Развитие единой энергосистемы России

История становления и развития российской электроэнергетики. Виды генерации и география энергетических ресурсов. Принципы функционирования, преимущества и перспективы развития Единой Энергетической Системы России. Анализ проблем электроэнергетики СНГ.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 18.03.2010
Размер файла 40,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1. Введение

2. Краткая история

3. История Российской электроэнергетики

4. Становление и развитие электроэнергетики

5. Основные виды генерации электроэнергетики

6. География энергетических ресурсов России

7. Единая энергетическая система России

8. Современное состояние электроэнергетики России и перспективы дальнейшего развития.

9. Электроэнергетика СНГ

Заключение

Список использованной литературы

1. Введение

Электроэнергетика -- отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии. Электроэнергетика является наиболее важной отраслью энергетики. Главное преимущество электроэнергии перед энергией других видов - это относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии: механическую, тепловую, химическую, световую и др.

Электроэнергетика обеспечивает полную электрификацию народного хозяйства страны. В экономически развитых странах технические средства электроэнергетики объединяются в автоматизированные и централизованно управляемые электроэнергетические системы.

Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, т. к. электрический ток распространяется по сетям со скоростью, близкой к скорости света.

Энергетика является основой развития производственных сил в любом государстве. Энергетика обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики.

Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно - хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Так же велико значение электроэнергии в сельском хозяйстве, транспортном комплексе и в быту.

Представить без электроэнергии нашу жизнь невозможно. Столь широкое распространение объясняется ее специфическими свойствами:

· возможность превращаться практически во все другие виды энергии (тепловую, механическую, звуковую, световую и другие) с наименьшими потерями;

· способность относительно просто передаваться на значительные расстояния в больших количествах;

· огромным скоростям протекания электромагнитных процессов;

· способность к дроблению энергии и образование ее параметров (изменение напряжения, частоты).

· невозможность и, соответственно, ненужностью ее складирования или накопления.

Основным потребителем электроэнергии остается промышленность, хотя ее удельный вес в общем полезном потреблении электроэнергии значительно снижается. Электрическая энергия в промышленности применяется для приведения в действие различных механизмов и непосредственно в технологических процессах. В настоящее время коэффициент электрификации силового привода в промышленности составляет 80%. При этом около 1/3 электроэнергии расходуется непосредственно на технологические нужды. Отрасли, зачастую не использующие электроэнергию напрямую для своих технологических процессов являются крупнейшими потребителями электроэнергии.

2. Краткая история

Электрическая энергия долгое время была лишь объектом экспериментов и не имела практического применения. Первые попытки полезного использования электричества были предприняты во второй половине XIX века, основными направлениями использования были недавно изобретённый телеграф, гальванотехника, военная техника.

Источниками электричества поначалу служили гальванические элементы. Существенным прорывом в массовом распространении электроэнергии стало изобретение электромашинных источников электрической энергии -- генераторов. По сравнению с гальваническими элементами, генераторы обладали большей мощностью и ресурсом полезного использования, были существенно дешевле и позволяли произвольно задавать параметры вырабатываемого тока. Именно с появлением генераторов стали появляться первые электрические станции и сети (до того источники энергии были непосредственно в местах её потребления). Электроэнергетика становилась отдельной отраслью промышленности.

Первой в истории линией электропередачи (в современном понимании) стала линия Лауфен -- Франкфурт, заработавшая в 1891 году. Протяжённость линии составляла 170км, напряжение 28,3 кВ, передаваемая мощность 220 кВт.

В то время электрическая энергия использовалась в основном для освещения в крупных городах. Электрические компании состояли в серьёзной конкуренции с газовыми. Электрическое освещение превосходило газовое по ряду технических параметров, но было в то время существенно дороже. С усовершенствованием электротехнического оборудования и увеличением КПД генераторов, стоимость электрической энергии снижалась, и, в конце концов, электрическое освещение полностью вытеснило газовое.

Попутно появлялись новые сферы применения электрической энергии: совершенствовались электрические подъёмники, насосы и электродвигатели. Важным этапом стало изобретение электрического трамвая. Трамвайные системы являлись крупными потребителями электрической энергии и стимулировали наращивание мощностей электрических станций. Во многих городах первые электрические станции строились вместе с трамвайными системами.

Начало XIX века было отмечено так называемой «войной токов» -- противостоянием промышленных производителей постоянного и переменного токов. Постоянный и переменный ток имели как достоинства, так и недостатки в использовании. Решающим фактором стала возможность передачи на большие расстояния -- передача переменного тока реализовывалась проще и дешевле, что обусловило его победу в этой «войне»: в настоящее время переменный ток используется почти повсеместно. Впрочем, в недалёком будущем вероятен «реванш» постоянного тока: на нём работают все современные вычислительные системы, электродвигатели и энергосберегающие галогенные лампы.

3. История Российской электроэнергетики

История российской, да и, пожалуй, мировой электроэнергетики, берет начало в 1891 году, когда выдающийся ученый Михаил Осипович Доливо - Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175км. Результирующий КПД линии электропередачи, равный 77,4%, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения, изобретенного самим ученым.

