Способы изготовления свай

Сваи с извлекаемой оболочкой. Способы изготовления свай в грунте. Взаимодействие свай с окружающим грунтом. Несущая способность висячей сваи. Проектирование свайных фундаментов. Расчет несущей способности сваи-стойки при действии вертикальной нагрузки.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 16.09.2016
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Способы изготовления свай

Способы изготовления свай в грунте

Сваи, изготовляемые в грунте (набивные сваи). Их изготовляют из бетона, железобетона или цементно-песчаного раствора. Конструкция набивных свай, которые имеют, как правило, цилиндрическую форму, может предусматривать уширение нижнего конца, что значительно повышает их несущую способность.

По способу изготовления набивные сваи можно разделить на три основных типа: сваи без оболочки, сваи с оболочкой, извлекаемой из грунта, и сваи с неизвлекаемой оболочкой.

Сваи без оболочек применяют в связных сухих и маловлажных грунтах, где можно осуществлять бурение без крепления стенок скважин. Изготовление сваи производится в следующем порядке: в грунте буровой установкой пробуривается скважина и, если это предусмотрено проектом, специальной фрезой-уширителем разбуривается полость для устройства уширенной пяты сваи. В необходимых случаях в готовую скважину устанавливают арматурный каркас. Набивные сваи армируются на полную длину, на часть длины или только в верхней части для связи с ростверком. Затем скважина бетонируется методом вертикально перемещающейся трубы (ВПТ). Поданная в скважину бетонная смесь уплотняется с помощью вибратора, закрепленного на бетонолитной трубе, которая извлекается из скважины по мере бетонирования. После окончания бетонирования формируется голова сваи. По описанной технологии изготовляют сваи и буровые опоры диаметром 0,4.. .1,2 м длиной до 30 м. В водонасыщенных глинистых грунтах проходку скважин для устройства безоболочковых свай производят под защитой глинистого раствора, который, создавая избыточное давление в скважине, препятствует обрушению ее стенок. После выполнения буровых работ в забой скважины через бетонолитную трубу подается бетонная смесь, которая вытесняет раствор глины.

Набивную сваю, скважина под которую получена бурением, принято называть буронабивной сваей. Кроме бурения скважину можно также пробить в грунте инвентарным сердечником, трубой с закрытым нижним концом или вытрамбовать специальной трамбовкой. Такое способ формирования скважин приводит к значительному уплотнению грунта основания, что повышает несущую способность изготовленных свай, которые называют набивными сваями в уплотненном основании. Разновидностью буронабивных сваи являются и буроинъекционные сваи, которые устраивают путем заполнения вертикальных или наклонных скважин цементно-песчаным раствором под давлением, в результате чего получается очень неровная поверхность, обеспечивающая хорошее сцепление сваи с окружающим грунтом. Сваи имеют арматурный каркас, малый диаметр (80...250 мм) при большой длине (до 30 м) и неровную поверхность. Их используют для усиления фундаментов существующих зданий, создания свайных стен в грунте или в качестве анкеров при испытаниях свай вертикальной статической нагрузкой. Технологической особенностью таких свай при усилении фундаментов является то, что скважины бурят прямо сквозь старую кладку, в которую заделывают голову сваи на длину не менее 10 ее диаметров.

Сваи с извлекаемой оболочкой можно применять практически в любых геологических и гидрогеологических условиях, поскольку используемые для их изготовления инвентарные обсадные трубы защищают стенки пройденной скважины от обрушения.

Для изготовления такой сваи в грунт в процессе бурения скважины погружается обсадная труба. После ее погружения до проектной отметки в скважину порциями с интенсивным трамбованием подается бетонная смесь. По мере заполнения полости бетонной смесью обсадная труба извлекается. Образовавшаяся при трамбовании неровная боковая поверхность сваи способствует увеличению се несущей способности. Конструкция свай с извлекаемой оболочкой и технология их изготовления постоянно совершенствуются. В настоящее время широко применяются инвентарные обсадные трубы, нижний конец которых при погружении закрывается чугунным или железобетонным съемным башмаком, который при подъеме трубы остается в грунте, образуя острие сваи.

Сваи с неизвлекаемой оболочкой применяют, когда отсутствует возможность качественного изготовления свай с извлекаемой оболочкой. Такие условия создаются на площадках, сложенных водонасыщенными глинистыми грунтами текучей консистенции, с прослойками песков и супесей, где под напором подземных вод < ствол сваи на отдельных участках может быть разрушен во время твердения бетонной смеси. Сваи с неизвлекаемой оболочкой стоят дорого и используются в основном в гидротехническом и транспортном строительстве.

