плоских монохроматических волн. Построение 3D-изображения дифракционных решеток в плоскости y-z. Определение значения параметров решеток в средах с показателями преломления n2 и n1 для каждого угла падения сигнальных волн.

    курсовая работа [1,0 M], добавлен 11.05.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.