В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн. кВт, а годовая выработка электроэнергии равнялась 1,9 млрд. кВт/ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО. Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн. кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

В 1940 году суммарная мощность советских электростанций составила 10,7 млн. кВт, а годовая выработка электроэнергии превысила 50 млрд. кВт/ч, что в 25 раз превышало соответствующие показатели 1913 года. После перерыва, вызванного Великой Отечественной войной, электрификация СССР возобновилась, достигнув в 1950 году уровня выработки 90 млрд. кВт/ч.

В 50-е годы XX века, в ход были пущены такие электростанции, как Цимлянская, Гюмушская, Верхне-Свирская, Мингечаурская и другие. К середине 60-х годов, СССР занимал второе место в мире по выработке электроэнергии после США

4. Становление и развитие электроэнергетики

Становление электроэнергетики России связано с планом ГОЭЛРО (1920) сроком на 15 лет, который предусматривал строительство 10 ГЭС общей мощностью 640 тыс. кВт. План был выполнен с опережением: к концу 1935 года. Было построено 40 районных электростанций. Таким образом, план ГОЭЛРО создал базу индустриализации России, и она вышла на второе место по производству электроэнергии в мире.

В начале XX в. в структуре потребления энергоресурсов преобладающее место занимал уголь. Например, в развитых странах к 1950г. на долю угля приходилось 74%, а нефти - 17% в общем объеме энергопотребления. При этом основная доля энергоресурсов использовалась внутри стран, где они добывались.

Среднегодовые темпы роста энергопотребления в мире в первой половине XX в. составляли 2-3%, а в 1950-1975гг. - уже 5%.

Чтобы покрыть прирост энергопотребления во второй половине XX в. мировая структура потребления энергоресурсов претерпевает большие изменения. В 50-60-х гг. на смену углю все больше приходят нефть и газ. В период с 1952 по 1972гг. нефть была дешевой. Цена на нее на мировом рынке доходила до 14 долл./т. Во второй половине 70-х также начинается освоение крупных месторождений природного газа и его потребление постепенно наращивается, вытесняя уголь.

До начала 70-х годов рост потребления энергоресурсов был в основном экстенсивным. В развитых странах его темп фактически определялся темпом роста промышленного производства. Между тем, освоенные месторождения начинают истощаться, и начинает расти импорт энергоресурсов, в первую очередь - нефти.

В 1973г. разразился энергетический кризис. Мировая цена на нефть подскочила до 250-300 долл./т. Одной из причин кризиса стало сокращение ее добычи в легкодоступных местах и перемещение в районы с экстремальными природными условиями и на континентальный шельф. Другой причиной стало стремление основных стран - экспортеров нефти (членов ОПЕК), которыми в основном являются развивающиеся страны, более эффективно использовать свои преимущества владельцев основной части мировых запасов этого ценного сырья.

В этот период ведущие страны мира были вынуждены пересмотреть свои концепции развития энергетики. В результате, прогнозы роста энергопотребления стали более умеренными. Значительное место в программах развития энергетики стало отводиться энергосбережению. Если до энергетического кризиса 70-х энергопотребление в мире прогнозировалось к 2000г. на уровне 20-25 млрд. т условного топлива, то после него прогнозы были скорректированы в сторону заметного уменьшения до 12,4 млрд. т условного топлива.

Промышленно развитые страны принимают серьезнейшие меры по обеспечению экономии потребления первичных энергоресурсов. Энергосбережение все больше занимает одно из центральных мест в их национальных экономических концепциях. Происходит перестройка отраслевой структуры национальных экономик. Преимущество отдается мало энергоемким отраслям и технологиям. Происходит свертывание энергоемких производств. Активно развиваются энергосберегающие технологии, в первую очередь, в энергоемких отраслях: металлургии, металлообрабатывающей промышленности, транспорте. Реализуются масштабные научно-технические программы по поиску и разработке альтернативных энергетических технологий.

В этот же период идет бурное развитие атомной энергетики. В 70-е годы и за первую половину 80-х годов в мире было пущено в эксплуатацию около 65% ныне действующих АЭС.

В этот период в политический и экономический обиход вводится понятие энергетической безопасности государства. Энергетические стратегии развитых стран нацеливаются не только на сокращение потребления конкретных энергоносителей (угля или нефти), но и в целом на сокращение потребления любых энергоресурсов и диверсификацию их источников.

В результате всех этих мер в развитых странах заметно снизился среднегодовой темп прироста потребления первичных энергоресурсов: с 1,8% в 80-е гг. до 1,45% в 1991-2000 гг. По прогнозу до 2015г. он не превысит 1,25%.

Во второй половине 80-х появился еще один фактор, оказывающий сегодня все большее влияние на структуру и тенденции развития ТЭК. Ученые и политики всего мира активно заговорили о последствиях воздействия на природу техногенной деятельности человека, в частности, влиянии на окружающую среду объектов ТЭК. Ужесточение международных требований по охране окружающей среды с целью снижения парникового эффекта и выбросов в атмосферу (по решению конференции в Киото в 1997г.) должно привести к снижению потребления угля и нефти как наиболее влияющих на экологию энергоресурсов, а также стимулировать совершенствование существующих и создание новых энергетических технологий.