Взаимодействие свай с окружающим грунтом

Взаимодействие свай с окружающим грунтом носит сложный характер и зависит как от процессов, происходящих в грунте при устройстве свайных фундаментов, так и при их работе под действием эксплуатационных нагрузок. Эти процессы оказывают влияние на несущую способность и осадки свайного Фундамента, от их правильного учета во многом зависит, точность расчета и экономическая эффективность применения свай.

Процессы, происходящие в грунте при устройстве свайных фундаментов зависят от типа свай, грунтовых условий, технологии погружения и изготовления свай и т. п. Так, сплошная свая при погружении вытесняет объем грунта, равный ее объему, в результате чего грунт около сваи уплотняется, а часть его вытесняется вверх, вызывая подъем поверхности грунта вокруг свай. В рыхлых песках и песках средней плотности, а также в ненасыщенных водой глинистых грунтах, уплотнение которых протекает быстро, перемещение грунта вверх незначительно и приводит лишь к небольшому подъему поверхности грунта. В водонасыщенных глинах и суглинках уплотнение происходит только в результате отжима воды из пор грунта и, поскольку этот процесс протекает медленно, за время погружения свай грунт не успевает уплотняться и большая его часть вытесняется вверх, что сопровождается значительным подъемом поверхности грунта в пределах свайного поля. Зона уплотнения грунта вокруг забивных свай сплошного сечения имеет радиус порядка трех диаметров сваи. Откопка опытных свай показала, что эта зона неоднородна: непосредственно около сваи грунт имеет нарушенную структуру и сильно уплотнен, по мере удаления от сваи структура и плотность грунта приближаются к естественной. Под нижним концом сваи зона уплотненного грунта имеет форму, близкую к сферической, и распространяется на глубину до 3...4 диаметров сваи.

Учитывая явление уплотнения грунта при погружении свай, рекомендуют такую последовательность их забивки. Во всех случаях, а в плотных грунтах особенно, забивку следует вести от середины свайного поля к его периметру. Если это правило не соблюдается, средние сваи не всегда удается погрузить до заданной глубины из-за сильного уплотнения грунта, вызванного забивкой предыдущих свай.

При забивке полой сваи образовавшаяся уже в начале погружения грунтовая пробка приводит к формированию конусообразного грунтового ядра, играющего роль заострения сплошной сваи. В результате характер деформации грунта вокруг полой сваи будет таким же, как и вокруг сплошной. Если в процессе погружения грунт удаляется из полой сваи, уплотнение окружающего грунта будет незначительным и он сохранит структуру, близкую к природной.

В случае свай, изготовленных на месте, процессы, происходящие в грунте, зависят от применяемой технологии. Если при устройстве скважины используется бурение, это не приводит к изменению плотности и структуры грунта вокруг свай. Если же скважина формируется внедрением инвентарной трубы или каким-либо другим способом, сопровождающимся отжатием грунта в стороны, то характер деформации грунта вокруг сваи будет примерно таким же, и вокруг сплошной сваи.

Как правило, при забивке свая сначала погружается в грунт очень легко и быстро. По мере погружения возрастают силы трения на ее боковой поверхности и сопротивление грунта под нижним концом. В результате скорость погружения замедляется. При молотах ударного действия скорость погружения сваи принято характеризовать величиной ее погружения от одного удара, называемой отказом сваи. По величине отказа, который замеряется при достижении сваей проектной отметки, можно судить о ее сопротивлении, поскольку чем меньше отказ, тем, очевидно, больше несущая способность сваи. Однако для правильной оценки несущей способности сваи по величине отказа следует учитывать ряд специфических процессов, происходящих в окружающем грунте при ее забивке.

При забивке свай в маловлажные пески плотные и средней плотности под нижним концом сваи образуется переуплотненная упругая зона, препятствующая погружению, что приводит к быстрому уменьшению отказа свай вплоть до нулевого значения и дальнейшая попытка забить сваю может привести к разрушению ее ствола. Если прекратить забивку, то через некоторое время в результате релаксации напряжений сопротивление грунта под нижним концом сваи снизится. Поэтому, если через несколько дней снова возобновить забивку, свая опять начнет легко погружаться в грунт. Описанное явление носит название ложного отказа, время, необходимое для релаксации напряжении, называется отдыхом сваи, а отказ, определенный после отдыха сваи и характеризующий ее действительную несущую способность,-- действительным отказом.

