Реальные газы

Модель идеального газа. Термодинамические свойства реальных газов. Конденсация. Критические явления. Внутренняя энергия реального газа. Уравнение и изотермы Ван-дер-Ваальса. Фазовые переходы первого и второго рода. Закон соответственных состояний.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.09.2008
Размер файла 152,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

Содержание

Введение…………………………………………………………………..3

1. Термодинамические свойства реальных газов…………………….....4

1.1. Конденсация………………………………………………………….7

1.2. Критические явления……………………………………………..….8

2. Внутренняя энергия реального газа……………………………….....11

3. Уравнение Ван-дер-Ваальса…………………………………….……12

4. Изотермы Ван-дер-Ваальса…………………………………………..19

5. Фазовые переходы первого и второго рода………………………....20

6. Закон соответственных состояний…………………………………..24

Список используемой литературы……………………………………..27

Введение

Модель идеального газа, используемая в молекулярно-кинетической теории газов, позволяющая описывать поведение разрежённых реальных газов при достаточно высоких температурах и низких давлениях. При выводе уравнения состояния идеального газа размерами молекул и их взаимодействием друг с другом пренебрегают. Повышение давления приводит к уменьшению среднего расстояния между молекулами, поэтому необходимо учитывать объём молекул и взаимодействие между ними. При высоких давлениях и низких температурах указанная модель идеального газа непригодна.

При рассмотрении реальных газов - газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях ?10-9 м. и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

В ХХ в., по мере развития и представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. Силы отталкивания считаются положительными, а силы взаимного притяжения - отрицательными.

1. Термодинамические свойства реальных газов

Как известно, уравнение состояния устанавливает функциональную связь между давлением p, объемом V, температурой T и числом молей n газа в состоянии равновесия. Эта связь может выражаться не только в форме уравнения, но также графически или в виде таблиц, которые часто используются, особенно для практических целей. Самым простым и известным уравнением состояния является уравнение состояния идеального газа:

pV = nRT (1.1)

где R - универсальная газовая постоянная.

Реальные газы описываются уравнением состояния идеального газа только приближенно, и отклонения от идеального поведения становятся заметными при высоких давлениях и низких температурах, особенно когда газ близок к конденсации.

Так, для газов с низкой температурой сжижения (He, H2, Ne и даже N2, O2, Ar, CO, CH4) при давлениях до 50 атм отклонения не превышают 5%, а при давлениях до 10 атм - 2%. Легко конденсирующиеся газы (CO2, SO2, Cl2, CH3Cl) уже при 1 атм обнаруживают отклонения до 2 - 3%.

Одной из наглядных характеристик отклонений реальных газов от идеального поведения оказывается мольный объем газа Vm = V/n. Для идеального газа он равен 22,414 л при 1 атм и 273 K. Значения Vm для некоторых реальных газов представлены в таблице 1.1.

Таблица 1.1. Мольные объемы газов при 1 атм и 273 K

Газ

Vm, л* моль-1

Газ

Vm, л* моль-1

H2

22,43

CO2

22,26

He

22,43

N2O

22,25

Ne

22,42

H2O

22,14

F2

22,42

NH3

22,08

N2

22,40

Cl2

22,02

CO

22,40

SO2

21,89

O2

22,39

C4H10

21,50

CH4

22,36

O3

21,60

Наиболее удобной мерой неидеальности является фактор сжимаемости Z = pVm/RT, поскольку для идеального газа Z = l при любых условиях.

Рис.1.1 Зависимость фактора сжимаемости некоторых газов от давления при 298 К.

На рис. 1.1 представлены факторы сжимаемости для некоторых реальных газов как функции давления при 298 К (для сравнения поведение идеального газа показано пунктиром). При высоких давлениях для всех газов Z > 1, т.е. их труднее сжать, чем идеальный газ, поскольку в этой области преобладают силы межмолекулярного отталкивания. Из рисунка видно, что при более низких давлениях для некоторых газов Z < 1, что объясняется преобладанием межмолекулярного притяжения. При p 0 эффект межмолекулярного притяжения исчезает, потому что расстояние между молекулами стремится к бесконечности, и для всех газов Z 1, т.е. в этих условиях все газы ведут себя почти идеально.

Рис1.2. Зависимость фактора сжимаемости N2 от давления при разных температурах.