5. Основные виды генерации электроэнергетики

Процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями называется генерацией электроэнергии.

В настоящее время существуют следующие виды генерации:

1) Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:

- Конденсационные (КЭС, также используется старая аббревиатура ГРЭС);

- Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы, но принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

2) Ядерная энергетика. К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, т. к., в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделятся не при сжигании топлива, а при делении атомных ядер в ядерном реакторе. Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились.

3) Гидроэнергетика. К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности, так называемый верхний и нижний бьеф. Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, т. к. они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы;

4) Альтернативная энергетика. К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:

· Ветроэнергетика -- использование кинетической энергии ветра для получения электроэнергии;

· Гелиоэнергетика -- получение электрической энергии из энергии солнечных лучей;

Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;

5) Геотермальная энергетика -- использование естественного тепла Земли для выработки электрической энергии. По сути, геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, т. е., там, где естественные источники тепла наиболее доступны;

6) Водородная энергетика -- использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах;

7) Стоит также отметить: приливную и волновую энергетику. В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. Распространению этих видов электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы (и волнение моря соответственно) были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды Чёрном море в прилив и отлив минимальны.

6. География энергетических ресурсов России

Энергетические ресурсы на территории России расположены крайне неравномерно. Основные их запасы сконцентрированы в Сибири и на Дальнем Востоке (около 93% угля, 60% природного газа, 80% гидроэнергоресурсов), а большая часть потребителей электроэнергии - в европейской части страны. Рассмотрим данную картину более подробно по регионам.

Российская Федерация состоит из 11 экономических районов. Но в основном выделяют пять районов, в которых вырабатывается значительное количество электроэнергии. Это: Центральный, Поволжский, Урал, Западная Сибирь и Восточная Сибирь.

Центральный экономический район (ЦЭР) имеет довольно выгодное экономическое положение, но не обладает значительными ресурсами. Запасы топливных ресурсов крайне малы, хотя по их потреблению район занимает одно из первых мест в стране. Он расположен на пересечении сухопутных и водных дорог, которые способствуют возникновению и укреплению межрайонных связей. Запасы топлива представлены Подмосковным буроугольным бассейном. Условия добычи в нем неблагоприятны, а уголь - невысокого качества. Но с изменением энерго- и транспортных тарифов его роль повысилась, так как привозной уголь стал слишком дорогим. Район обладает достаточно большими, но значительно выработанными ресурсами торфа. Запасы гидроэнергии невелики, созданы системы водохранилищ на Оке, Волге и других реках. Также разведаны запасы нефти, но до добычи еще далеко. Можно сказать, что энергетические ресурсы ЦЭР имеют местное значение, и электроэнергетика не является отраслью его рыночной специализации.

В структуру электроэнергетики Центрального экономического района входят следующие крупные тепловые электростанции:

1) Конаковская и Костромская ГРЭС, имеющие мощность по 3,6 млн. кВт, работают, в основном, на мазуте,

2) Рязанская ГРЭС (2,8 млн. кВт) работает на угле.

3) Также Новомосковская, Черепетская, Щекинская, Ярославская, Каширская, Шатурская тепловые электростанции и ТЭЦ Москвы.

ГЭС Центрального экономического района невелики и немногочисленны. В районе Рыбинского водохранилища построена Рыбинская ГЭС на Волге, а также Угличская и Иваньковская ГЭС. Гидроаккумулирующая электростанция построена около Сергиева Посада.

В районе есть две крупные атомные электростанции: Смоленская (3 млн. кВт) и Калининская (2 млн. кВт), а также Обнинская АЭС.

Все названные электростанции входят в объединенную энергосистему, которая не удовлетворяет потребности района в электроэнергии. К Центру сейчас подключены энергосистемы Поволжья, Урала, Юга.

Электростанции в районе распределены достаточно равномерно, хотя большинство сконцентрировано в центре региона. В перспективе электроэнергетика ЦЭР будет развиваться за счет расширения действующих тепловых электростанций и атомной энергетики.

Поволжский экономический район специализируется на нефтяной и нефтеперерабатывающей, химической, газовой, обрабатывающей промышленности, производстве строительных материалов и электроэнергетике. В структуре хозяйства выделяется межотраслевой машиностроительный комплекс.

Важнейшими полезными ископаемыми района являются нефть и газ. Крупные месторождения нефти находятся в Татарстане (Ромашкинское, Первомайское, Елабужское и др.), в Самарской (Мухановское), Саратовской и Волгоградской областях. Ресурсы природного газа обнаружены в Астраханской области (формируется газопромышленный комплекс), в Саратовской (Курдюмо-Елшанское и Степановское месторождения) и Волгоградской (Жирновское, Коробовское и др. месторождения) областях.