Продолжительность отдыха для песчаных грунтов составляет 3...5 сут. Образования переуплотненной зоны грунта, препятствующей погружению сваи, можно избежать применяя молоты двойного действия или вибропогружатели. При сотрясениях грунта, вызываемых частыми ударами молотов двойного действия, уплотненная зона грунта под нижним концом сваи практически не образуется, а при вибрации, создаваемой вибропогружателем, резко снижаются силы внутреннего трения в песке и он становится подвижным, приобретая свойства жидкости.

При забивке свай в глинистые грунты часть связной воды переходит в свободную, грунт на контакте со сваей разжижается (тиксотропное разжижение структуры) и сопротивление погружению сваи снижается. Если прекратить забивку, то через некоторое время структура грунта восстанавливается и несущая способность сваи значительно возрастает. Это явление называют засасыванием сваи. Практика показала, что для получения действительного отказа в глинистых грунтах необходим отдых сваи, продолжительность которого составляет для суяесей 5...10 сут, для суглинков -- 15,..20 сут, для глин--25...30 сут и более. Тиксотропные явления при забивке свай в глинистые грунты можно в значительной мере снизить, если погружение производить молотами одиночного действия с большим весом ударной части и небольшой частотой ударов. При погружении свай в гравелистые и не насыщенные водой глинистые грунты отдых сваи мало влияет на величину отказа, т. е. не приводит к изменению несущей способности сваи.

Процессы, происходящие грунте при работе свай под нагрузкой, не менее сложны, особенно в случае висячих свай. Известно, что вертикальная нагрузка, воспринимаемая висячей сваей, передается на грунт через ее боковую поверхность и нижний конец. В результате в грунте вокруг сваи возникает напряженная зона, имеющая сложное криволинейное очертание . Эпюра вертикальных нормальных напряжений на уровне нижнего конца свай имеет выпуклую форму. Принято считать, что напряжения ут распределяются по площади, равной основанию конуса, образующая которого составляет со сваей угол а, зависящий от сил трения грунта по ее боковой поверхности. При редком расположении свай в кусте напряженные зоны грунта вокруг них не пересекаются и все сваи работают независимо, как одиночные. При небольшом расстоянии между сваями (как показали опыты, менее 6d, где d -- диаметр сваи) происходит наложение напряжений, вследствие чего давление на грунт в уровне нижних концов свай возрастает . Одновременно с увеличением давления под кустом свай формируется и значительно большая по сравнению с одиночной сваей общая активная зона сжатия грунта. Вследствие этих двух причин при одинаковой нагрузке осадка сваи куста при совместной работе свай будет всегда заметно превышать осадку одиночной сваи. Что касается несущей способности свай куста, то, с одной стороны, дополнительное уплотнение грунта, вызванное забивкой соседних свай, приводит к ее увеличению, а с другой -- осадка грунта межсвайного пространства в результате совместной работы свай : и осадки грунта под подошвой ростверка приводит к ее уменьшению, поскольку снижаются силы трения по боковым поверхностям свай. Что в итоге больше скажется на несущей способности сваи куста, зависит от многих условий и не всегда легко прогнозируется. Однако опыт показывает, что в глинистых грунтах, а также мелких и пылеватых песках несущая способность сваи в кусте, как правило, уменьшается по сравнению с несущей способностью одиночной сваи, а в песках крупных и средней крупности -- увеличивается.

Описанные следствия совместной работы свай в кустах принято называть кустовым эффектом. Кустовой эффект проявляется не только при вертикальных, но и при других видах нагрузок на фундаменты, например горизонтальных. Влияние кустового эффекта на работу свайных фундаментов сложно, иногда противоречиво и требует тщательного экспериментального изучения. Изменение начальных свойств грунтов при погружении свай, зависимость этих изменений от технологии устройства свайных фундаментов и используемого оборудования, взаимное влияние свай при их совместной работе в кустах, включение в ряде случаев в работу низкого ростверка и многое другое предопределили чрезвычайно сложный характер взаимодействия свай с грунтовым основанием. Поэтому для решения практических задач фундаментостроения действительные условия совместной работы свай и грунтового основания как единого комплекса заменяют расчетными схемами и моделями, содержащими различные упрощающие допущения и предпосылки.