На рис. 1.2 представлены факторы сжимаемости для азота при разных температурах. По мере уменьшения температуры эффект межмолекулярного притяжения увеличивается (что проявляется в образовании минимума на кривых в области давлений около 100 бар). Минимум на кривых обнаруживается для всех газов, если температура достаточно низка. У водорода и гелия, имеющих очень низкие температуры кипения, этот минимум наблюдается только при температурах значительно ниже 0° C.

Из приведенных данных видно, что при низких давлениях реальные газы могут быть более сжимаемыми (Z < 1), чем идеальный газ, а при высоких - менее (Z > 1). Очевидно, что основными причинами отклонений свойств реальных газов от свойств идеального газа оказываются взаимное притяжение молекул и наличие у них собственного объема. Наиболее ярко межмолекулярное притяжение в реальных газах проявляется в их способности к конденсации - переходу в жидкое состояние.

1.1. Конденсация

Рассмотрим, что происходит, когда образец газа в состоянии, отмеченном точкой А на рис. 1.3, сжимается при постоянной температуре.

Рис 1.3. Экспериментальные изотермы для СО2

Вблизи точки А давление возрастает приблизительно по закону Бойля. Заметные отклонения от закона Бойля начинают наблюдаться, когда объем становится соизмеримым со значением, указанным точкой В.

В точке С сходство с идеальным поведением полностью теряется, так как оказывается, что дальнейшее уменьшение объема не вызывает роста давления; это показано горизонтальной линией CDE. Исследование содержания сосуда показывает, что сразу за точкой С появляется жидкость, и можно наблюдать две фазы, разделенные резко обозначенной границей - поверхностью раздела. Поскольку при уменьшении объема газ конденсируется, он не оказывает сопротивления дальнейшему движению поршня. Давление, соответствующее линии CDE, когда жидкость и пар находятся в равновесии, называется давлением пара жидкости при температуре опыта.

В точке Е весь образец представляет собой жидкость, и дальнейшее уменьшение объема образца требует значительного давления, поскольку жидкости по сравнению с газами очень трудно сжимаются, что проявляется в резком подъеме кривой слева от точки Е.

1.2. Критические явления

Изотерма при температуре Tc играет особую роль в теории состояния вещества. Изотерма, соответствующая температуре ниже Tc, ведет себя так, как уже описано: при определенном давлении газ конденсируется в жидкость, которую можно различать по наличию поверхности раздела. Если же сжатие осуществлять при Tc, то поверхность, разделяющая две фазы, не появляется, а точка конденсации и точка полного перехода в жидкость сливаются в одну критическую точку газа. При температуре выше Tc газ невозможно обратить в жидкость никаким сжатием. Температура, давление и мольный объем в критической точке называются критической температурой Tc, критическим давлением pc и критическим мольным объемом Vc вещества. Собирательно параметры pc, Vc, и Tc называются критическими константами данного газа (таблица 1.2).

Таблица 1.2. Критические константы и температуры Бойля

Газ

Tc, K

Pc, бар

Vc, мл* моль-1

Zc

TB, K

TB/Tc

He

5,21

2,27

57,76

0,305

22,64

4,35

Ne

44,44

26,9

41,74

0,307

122,1

2,75

Ar

150,72

48,0

75,25

0,292

411,5

2,73

Kr

209,4

54,3

92,24

0,291

575,0

2,75

Xe

289,75

58,0

118,8

0,290

768,0

2,65

H2

33,3

13,0

65,0

0,306

110,0

3,30

N2

126,1

34,0

89,5

0,292

327,2

2,60

O2

154,4

50,5

73,4

0,292

405,9

2,63

CO2

304,2

73,8

94,0

0,274

714,8

2,35

CH4

190,7

46,0

99,0

0,287

510,0

2,67

C2H4

282,4

50,4

129,0

0,277

624

2,21

При T Tc образец представляет собой фазу, полностью занимающую объем содержащего ее сосуда, т. е. по определению является газом. Однако плотность этой фазы может быть значительно большей, чем это типично для газов, поэтому обычно предпочитают название "сверхкритический флюид" (supercritical fluid).