В структуре электроэнергетики выделяются крупная Заинская ГРЭС (2,4 млн. кВт), расположенная на севере района и работающая на мазуте и угле, а также ряд крупных ТЭЦ. Отдельные более мелкие тепловые электростанции обслуживают населенные пункты и промышленность в них. В районе построено две атомных электростанции: Балаковская (3млн. кВт) и Димитровградская АЭС. На Волге построены Самарская ГЭС (2,3 млн. кВт), Саратовская ГЭС (1,3 млн. кВт), Волгоградская ГЭС (2,5 млн. кВт). На Каме сооружена Нижнекамская ГЭС (1,1 млн. кВт) в районе города Набережные Челны. Гидроэлектростанции работают в объединенной системе.

Энергетика Поволжья имеет межрайонное значение. Электроэнергия передается на Урал, в Донбасс и Центр. Особенностью Поволжского экономического района является то, что большая часть промышленности сосредоточена по берегам Волги, важной транспортной артерии. И этим объясняется концентрация электростанций у рек Волги и Камы.

Урал - один из самых мощных индустриальных комплексов в стране. Отраслями рыночной специализации района являются черная металлургия, цветная металлургия, обрабатывающая, лесная промышленность и машиностроение.

Топливные ресурсы Урала очень разнообразны: уголь, нефть, природный газ, горючие сланцы, торф. Нефть, в основном, сосредоточена в Башкортостане, Удмуртии, Пермской и Оренбургской областях. Природный газ добывается в крупнейшем в европейской части России оренбургском газоконденсатном месторождении. Запасы угля невелики.

В Уральском экономическом районе в структуре электроэнергетики преобладают тепловые электростанции. В регионе три крупных ГРЭС: Рефтинская (3,8 млн. кВт), Троицкая (2,4 млн. кВт) работают на угле, Ириклинская (2,4 млн. кВт) - на мазуте. Отдельные города обслуживают Пермская, Магнитогорская, Оренбургская тепловые электростанции, Яйвинская, Южноуральская и Кармановская ТЭС. Гидроэлектростанции построены на реке Уфе (Павловская ГЭС) и Каме (Камская и Воткинская ГЭС). На Урале есть атомная электростанция - Белоярская АЭС (0,6 млн. кВт) около города Екатеринбурга. Наибольшая концентрация электростанций - в центре экономического района.

Западная Сибирь относится к районам с высокой обеспеченностью природными ресурсами при дефиците трудовых ресурсов. Она расположена на перекрестке железнодорожных магистралей и великих сибирских рек в непосредственной близости от индустриально развитого Урала.

В регионе к отраслям специализации относятся топливная, добывающая, химическая промышленность, электроэнергетика и производство строительных материалов.

В Западной Сибири ведущая роль принадлежит тепловым электростанциям. Сургутская ГРЭС (3,1 млн. кВт) расположена в центре региона. Основная же часть электростанций сосредоточена на юге: в Кузбассе и прилегающих к нему районам. Там расположены электростанции, обслуживающие Томск, Бийск, Кемерово, Новосибирск, а также Омск, Тобольск и Тюмень. Гидроэлектростанция построена на Оби около Новосибирска. Атомных электростанций в районе нет.

На территории Тюменской и Томской областей формируется крупнейший в России программно-целевой ТПК на основе уникальных запасов нефти и природного газа в северной и средней частях Западно-Сибирской равнины и значительных лесных ресурсов.

Восточная Сибирь отличается исключительным богатством и разнообразием природных ресурсов. Здесь сосредоточены огромные запасы угля и гидроэнергетических ресурсов. Наиболее изученными и освоенными являются Канско-Ачинский, Иркутский и Минусинский угольный бассейны. Есть менее изученные месторождения (на территории Тывы, Тунгусский угольный бассейн). Есть запасы нефти. По богатствам гидроэнергетических ресурсов Восточная Сибирь занимает в России первое место. Высокая скорость течения Енисея и Ангары создает благоприятные условия для строительства электростанций.

К отраслям рыночной специализации Восточной Сибири относятся электроэнергетика, цветная металлургия, добывающая и топливная промышленность. Важнейшей областью рыночной специализации является электроэнергетика. Еще сравнительно недавно эта отрасль была развита слабо и тормозила развитие промышленности региона. За последние 30 лет на базе дешевых угольных и гидроэнергетических ресурсов была создана мощная электроэнергетика, и район занял ведущее место в стране по производству электроэнергии на душу населения.

На Енисее построены Усть-Хантайская ГЭС, Курейская ГЭС, Майнская ГЭС, Красноярская ГЭС (6 млн. кВт) и Саяно-Шушенская ГЭС (6,4 млн. кВт). Большое значение имеют гидравлические электростанции, сооруженные на Ангаре: Усть-Илимская ГЭС (4,3 млн. кВт), Братская ГЭС (4,5 млн. кВт) и Иркутская ГЭС (600 тыс. кВт). Строится Богучановская ГЭС. Также сооружены Мамаканская ГЭС на реке Витим и каскад Вилюйских гидроэлектростанций.

В районе построены мощные Назаровская ГРЭС (6 млн. кВт), работающая на угле; Березовская (проектная мощность - 6,4 млн. кВт), Читинская и Ирша-Бородинская ГРЭС; Норильская и Иркутская ТЭЦ. Также тепловые электростанции построены для обслуживания таких городов, как Красноярск, Ангарск, Улан-Удэ. Атомных электростанций в районе нет.