Несущая способность висячей сваи

ВИСЯЧИЕ ЗАБИВНЫЕ СВАИ ВСЕХ ВИДОВ И СВАИ-ОБОЛОЧКИ, ПОГРУЖАЕМЫЕ БЕЗ ВЫЕМКИ ГРУНТА

1) Несущую способность Fd, кН (тс), висячей забивной сваи и сваи-оболочки, погружаемой без выемки грунта, работающих на сжимающую нагрузку, следует определять как сумму сил расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле

где c -- коэффициент условий работы сваи в грунте, принимаемый c = 1;

R _ расчетное сопротивление грунта под нижним концом сваи, кПа (тс/м2), по таблицам СНиП;

A -- площадь опирания на грунт сваи, м2, принимаемая по площади поперечного сечения сваи брутто или по площади поперечного сечения камуфлетного уширения по его наибольшему диаметру, или по площади сваи-оболочки нетто;

u -- наружный периметр поперечного сечения сваи, м;

fi -- расчетное сопротивление i-го слоя грунта основания на боковой поверхности сваи, кПа (тс/м2),;

hi -- толщина 1-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

cR cf -- коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта и принимаемые по табл. 3.

2) Несущую способность Fdu, кН (тс), висячей забивной сваи и сваи-оболочки, погружаемой без выемки грунта, работающих на выдергивающую нагрузку, следует определять по формуле

Fdu = , (10)

где u, cf, hi, fi -- то же, что в формуле (8);

c,-- коэффициент условий работы;

ВИСЯЧИЕ НАБИВНЫЕ И БУРОВЫЕ СВАИ И СВАИ-ОБОЛОЧКИ, ЗАПОЛНЯЕМЫЕ БЕТОНОМ

1) Несущую способность Fd кН (тс), набивной и буровой свай с уширением и без уширения, а также сваи-оболочки, погружаемой с выемкой грунта и заполняемой бетоном, работающих на сжимающую нагрузку, следует определять по формуле

где c -- коэффициент условий работы сваи;

Расчетное сопротивление R, кПа (тс/м2), следует принимать по табл. 1 с коэффициентом условий работы, учитывающим способ погружения свай-оболочек в соответствии с поз. 4 табл. 3, причем расчетное сопротивление в указанном случае относится к площади поперечного сечения сваи-оболочки нетто.

Несущую способность Fdu, кН (тc), набивной и буровой свай и сваи-оболочки, работающих на выдергивающие нагрузки, следует определять по формуле

(14),

где c,-- то же, что в формуле (10), u, cf, fi, hi -- то же, что в формуле (11).

ВИНТОВЫЕ СВАИ

Несущую способность Fd кН (тc), винтовой сваи диаметром лопасти d 1,2 м и длиной l < 10 м, работающей на сжимающую или выдергивающую нагрузку, следует определять по формуле (15), а при диаметре лопасти d > 1,2 м и длине сваи l > 10 м-- только по данным испытаний винтовой сваи статической нагрузкой:

Fd = c 1 c1 + 2 1 h1)A + u fi (h - d), (15)

где c,-- коэффициент условий работы, зависящий от вида нагрузки, действующей на сваю, и грунтовых условий;

1, 2 -- безразмерные коэффициенты, принимаемые по табл. 9 в зависимости от расчетного значения угла внутреннего трения грунта в рабочей зоне , (под рабочей зоной понимается прилегающий к лопасти слой грунта толщиной, равной d);

c1 -- расчетное значение удельного сцепления пылевато-глинистого или параметр линейности песчаного грунта в рабочей зоне, кПа (тс/м2);

1 -- осредненное расчетное значение удельного веса грунтов, залегающих выше лопасти сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды);

h1 -- глубина залегания лопасти сваи от природного рельефа, а при планировке территории срезкой -- от уровня планировки м;

A -- проекция площади лопасти, м2, считая по наружному диаметру, при работе винтовой сваи на сжимающую нагрузку, и проекция рабочей площади лопасти, т.е. за вычетом площади сечения ствола, при работе винтовой сваи на выдергивающую нагрузку;

fi -- расчетное сопротивление грунта на боковой поверхности ствола винтовой сваи, кПа (тс/м2), принимаемое по табл. 2 (осредненное значение для всех слоев в пределах глубины погружения сваи);

u -- периметр ствола сваи, м;

h -- длина ствола сваи, погруженной в грунт, м;

d -- диаметр лопасти сваи, м.