В критической точке изотермический коэффициент сжимаемости равен бесконечности, поскольку = 0. Поэтому вблизи критической точки сжимаемость вещества так велика, что ускорение силы тяжести приводит к значительным различиям плотности в верхней и нижней частях сосуда, достигающим 10% в столбике вещества высотой всего несколько сантиметров. Это затрудняет определение плотностей (удельных объемов) и, соответственно, изотерм p - V вблизи критической точки. В то же время критическую температуру можно определить весьма точно как такую температуру, при которой поверхность, разделяющая газообразную и жидкую фазы, исчезает при нагревании и вновь появляется при охлаждении. Зная критическую температуру, можно определить критическую плотность (и, соответственно, критический мольный объем), пользуясь эмпирическим правилом прямолинейного диаметра (правило Кальете-Матиаса), согласно которому средняя плотность жидкости и насыщенного пара является линейной функцией температуры:

, (1.2)

где A и B - постоянные для данного вещества величины. Экстраполируя прямую средней плотности до критической температуры, можно определить критическую плотность (см. задачу 1.7).

Высокая сжимаемость вещества вблизи критической точки приводит к росту спонтанных флуктуаций плотности, которые сопровождаются аномальным рассеянием света. Это явление называется критической опалесценцией.

2. Внутренняя энергия реального газа

Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул и из потенциальной энергии межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ.

рґ=а/V2

Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, или, иными словами, против внутреннего давления, как известно из механики, идёт на увеличение потенциальной энергии системы.

Т.е. dA=pґVm=dП, или dП=a/V2m*dVm, откуда П=-а/Vm.

Знак минус означает, что молекулярные силы, создающие внутреннее давление рґ, являются силами притяжения. Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа Um=CVT-a/Vm растёт с повышением температуры и увеличением объёма.

Если газ расширяется без теплообмена с окружающей средой и не совершает внешней работы, то на основании первого начала термодинамики получим, что U1=U2. Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется.

3.Уравнение Ван-дер-Ваальса

Предпринималось много попыток для учета отклонений свойств реальных газов от свойств идеального газа путем введения различных поправок в уравнение состояния идеального газа. Наибольшее распространение вследствие простоты и физической наглядности получило уравнение Ван-дер-Ваальса (1873).

Первая поправка в уравнении состояния идеального газа рассматривает собственный объем, занимаемый молекулами реального газа. В уравнении Дюпре (1864)

p (V - nb) = nRT (1.3)

постоянная b учитывает собственный мольный объем молекул.

При понижении температуры межмолекулярное взаимодействие в реальных газах приводит к конденсации (образование жидкости). Межмолекулярное притяжение эквивалентно существованию в газе некоторого внутреннего давления (иногда его называют статическим давлением). Изначально величина была учтена в общей форме в уравнении Гирна (1865)

(p + ) (V - nb) = nRT. (1.4)

Ван-дер-Ваальс в 1873 г. дал функциональную интерпретацию внутреннего давления. Согласно модели Ван-дер-Ваальса, силы притяжения между молекулами (силы Ван-дер-Ваальса) обратно пропорциональны шестой степени расстояния между ними, или второй степени объема, занимаемого газом. Считается также, что силы притяжения суммируются с внешним давлением. С учетом этих соображений уравнение состояния идеального газа преобразуется в уравнение Ван-дер-Ваальса:

(1.5)

или для одного моля

. (1.6)

Значения постоянных Ван-дер-Ваальса a и b, которые зависят от природы газа, но не зависят от температуры, приведены в таблице 1.3.

Таблица 1.3. Постоянные Ван-дер-Ваальса для различных газов

Газ

a, л2 *бар* моль-2

b,см3 * моль-1

Газ

a, л2 * бар* моль-2

b, см3 * моль-1

He

0,03457

23,70

NO

1,358

27,89

Ne

0,2135

17,09

NO2

5,354

44,24

Ar

1,363

32,19

H2O

5,536

30,49

Kr

2,349

39,78

H2S

4,490

42,87

Xe

4,250

51,05

NH3

4,225

37,07

H2

0,2476

26,61

SO2

6,803

56,36

N2

1,408

39,13

CH4

2,283

42,78

O2

1,378

31,83

C2H4

4,530

5,714

Cl2

6,579

56,22

C2H6

5,562

63,80

CO

1,505

39,85

C3H8

8,779

84,45

CO2

3,640

42,67

C6H6

18,24

115,4

Уравнение (1.6) можно переписать так, чтобы выразить в явном виде давление

(1.7)

или объем

(1.8)

Уравнение (1.8) содержит объем в третьей степени и, следовательно, имеет или три действительных корня, или один действительный и два мнимых. При высоких температурах уравнение (1.8) имеет один действительный корень, и по мере повышения температуры кривые, вычисленные по уравнению Ван-дер-Ваальса, приближаются к гиперболам, соответствующим уравнению состояния идеального газа.