Электростанции входят в объединенную энергосистему Центральной Сибири. Электроэнергетика в Восточной Сибири создает особо благоприятные условия для развития в регионе энергоемких производств: металлургии легких металлов и ряда отраслей химической промышленности.

7. Единая энергетическая система России

Для более рационального, комплексного и экономичного использования общего потенциала России создана Единая энергетическая система (ЕЭС).

Единая Энергетическая Система России (ЕЭС России) -- совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике.

Полное определение Единой энергосистемы дает ГОСТ 21027-75.

Единая энергосистема -- это совокупность объединённых энергосистем (ОЭС), соединённых межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление.

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энерго - объединением. В настоящее время ЕЭС России включает в себя 77 энергосистем, работающих в составе шести работающих параллельно ОЭС - ОЭС Центра, Юга, Северо-запада, Средней Волги, Урала и Сибири и ОЭС Востока, работающей изолированно от ЕЭС России. Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии, энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге).

Энергосистемы Белоруссии, России, Эстонии Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 году Соглашения о параллельной работе энергосистем БРЭЛЛ.

Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

В ней работают свыше 700 крупных электростанций, имеющих общую мощность более 250 млн. кВт (84% мощности всех электростанций страны). Управление ЕЭС осуществляется из единого центра.

Единая энергетическая система имеет ряд очевидных экономических преимуществ. Мощные ЛЭП (линии электропередачи) существенно повышают надежность снабжения народного хозяйства электроэнергией. Они выравнивают годовые и суточные графики потребления электроэнергии, улучшают экономические показатели электростанций и создают условия для полной электрификации районов, где ощущается недостаток электроэнергии.

Т.е. ЕЭС позволяет:

· обеспечить снижение необходимой суммарной установленной мощности электростанций за счет совмещения максимумов нагрузки энергосистем, имеющих разницу поясного времени и отличия в графиках нагрузки;

· сократить требуемую резервную мощность на электростанциях;

· осуществить наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры;

· удешевить энергетическое строительство и улучшить экологическую ситуацию.

В состав ЕЭС бывшего СССР входили электростанции, которые распространяли свое влияние на территорию свыше 10 млн. км. кв. с населением около 220 млн. человек.

Объединенные энергетические системы (ОЭС) Центра, Поволжья, Урала, Северо-запада, Северного Кавказа входят в ЕЭС европейской части. Их объединяют высоковольтные магистрали: Самара - Москва (500кВт), Москва - Санкт-Петербург (750 кВт), Волгоград - Москва (500 кВт), Самара - Челябинск и др.

Здесь действуют многочисленные тепловые электростанции (КЭС и ТЭЦ) на угле (подмосковном, уральском и др.), сланцах, торфе, природном газе и мазуте, и атомные электростанции. ГЭС имеют большое значение, покрывая пиковые нагрузки крупных промышленных районов и узлов.

Россия экспортирует электроэнергию в Беларусь и на Украину, откуда она идет в страны Восточной Европы, и в Казахстан.

8. Современное состояние электроэнергетики России и перспективы дальнейшего развития

В настоящее время электроэнергетика России переживает состояние острого кризиса. Существуют крупные препятствия и нерешенные проблемы, не позволяющие форсировать процесс российских реформ. Это, прежде всего затянувшийся системный кризис экономики страны, вызвавший серьезные перебои в системе денежного обращения и финансировании отрасли.

В условиях практически полного прекращения бюджетного финансирования, в результате исключения инвестиционной составляющей из себестоимости энергии электроэнергетика потеряла значительную часть источников инвестиций. Итог неутешителен - затормозилось развитие отрасли. Новых мощностей за последние годы введено в среднем меньше, чем необходимого их объема с учетом морального и физического старения оборудования электростанций.

В настоящее время проблеме возобновления мощностей в экономическом развитии РАО «ЕЭС России» придается первостепенное значение. И в случае непринятия кардинальных мер возникнет дефицит мощностей на энергетическом рынке России. Промышленность будет усиленно развиваться, требуя дополнительной электроэнергии, а ее не будет.

Тепловая энергетика России располагает уникальной, потенциально эффективной структурой топлива, в которой 63% составляет природный газ, 28% - уголь и 9% - мазут. В ней заложены огромные возможности энергосбережения и охраны окружающей среды.

В тоже время эффективность топливоиспользования на ТЭС, работающих на газе, недостаточна. Она значительно уступает топливной экономичности современных парогазовых установок (ПГУ). Однако из-за трудностей с финансированием до настоящего времени не введен первый парогазовый блок ПГУ-450 на Северо-Западной ТЭЦ Ленэнерго.

Реальное повышение технического уровня отечественной теплоэнегергетики при эффективном использовании капиталовложений на эти цели, может быть достигнуто главным образом путем реконструкции с переводом действующих ТЭС на природный газ и строительства новых газовых ТЭС, как правило, с применением ПГУ. Парогазовая технология на базе современных газовых турбин позволяет на 20% снизить капиталовложения и на столько же повысить эффективность топливоиспользования, получить при этом существенный природоохранный эффект.