Классификация свай

По характеру работы в грунте сваи делят на висячие (16.4, б) и сваи-стойки (16.4, а). Сваи-стойки проходят через слабый грунт и нижними концами опираются на прочное основание, передавая на него всю нагрузку от здания. Висячие сваи не достигают прочного грунта, а лишь уплотняют слабый грунт. Нагрузку от здания висячие сваи воспринимают главным образом за счет сил трения, возникающих между их боковой поверхностью и грунтом.

принципы проектирования свайных фундаментов

Проектирование

Свайные фундаменты в зависимости от размещения свай в плане следует проектировать в виде:

а) одиночных свай -- под отдельно стоящие опоры;

б) свайных лент -- под стены зданий и сооружений при передаче на фундамент распределенных по длине нагрузок с расположением свай в один, два ряда и более;

в) свайных кустов -- под колонны с расположением свай в плане на участке квадратной, прямоугольной, трапецеидальной и другой формы;

г) сплошного свайного поля -- под тяжелые сооружения со сваями, равномерно расположенными подвеем сооружением и объединенными сплошным ростверком, подошва которого опирается на грунт.

При разработке проекта свайных фундаментов необходимо учитывать следующие данные:

- конструктивную схему проектируемого здания или сооружения; размеры несущих конструкций и материал, из которого они проектируются;

- наличие и габариты приближения заглубленных помещений к строительным осям здания или сооружения и их фундаментам;

- конструкции полов и технологические нагрузки на них;

- нагрузки на фундамент от строительных конструкций;

- размещение технологического оборудования, нагрузки, передаваемые от него на строительные конструкции,

- требования к предельным осадкам и кренам строительных конструкций и фундаментов под оборудование.

Число свай в фундаменте следует назначать из условия максимального использования прочностных свойств их материала при расчетной нагрузке, допускаемой на сваю, с учетом допустимых перегрузок крайних свай в фундаменте.

Выбор конструкции и размеров свай должен осуществляться с учетом значений и направления действия нагрузок на фундаменты (в том числе технологических нагрузок), а также технологии строительства здания и сооружения. Сопряжение свайного ростверка со сваями допускается предусматривать как свободно опирающимся, так и жестким. Свободное опирание ростверка на сваи должно учитываться в расчетах условно как шарнирное сопряжение и при монолитных ростверках должно выполняться путем заделки головы сваи в ростверк на глубину 5--10 см.

Жесткое сопряжение свайного ростверка со сваями следует предусматривать в случае, когда:

а) стволы свай располагаются в слабых грунтах (рыхлых песках, пылевато-глинистых грунтах текучей консистенции, илах, торфах и т.п.);

б) в месте сопряжения сжимающая нагрузка, передаваемая на сваю, приложена к ней с эксцентриситетом, выходящим за пределы ее ядра сечения;

в) на сваю действуют горизонтальные нагрузки, значения перемещений от которых при свободном опирании (определенные расчетом в соответствии с требованиями рекомендуемого приложения 1) оказываются более предельных для проектируемого здания или сооружения;

г) в фундаменте имеются наклонные или составные вертикальные сваи;

д) сваи работают на выдергивающие нагрузки.

Жесткое сопряжение железобетонных свай с монолитным железобетонным ростверком следует предусматривать с заделкой головы сваи в ростверк на глубину, соответствующую длине анкеровки арматуры, или с заделкой в ростверк выпусков арматуры на длину их анкеровки в соответствии с требованиями СНиП 2.03.01-85. В последнем случае в голове предварительно напряженных свай должен быть предусмотрен ненапрягаемый арматурный каркас, используемый в дальнейшем в качестве анкерной арматуры.

Допускается также жесткое сопряжение с помощью сварки закладных стальных элементов при условии обеспечения требуемой прочности.

Сваи в кусте внецентренно нагруженного фундамента следует размещать таким образом, чтобы равнодействующая постоянных нагрузок, действующих на фундамент, проходила возможно ближе к центру тяжести плана свай. Для восприятия вертикальных нагрузок и моментов, а также горизонтальных нагрузок (в зависимости от их значения и направления) допускается предусматривать вертикальные, наклонные и козловые сваи.

Наклон свай не должен превышать значений, указанных в табл. СНиП.