Рис.1.4 Изотермы Ван-дер-Ваальса для СО2

На рис. 1.4 (стр. 7) приведены изотермы, вычисленные по уравнению Ван-дер-Ваальса для диоксида углерода (значения констант a и b взяты из табл. 1.3). Из рисунка видно, что при температурах ниже критической (31,04 °С) вместо горизонтальных прямых, соответствующих равновесию жидкости и пара, получаются волнообразные кривые 12345 с тремя действительными корнями, из которых только два, 1 и 5, физически осуществимы. Третий корень (точка 3) физически не реален, поскольку находится на участке кривой 234, противоречащем условию стабильности термодинамической системы . Состояния на участках 12 и 54, которые соответствуют переохлажденному пару и перегретой жидкости, соответственно, являются неустойчивыми (метастабильными) и могут быть лишь частично реализуемы в специальных условиях. Так, осторожно сжимая пар выше точки 1 (рис. 1.4), можно подняться по кривой 12. Для этого необходимо отсутствие в паре центров конденсации, и в первую очередь пыли. В этом случае пар оказывается в пересыщенном, т.е. переохлажденном состоянии. И наоборот, образованию капелек жидкости в таком паре способствуют, например, попадающие в него ионы. Это свойство пересыщенного пара используется в известной камере Вильсона (1912), применяемой для регистрации заряженных частиц. Движущаяся заряженная частица, попадая в камеру, содержащую пересыщенный пар, и соударяясь с молекулами, образует на своем пути ионы, создающие туманный след - трек, который фиксируется фотографически.

Согласно правилу Максвелла (the Maxwell construction), которое имеет теоретическое обоснование, для того, чтобы расчетная кривая соответствовала экспериментальной равновесной изотерме, нужно вместо кривой 12345 провести горизонтальную прямую 15 так, чтобы площади 1231 и 3453 были равны. Тогда ордината прямой 15 будет равна давлению насыщенного пара, а абсциссы точек 1 и 5 - мольным объемам пара и жидкости при данной температуре.

По мере повышения температуры все три корня сближаются, и при критической температуре Tc все три корня становятся равными. В критической точке изотерма Ван-дер-Ваальса имеет точку перегиба [] с горизонтальной касательной [], то есть

, (1.9)

. (1.10)

Совместное решение этих уравнений дает:

, (1.11)

, (1.12)

, (1.13)

что позволяет определять константы уравнения Ван-дер-Ваальса из критических параметров газа. Соответственно, согласно уравнению Ван-дер-Ваальса, критический фактор сжимаемости Zc для всех газов должен быть равен

(1.14)

Из таблицы 1.2 видно, что хотя значение Zc для реальных газов приблизительно постоянно (0,27 - 0,30 для неполярных молекул), оно все же заметно меньше вытекающего из уравнения Ван-дер-Ваальса. Для полярных молекул наблюдается еще большее расхождение.

Принципиальное значение уравнения Ван-дер-Ваальса определяется следующими обстоятельствами:

1) уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции f(p,V,T), описывающей свойства реальных газов;

2) уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния (см. ниже);

3) с помощью уравнения Ван-дер-Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван-дер-Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме (см. 1.1, 1.2).

Причиной недостаточной точности уравнения Ван-дер-Ваальс считал ассоциацию молекул в газовой фазе, которую не удается описать, учитывая зависимость параметров a и b от объема и температуры, без использования дополнительных постоянных. После 1873 г. сам Ван-дер-Ваальс предложил еще шесть вариантов своего уравнения, последнее из которых относится к 1911 г. и содержит пять эмпирических постоянных. Две модификации уравнения (1.5) предложил Клаузиус, и обе они связаны с усложнением вида постоянной b. Больцман получил три уравнения этого типа, изменяя выражения для постоянной a. Всего известно более сотни подобных уравнений, отличающихся числом эмпирических постоянных, степенью точности и областью применимости. Выяснилось, что ни одно из уравнений состояния, содержащих менее 5 индивидуальных постоянных, не оказалось достаточно точным для описания реальных газов в широком диапазоне p, V, T, и все эти уравнения оказались непригодными в области конденсации газов. Из простых уравнений с двумя индивидуальными параметрами неплохие результаты дают уравнения Дитеричи и Бертло (см. табл. 1.4).