Тяжелое финансово-экономическое положение РАО «ЕЭС России» и его дочерних обществ обусловлено как общими проблемами российской экономики, так и рядом специфических факторов:

· проводится тяжелая тарифная политика, не обеспечивающая в каждом втором АО-энерго компенсацию затрат на производство и транспорт электрической и тепловой энергии;

· инвестиционная составляющая в тарифах недостаточна даже для простого воспроизводства основных производственных фондов;

· увеличивается задолженность потребителей, финансируемых из федерального и регионального бюджетов, что провоцирует кризис неплатежей, и проблемы с налоговыми органами по осуществлению налоговых зачетов;

· отсутствуют четкие механизмы стимулирования снижения производственных затрат в структурных подразделениях и дочерних обществах РАО «ЕЭС России».

Сохраняется отношение к РАО «ЕЭС России» как к министерству, а к АО-энерго - как к «службам», что не способствует развитию корпоративных отношений в электроэнергетике и коммерциализации энергетических компаний. Это приводит к снижению эффективности и конкурентоспособности энергетических компаний, отказу платежеспособных потребителей от услуг региональных энергетических компаний, сужению рынка сбыта (особенно тепловой энергии). В 1998 году вводы собственных тепловых мощностей у потребителей повышали вводы тепловых мощностей в РАО «ЕЭС России».

Нынешняя организационная структура электроэнергетики породила конфликт интересов в отношениях РАО «ЕЭС России» и АО-энерго, так как АО-энерго являются и покупателями услуг РАО «ЕЭС России» и дочерними или зависимыми акционерными обществами (ДЗО).

Кроме того, на региональном уровне отсутствует государственная вертикаль регулирования тарифов, позволяющая реализовывать какую-либо единообразную политику. В итоге тарифная политика оказалась слабо управляемой со стороны федерального центра и в большей степени зависимой от позиции региональных властей.

В последние годы в электроэнергетике России неуклонно обостряется проблема физического и морального старения оборудования электростанций и электрических сетей. Нарастают мощности энергооборудования ТЭС и ГЭС, отработавшие свой парковый ресурс.

Низкие темпы реновации во многом обусловлены дефицитом финансовых ресурсов, как из-за неплатежей потребителей энергии, так и вследствие недостаточности источников финансирования этих работ (амортизационных отчислений).

Старение оборудования - одна из главных причин ухудшения технико-экономических и экологических показателей электростанций. В результате организации РАО «ЕЭС России» ежегодно недополучает более 4 млрд. руб. прибыли. Требуется принятие незамедлительных мер по обеспечению надлежащего технического состояния генерирующего оборудования электростанций РАО «ЕЭС России». Износ оборудования на 01.01.99г. по РАО «ЕЭС России» составил уже 52%, соответственно на сегодняшний день износ оборудования увеличился.

Сохранение тенденции снижения располагаемой мощности электрических станций даже в краткосрочной перспективе может привести к невозможности удовлетворения растущего спроса на электроэнергию. Низкая рентабельность и неплатежи, отсутствие государственной поддержки развития электроэнергетики привели к снижению за последние годы объема инвестиций в электроэнергетику в 6 раз.

Совмещение естественно монопольных и не являющихся таковыми видов деятельности в рамках одной компании не способствует достижению прозрачности финансово-хозяйственной деятельности и не позволяет вывести из-под государственного тарифного регулирования потенциально конкурентные виды деятельности. Все это приводит к снижению надежности, безопасности и эффективности энергоснабжения. Нарастает угроза ограничений по удовлетворению будущего спроса на электрическую и тепловую энергию уже в ближайшие годы.

Атомная промышленность и энергетика рассматривается как важнейшая часть энергетики страны. Поскольку атомная энергетика обладает необходимыми качествами для постепенного замещения значительной части традиционной энергетики на ископаемом органическом топливе, а также имеет развитую производственно-строительную базу и достаточные мощности по производству ядерного топлива. При этом основное внимание уделяется обеспечению ядерной безопасности и, прежде всего безопасности АЭС в ходе их эксплуатации. Кроме того, требуется принятие мер по заинтересованности в развитии отрасли общественности, особенно населения, проживающего вблизи АЭС.

Для обеспечения запланированных темпов развития атомной энергетики, сохранения и развития экспортного потенциала уже в настоящее время требуется усиление геологоразведочных работ, направленных на подготовку резервной сырьевой базы природного урана.

Максимальный вариант роста производства электроэнергии на АЭС соответствует как требованиям благоприятного развития экономики, так и прогнозируемой экономически оптимальной структуре производства электроэнергии с учетом географии ее потребления. При этом экономически приоритетной зоной размещения АЭС являются европейские и дальневосточные регионы страны, а также северные районы с дальнепривозным топливом. Меньшие уровни производства энергии на АЭС могут возникнуть при возражениях общественности против указанных масштабов развития АЭС, что потребует соответствующего увеличения добычи угля и мощности угольных электростанций, в том числе в регионах, где АЭС имеют экономический приоритет.