Расстояние между осями забивных висячих свай без уширений в плоскости их нижних концов должно быть не менее 3d (где d -- или диаметр круглого, или сторона квадратного, или большая сторона прямоугольного поперечного сечения ствола сваи), а свай-стоек -- не менее 1,5 d. Расстояние в свету между стволами буровых, набивных свай и свай-оболочек, а также скважинами свай-столбов должно быть не менее 1,0 м; расстояние в свету между уширениями при устройстве их в твердых и полутвердых пылевато-глинистых грунтах -- 0,5 м, в других нескальных грунтах -- 1,0м. Расстояние между наклонными или между наклонными и вертикальными сваями в уровне подошвы ростверка следует принимать исходя из конструктивных особенностей фундаментов и обеспечения их надежности заглубления в грунт, армирования и бетонирования ростверка. Выбор длины свай должен производиться в зависимости от грунтовых условий строительной площадки, уровня расположения подошвы ростверка с учетом возможностей имеющегося оборудования для устройства свайных фундаментов. Нижний конец свай, как правило, следует заглублять в прочные грунты, прорезая более слабые напластования грунтов, при этом заглубление забивных свай в грунты, принятые за основание, под их нижние концы должно быть; в крупнообломочные, гравелистые, крупные и средней крупности песчаные, пылевато-глинистые грунты с показателем текучести IL 0,1 -- не менее 0,5 м, а в прочие нескальные грунты -- не менее 1,0 м.

Для фундаментов мостов подошву ростверка следует располагать выше или ниже поверхности акватории, ее дна или поверхности грунта при условии обеспечения расчетной несущей способности и долговечности фундаментов исходя из местных климатических условий, особенностей конструкции фундаментов, обеспечения требований судоходства и лесосплава, надежности подлежащих осуществлению мер по эффективной защите свай от неблагоприятного воздействия знакопеременных температур среды, ледохода, истирающего воздействия перемещающихся донных отложений и других факторов. При строительстве на пучинистых грунтах необходимо предусматривать меры, предотвращающие или уменьшающие влияние сил морозного пучения грунта на свайный ростверк.

При разработке проекта свайных фундаментов необходимо учитывать возможность подъема (выпора) поверхности грунта при забивке свай, который, как правило, может происходить в случаях, когда:

а) площадка строительства сложена пылевато-глинистыми грунтами мягкопластичной и текучепластичной консистенций или водонасыщенными пылеватыми и мелкими песками;

б) погружение свай производится со дна котлована;

в) конструкция свайного фундамента принята в виде свайного поля или свайных кустов при расстоянии между их крайними сваями менее 9 м.

методы определения несущей способности сваи. расчет несущей способности сваи-стойки при действии вертикальной нагрузки

В практике фундаментостроения используют три метода определения несущей способности одиночных свай:

1) Расчетный метод (по формулам и таблицам СНиП 11-17--77);

Несущую способность Fd кН (тc), забивной сваи, сваи-оболочки, набивной и буровой свай, опирающихся на скальный грунт, а также забивной сваи, опирающейся на малосжимаемый грунт (см. примечание к п.2.2), следует определять по формуле

Fd = c RA,

где c -- коэффициент условий работы сваи в грунте, принимаемый c = 1;

A -- площадь опирания на грунт сваи, м2, принимаемая для свай сплошного сечения равной площади поперечного сечения, а для свай полых круглого сечения и свай-оболочек -- равной площади поперечного сечения нетто при отсутствии заполнения их полости бетоном и равной площади поперечного сечения брутто при заполнении этой полости бетоном на высоту не менее трех ее диаметров.

Расчетное сопротивление грунта R под нижним концом сваи-стойки, кПа (тс/м2), следует принимать:

а) для всех видов забивных свай, опирающихся на скальные и малосжимаемые грунты, R =20 000 кПа (2000 тс/м2);

б) для набивных и буровых свай и свай-оболочек, заполняемых бетоном и заделанных в невыветрелый скальный грунт (без слабых прослоек) не менее чем на 0,5 м, -- по формуле

, (6)

где Rс,п -- нормативное значение предела прочности на одноосное сжатие скального грунта в водонасыщенном состоянии, кПа (тс/м2).

g -- коэффициент надежности по грунту, принимаемый g = 1,4;

ld -- расчетная глубина заделки набивной и буровой свай и сваи-оболочки в скальный грунт, м;

df -- наружный диаметр заделанной в скальный грунт части набивной и буровой свай и сваи-оболочки, м;

в) для свай-оболочек, равномерно опираемых на поверхность невыветрелого скального грунта, прикрытого слоем нескальных неразмываемых грунтов толщиной не менее трех диаметров сваи-оболочки, -- по формуле

(7)

где Rс,п, g то же, что в формуле (6).