4. Изотермы Ван-дер-Ваальса

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса - кривые зависимости p от Vm при заданных Т, - определяемые уравнением Ван-дер-Ваальса для моля газа. Эти кривые, полученные для четырёх различных температур имеют довольно своеобразный характер: при высоких температурах (Т>Тк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением её формы, оставаясь монотонно спадающей кривой; при некоторой температуре, на изотерме имеется лишь одна точка перегиба; при низких температурах (Т<Тк) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм реального газа преобразуем уравнение Ван-дер-Ваальса к виду: pV3m-(RT+pb)V2m+aVm-ab=0. Это уравнение при заданных р и Т Является уравнением третьей степени относительно Vm; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причём физический смысл имеют лишь вещественные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах, второму случаю - изотермы при высоких температурах.

5. Фазовые переходы первого и второго рода

Фазой называется термодинамически равновесное состояние вещества, отличающееся от других возможных равновесных состояний того же вещества. Если, например, в закрытом сосуде находится вода, то эта система является двухфазной: жидкая фаза - вода и газообразная фаза - смесь воздуха с водяными парами. Если в воду бросить кусочки льда, то эта система станет трёхфазной, в которой лёд является твёрдой фазой.

Часто понятие «фаза» употребляется в смысле агрегатного состояния, однако надо учитывать, что оно шире, чем «агрегатное состояние». В пределах одного агрегатного состояния вещество может находиться в нескольких фазах, отличающихся по своим веществам, составу и строению.

Переход вещества от одной фазы в другую - фазовый переход - всегда связан с качественными изменениями свойств вещества. Примером фазового перехода могут служить изменения агрегатного состояния вещества или переходы, связанные с изменениями в составе, строении и свойствах вещества (например, переход кристаллического вещества из одной модификации в другую).

Различают фазовые переходы двух родов. Фазовый переход первого рода (например, плавление, кристаллизация и т.д.) сопровождается поглощением или выделением вполне определённого количества теплоты, называемой теплотой фазового перехода.

Фазовые переходы первого рода характеризуются постоянством температуры, изменениями энтропии и объёма. Объяснение этому можно дать следующим образом. Например, при плавлении телу нужно сообщить некоторое количество теплоты, чтобы вызвать разрушение кристаллической решётки. Подводимая при плавлении теплота идёт не на нагрев тела, а на разрыв межатомных связей, поэтому плавление протекает при постоянной температуре. При подобных переходах - из более упорядоченного кристаллического состояния в менее упорядоченное жидкое состояние - степень беспорядка увеличивается и, с точки зрения второго начала термодинамики, этот процесс связан с возрастанием энтропии системы. Если переход происходит в обратном направлении (кристаллизация), то система теплоту выделяет. В качестве примера на рисунке 1 показана температурная зависимость свободной энергии F, приходящейся на одну молекулу кристалла, при его превращении в пар. Верхняя ветвь отвечает кристаллическому состоянию, а нижняя ветвь представляет свободную энергию парообразной фазы. При низких температурах свободная энергия кристалла меньше, чем пара, и, следовательно, кристаллическое состояние выгоднее. При высоких температурах, наоборот, выгоднее существование парообразного состояния. Штриховыми линиями показаны области метастабильных, термодинамически неустойчивых состояний системы.

Рис. 1. - Температурная зависимость свободной энергии F при фазовом переходе первого рода "пар-кристалл".

Поведение внутренней энергии системы, приходящейся на одну молекулу, изображено на рисунке 2. Нижняя ветвь относится к кристаллическому состоянию, а верхняя к парообразному. Скачок энергии в точке перехода представляет собой поглощаемую скрытую теплоту. Соответственно теплоемкость в точке фазового перехода первого рода имеет "всплеск".

Рис. 2. - Изменение энергии E в зависимости от температуры T при фазовом переходе первого рода "пар-кристалл".