Основные задачи - строительство новых АЭС и продление назначенного срока службы действующих энергоблоков до 40-50 лет их эксплуатации с целью максимального высвобождения газа и нефти; экономия средств за счет использования конструктивных и эксплуатационных резервов.

Но основой электроэнергетики России все-таки останутся тепловые электростанции. Они обеспечат выработку, соответственно, 69% и 67-71% всей электроэнергии в стране.

Учитывая сложную ситуацию в топливодобывающих отраслях и ожидаемый высокий рост выработки электроэнергии на тепловых электростанциях, обеспечение электростанций топливом становится в предстоящий период одной из сложнейших проблем в энергетике, т.к. суммарная потребность для электростанций России в органическом топливе постоянно растет.

Поэтому возникает необходимость радикального изменения условий топливообеспечения тепловых электростанций в европейских районах страны и ужесточения экологических требований, что приведет к существенным изменениям структуры мощности ТЭС по типам электростанций и видам используемого топлива в этих районах. Основным направлением должно стать техническое перевооружение и реконструкция существующих, а также сооружение новых тепловых электростанций. При этом приоритет будет отдан парогазовым и экологически чистым угольным электростанциям, конкурентоспособным на большей части территории России и обеспечивающим повышение эффективности производства энергии. Переход от паротурбинных к парогазовым ТЭС на газе, а позже - и на угле обеспечит постепенное повышение КПД установок до 55 %, а в перспективе до 60 % что позволит существенно снизить прирост потребности ТЭС в топливе.

Для развития Единой энергосистемы России предусматривается:

· создание сильной электрической связи между восточной и европейской частями ЕЭС России путем сооружения линий электропередачи напряжением 500 и 1150 кВ, проходящих по территории России. Роль этих связей особенно велика в условиях необходимости переориентации европейских районов на использование угля, позволяя заметно сократить завоз восточных углей для ТЭС;

· усиление межсистемных связей транзита между ОЭС (объединенной энергетической системой) Средней Волги - ОЭС Центра - ОЭС Северного Кавказа, позволяющего повысить надежность энергоснабжения региона Северного Кавказа, а также ОЭС Урала - ОЭС Средней Волги - ОЭС Центра и ОЭС Урала - ОЭС Северо-запада для выдачи избыточной мощности ГРЭС Тюмени;

· усиление системообразующих связей между ОЭС Северо-запада и Центра;

· развитие электрической связи между ОЭС Сибири и ОЭС Востока, позволяющей обеспечить параллельную работу всех энергообъединений страны и гарантировать надежное энергоснабжение дефицитных районов Дальнего Востока.

Нетрадиционные возобновляемые энергоресурсы (биомасса, солнечная, ветровая, геотермальная энергия и т.д.) потенциально способны с избытком обеспечить внутренний спрос страны. Однако экономически оправданное применение нетрадиционных технологий использования возобновляемых энергоресурсов ещё будет составлять единицы процентов от общего расхода энергоресурсов.

Намечаемые уровни развития и технического перевооружения отраслей энергетического сектора страны невозможны без соответствующего роста производства в отраслях энергетического (атомного, электротехнического, нефтегазового, нефтехимического, горношахтного и др.) машиностроения, металлургии и химической промышленности России, а также строительного комплекса. Их необходимое развитие - задача всей экономической политики государства.

9. Электроэнергетика СНГ

Электроэнергетика государств участников СНГ сформировалась в период образования новых государств Содружества. В настоящее время десять из двенадцати энергосистем стран СНГ работают параллельно (кроме энергосистем Армении и Туркменистана). Динамика увеличения их электропотребления говорит о выходе экономики из затяжного экономического кризиса.

Одной из основных проблем в электроэнергетике стран СНГ остается необходимость обновления ее основных фондов. Реформы в этих государствах в первую очередь направлены на создание эффективных электроэнергетических рынков с масштабным привлечением инвестиций. В последние годы их общий уровень составил несколько миллиардов долларов США. Основные направления инвестирования:

- строительство и техническое перевооружение электростанций стран СНГ,

- создание резерва мощности на базе гидротехнических комплексов государств Центральной Азии,

- совершенствование и развитие электрических сетей для межгосударственного транспорта электроэнергии в СНГ и ее экспорта в сопредельные страны,

- совершенствование систем технологического оперативно-диспетчерского управления режимами параллельной работы ОЭС СНГ,

- поддержка проектов энергосбережения как одного из стратегических направлений повышения эффективности электроэнергетики стран СНГ.

Формированием рынка энергоресурсов Содружества занимается ряд межправительственных структур, в том числе Электроэнергетический Совет СНГ. Сейчас этот Совет работает над формированием общего электроэнергетического рынка государств-участников СНГ. Повысить его эффективность планируется на основе интеграции с электроэнергетическими рынками Европейского Союза и других стран Евразийского континента.

Заключение

РАО "ЕЭС России" как лидеру в отрасли среди бывших республик СССР удалось синхронизировать энергосистемы 14 стран СНГ и Балтии, в том числе и пяти государств - членов ЕврАзЭС. Тем самым вышел на финишную прямую формирования единого рынка электроэнергии.

Взаимные выгоды, получаемые нашими странами от параллельной работы энергосистем, очевидны. Повысилась надежность энергоснабжения потребителей, снизилось количество резервных мощностей, необходимых каждой из стран на случай сбоев в энергетике. Наконец, созданы условия для взаимовыгодного экспорта и импорта электроэнергии. Так, РАО "ЕЭС России" уже осуществляет импорт дешевой таджикской и киргизской электроэнергии через Казахстан. Эти поставки крайне важны для энергодефицитных регионов Сибири и Урала, они позволяют также "разбавить" Федеральный оптовый рынок электроэнергии, сдерживая рост тарифов внутри России.

С другой стороны, РАО "ЕЭС России" параллельно экспортирует электроэнергию в те страны, где тарифы в несколько раз выше среднероссийских, например, в Грузию, Белоруссию, Финляндию. Синхронизация энергосистем России и Евросоюза, открывает огромные перспективы экспорта электроэнергии из стран - членов ЕврАзЭС в Европу, это непосредственно отразится и на экономическом положении страны.

Список использованной литературы

1. Ежемесячный производственно - массовый журнал «Энергетик» 2001г. №1.

2. Морозова Т.Г. «Регионоведение», 1998г.

3. Родионова И.А., Бунакова Т.М. «Экономическая география»,1998г.

4. «ТЭК - важнейшая структура российской экономики./Промышленность России», 1999г.

5. Яновский А.Б «Энергетическая стратегия России до 2020г.», 2001г.

6. ГОСТ 21027-75 «Системы энергетические. Термины и определения»

7. «Менеджмент и маркетинг в электроэнергетике: учебное пособие для студентов ВУЗов» А.Ф. Дьяков, В.В. Жуков, Б.К. Максимов, В.В. Молодюк; под ред. А.Ф. Дьякова. , 2007г.

8. «Основы современной энергетики: учебник для вузов», под общей редакцией чл.-корр. РАН Е.В. Аметистова, 2008г.

9. «Современная электроэнергетика», под ред. профессоров А.П. Бурмана и В.А. Строева.


Подобные документы

  • Значение электроэнергетики в экономике Российской Федерации, ее предмет и направления развития, основные проблемы и перспективы. Общая характеристика самых крупных тепловых и атомных, гидравлических электростанций, единой энергосистемы стран СНГ.

    контрольная работа [24,3 K], добавлен 01.03.2011

  • Становление и развитие электроэнергетики. География энергетических ресурсов России. Единая энергетическая система России. Современное состояние электроэнергетики России и перспективы дальнейшего развития. Электроэнергетика СНГ.

    реферат [28,2 K], добавлен 23.11.2006

  • История, проблемы и перспективы астраханской энергосистемы. Стратегия развития электроэнергетики Поволжского экономического района. Государственная политика в области энергетики. Программа развития электроэнергетики Астраханской области на 2011-2015гг.

    реферат [166,8 K], добавлен 13.08.2013

  • Индикаторы для оценки функционирования и основные принципы устойчивого развития в сфере электроэнергетики и использования альтернативных источников энергии. Характеристика развития электроэнергетики в Швеции и Литве, экосертификация электроэнергии.

    практическая работа [104,2 K], добавлен 07.02.2013

  • Анализ мировых аспектов развития солнечной электроэнергетики. Изучение опыта развитых стран в сфере решения технических и экономических проблем эксплуатации солнечных электрических станций различных видов. Оценка положения дел в энергосистеме Казахстана.

    дипломная работа [1,7 M], добавлен 07.07.2015

  • Особенности функционирования, цели и задачи развития энергосистемы Забайкальского края. Попытки электрификации Читы в дореволюционный период. Энергетика Забайкалья в первые годы Советской власти: Черновская, Холбонская, Букачачинская электростанции.

    реферат [45,1 K], добавлен 13.12.2013

  • Особенности развития нетрадиционной электроэнергетики. Технический потенциал ветроэнергетики, волновых энергетических установок, солнечной и геотермальной энергетики, производства биодизеля из рапса, малой гидроэнергетики, морских электростанций России.

    реферат [86,4 K], добавлен 28.04.2013

  • История и перспективы развития атомной электроэнергетики. Основные типы атомных электростанций (АЭС), анализ их преимуществ и недостатков, а также особенности выбора для них реактора. Характеристика атомного комплекса РФ и действующих АЭС в частности.

    курсовая работа [701,2 K], добавлен 02.11.2009

  • Структура и задачи промышленного комплекса в условиях рыночной конкуренции. Анализ объемов производства и потребления электроэнергии в мире. Проблемы и перспективы развития энергетики в России. Реализация проектов в области солнечно-дизельной генерации.

    курсовая работа [52,8 K], добавлен 22.11.2019

  • Характеристика структуры Единой энергетической системы России. Связи с энергосистемами зарубежных стран. Оптимизация обеспечения надежности электроснабжения и качества электроэнергии. Совершенствование средств диспетчерского и автоматического управления.

    реферат [296,1 K], добавлен 09.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.