При теоретическом описании фазовых переходов первого рода каждую из фаз обычно описывают отдельно. Так, кристаллическую ветвь рассматривают, пользуясь моделью идеального кристалла, т. е. предполагая регулярное расположение всех атомов. Парообразную же ветвь получают, используя модель идеального газа, предполагающую полный беспорядок в системе. Зависимости, полученные для различных моделей, накладывают друг на друга и исследуют, какая из возможностей реализуется в данных условиях. Получить описание фазового перехода первого рода, одновременно учитывая все состояния системы, до настоящего времени не удается из-за огромных математических трудностей.

Фазовые переходы, не связанные с поглощением или выделением теплоты и изменением объёма, называются фазовыми переходами второго рода. Эти переходы характеризуются постоянством объёма и энтропии, но скачкообразным изменением теплоёмкости. Общая трактовка фазовых переходов второго рода предложена советским учёным Л.Д.Ландау (1908-1968). Согласно этой трактовке, фазовые переходы второго рода связаны с изменением симметрии: выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода. Примерами фазовых переходов второго рода являются: переход ферромагнитных веществ (железа, никеля) при определённых давлении и температуре в парамагнитное состояние; переход металлов и некоторых сплавов при температуре, близкой к 0К, в сверхпроводящее состояние, характеризуемое скачкообразным уменьшением электрического сопротивления до нуля; превращение обыкновенного жидкого гелия при Т=2,9К в другую жидкую модификацию, обладающую свойствами сверхтекучести.

6. Закон соответственных состояний

Поскольку критические константы являются характеристическими свойствами газов, их можно использовать для создания соответствующей относительной шкалы, введя безразмерные приведенные переменные: приведенное давление pr, приведенный объем Vr и приведенную температуру Tr:

, . (1.22)

Соответственными называются состояния разных веществ, имеющие одинаковые значения приведенных переменных. Согласно закону соответственных состояний, если для рассматриваемых веществ значения двух приведенных переменных одинаковы, должны совпадать и значения третьей приведенной переменной. Таким образом, уравнения состояния различных веществ, записанные в приведенных переменных, должны совпадать. Это утверждение эквивалентно постулату о существовании общего универсального приведенного уравнения состояния

F(pr, Vr, Tr) = 0 (1.23)

Поскольку это приведенное уравнение не содержит в явном виде индивидуальных постоянных, оно должно быть применимо к любому веществу. Закон соответственных состояний является общим утверждением, не связанным с конкретным видом уравнения состояния. На практике закон соответственных состояний приближенно выполняется для однотипных веществ, что позволяет, например, использовать для реальных газов обобщенные диаграммы сжимаемости (рис. 1.6).

Рис.1.6. Зависимость фактора сжимаемости некоторых газов от приведенного давления при разных приведенных температурах.

Уравнение Ван-дер-Ваальса также согласуется с законом соответственных состояний. Подставляя в исходное уравнение (1.5) постоянные a, b и R, выраженные через критические параметры (уравнения (1.11) - (1.13)), и переходя к приведенным переменным, получим уравнение Ван-дер-Ваальса в приведенной форме: . (1.24)

Можно показать, что любое уравнение состояния, содержащее три параметра, можно представить в приведенной форме. В таблице 1.4 представлены наиболее известные уравнения состояния. Для тех из них, которые содержат три параметра, представлена также и приведенная форма. Отсутствие универсального уравнения F(pr, Vr, Tr) = 0 говорит не о неверности закона о соответственных состояниях, а о недостаточности двух индивидуальных постоянных и R в уравнении состояния.

В настоящее время понятно, почему в уравнениях состояния реальных газов двух индивидуальных параметров в общем случае не хватает, но в первом приближении этого достаточно. Причиной всех отклонений от уравнения состояния идеального газа являются межмолекулярные взаимодействия в газах. Зависимость потенциала межмолекулярного взаимодействия u от расстояния между частицами r достаточно точно описывается уравнениями, содержащими по меньшей мере четыре параметра - n, m, A и B:

. (1.25)

Статистический расчет показывает, что наличие индивидуальных постоянных в уравнении межмолекулярного взаимодействия всегда приводит к появлению индивидуальных постоянных и в уравнении состояния газов. Поэтому в области значений p, V и T, для которых в реальных газах вклад межмолекулярных взаимодействий достаточно велик, в уравнениях состояния появляются индивидуальные постоянные, зависящие от параметров уравнении межмолекулярного взаимодействия. Вместе с тем для молекул сфероидальной формы довольно хорошие результаты дает уравнение с n = 12 и m = 6. Поэтому в приближенных уравнениях состояния часто оказывается достаточно использовать две индивидуальные постоянные. Если же требуется описать поведение газа с более высокой точностью, необходимо использовать уравнения с бу льшим числом постоянных. Так, например, уравнение Битти - Бриджмена (см. табл. 1.4) содержит пять постоянных кроме R и считается одним из лучших эмпирических уравнений состояния. В течение некоторого времени оно применялось при составлении справочных таблиц реальных газов. В настоящее время для возможно более точного описания свойств газов используют эмпирическое уравнение Бенедикта - Вебба - Рубина ( - плотность газа):

Список используемой литературы

1. Савельев «Курс общей физики». Учебное пособие для ВТузов. Молекулярная физика. Первый том.

2. Кикоин «Молекулярная физика». Физмат. 1963г.

3. Т.И.Трофимова «Курс общей физики». Молекулярная физика. Лекции.

4. К.В.Глаголев «Физическая термодинамика». Том второй.

5. А.Н.Морозов. МГТУ им. Н.Б.Баумана. 2002г.


Подобные документы

  • Силы межмолекулярного взаимодействия в газах. Уравнение Ван-дер-Ваальса. Изотермы и внутренняя энергия реального газа. Эффект Джоуля-Томсона. Сжижение газов и получение низких температур. Виды межмолекулярных взаимодействий. Метастабильные состояния.

    реферат [660,6 K], добавлен 06.09.2011

  • Описание реальных газов в модели идеального газа. Особенности расположения молекул в газах. Описание идеального газа уравнением Клапейрона-Менделеева. Анализ уравнения Ван-дер-Ваальса. Строение твердых тел. Фазовые превращения. Диаграмма состояния.

    реферат [1,1 M], добавлен 21.03.2014

  • Уравнение состояния газа Ван-дер-Ваальса, его сущность и краткая характеристика. Влияние сил молекулярного притяжения на стенки сосуда. Уравнение Ван-дер-Ваальса для произвольного числа молей газа. Изотермы реального газа и правило фаз Максвелла.

    реферат [47,0 K], добавлен 13.12.2011

  • Уравнение Менделеева–Клапейрона - самое простое, надежное и известное уравнение состояния идеального газа. Межмолекулярное взаимодействие в реальных газах, приводящее к конденсации (образование жидкости). Среднее значение его потенциальной энергии.

    презентация [1,2 M], добавлен 13.02.2016

  • Фазами называют однородные различные части физико-химических систем. Фазовые переходы первого и второго рода. Идеальные и реальный газы. Молекулярно – кинетическая теория критических явлений. Характеристика сверхтекучести и сверхпроводимости элементов.

    реферат [32,3 K], добавлен 13.06.2008

  • Характеристика основных типов идеального газа. Описание изохорического, изобарического и изотермического процессов. Изучение первого и второго законов термодинамики. Принцип действия тепловых машин. Описание цикла Карно. Расчет сил Ван-дер-Ваальса.

    реферат [255,0 K], добавлен 25.10.2015

  • Отклонение газов от идеальности. Формула Ван-дер-Ваальса. Термодинамические величины классической плазмы. Критические явления при фазовых переходах. Фазовые переходы и метастабильные состояния. Кинетика фазовых переходов и проблема роста квазикристаллов.

    реферат [555,8 K], добавлен 07.02.2016

  • Закон сохранения энергии и первое начало термодинамики. Внешняя работа систем, в которых существенную роль играют тепловые процессы. Внутренняя энергия и теплоемкость идеального газа. Законы Бойля-Мариотта, Шарля и Гей-Люссака, уравнение Пуассона.

    презентация [0 b], добавлен 25.07.2015

  • Уравнение состояния идеального газа и уравнения реальных газов, Бенедикта-Вебба-Рубина, Редлиха-Квонга, Барнера-Адлера, Суги-Лю, Ли-Эрбара-Эдмистера. Безразмерные и критические температуры и давления, методика их расчета различными методами и анализ.

    дипломная работа [1,1 M], добавлен 02.08.2015

  • Отклонение свойств реального газа от идеального. Расчет свойств реальных газов. Процесс перехода твердого вещества непосредственно в пар. Испарение жидкости в ограниченном пространстве. Определение массы сухого пара во влажном и массы влажного пара.

    реферат [246,1 K], добавлен 24.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.