Примечание. При наличии в основании набивных, буровых свай и свай-оболочек выветрелых, а также размягчаемых скальных грунтов их предел прочности на одноосное сжатие следует принимать по результатам испытаний штампами или по результатам испытаний свай и свай-оболочек статической нагрузкой.

2) Динамический метод заключается в определении несущей способности сваи по величине отказа на отметке, близкой к проектной.

, где

Fd - частное значение; гg - коэф-т надежности по грунту.

Метод выгоден, т.к. можно, замеряя величину проектного отказа, определить несущую способность; применяется стандартное оборудование; забивка сваи производится в месте строительства. Но несоответствие нагружения сваи.

При забивке сваи работа, совершаемая молотом, выражается произведением GH (G - вес молота, H - высота падения молота). Часть работы при забивке сваи передается через упругие деформации в системе молот-свая-грунт.

Учитывая все потери предельное сопротивление сваи при забивке можно выразить:

з - коэф-т, зависящий от упругих свойств материала;

А - площадь поперечного сечения сваи;

М - коэф-т, зависящий от способа погружения сваи (типа молота)

Ed - расчетная энергия удара

Gn - полный вес молота

Sa - величина отказа сваи на проектной отметке

q1 - вес сваи с наголовником

q2 - вес конструкции, поддерживающей сваю

Отказ сваи определяется оп одному удару молота или вычисляется как среднее арифметическое от серии ударов. Для правильного определения отказа динамические испытания проводят после отдыха. Для контроля за сопротивлением сваи при ее забивке из формулы вычисляется величина отказа сваи и сравнивается с фактической.

3) Испытания статической нагрузкой

Для проведения испытаний оборудуется специальная установка. Вертикальная нагрузка создается гидравлическим домкратом, упором для которого служит сварная металлическая балка. Осадка сваи измеряется прогибомером с точностью 0,1 мм.

При испытании вертикальную нагрузку увеличивают ступенями 1/10 - 1/15 от ожидаемого предельного сопротивления. Каждая последующая ступень прикладывается после стабилизации осадки сваи на предыдущей ступени. Осадка считается условно стабилизировавшейся, если ее приращение не превышает 0,1 мм за 1 ч наблюдений для песчаных грунтов и за 2 ч для глинистых.

По данным испытания строят график зависимости осадки от нагрузки, по которому определяют предельное сопротивление испытываемой сваи.

Графики делятся на 2 типа:

Свая 1 - имеют резкий перелом (Fu=нагрузка при срыве)

Свая 2 - несущая способность определяется по предельной осадке

Sпред=жSдоп

ж =0,2 (переходной коэф-т)

Одиночные и кустовые свайные фундаменты (проектирование и расчёт)

Одиночную сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия

, (2)

где N -- расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании), определяемая в соответствии с указаниями п.3.11;

Fd -- расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи

Коэффициент надежности принимается равным:

1,2 -- если несущая способность свай определена по результатам полевых испытаний статической нагрузкой;

1,25 -- если несущая способность сваи определена расчетом по результатам статического зондирования грунта, по результатам динамических испытаний сваи, выполненных с учетом упругих деформаций грунта, а также по результатам полевых испытаний грунтов эталонной сваей или сваей-зондом;

1,4 -- если несущая способность сваи определена расчетом, в том числе по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта;

1,4 (1,25)* -- для фундаментов опор мостов при низком ростверке, висячих сваях и сваях-стойках, при высоком ростверке -- только при сваях-стойках, воспринимающих сжимающую нагрузку, независимо от числа свай в фундаменте;

при высоком или низком ростверке, подошва которого опирается на сильносжимаемый грунт, и висячих сваях, воспринимающих сжимающую нагрузку, а также при любом виде ростверка и висячих сваях и сваях-стойках, воспринимающих выдергивающую нагрузку, k принимается в зависимости от числа свай в фундаменте:

при 21 свае и более ............... 1,4 (1,25), от 11 до 20 свай .................... 1,55 (1,4), " 6 " 10 "....................... 1,65 (1,5), " 1 " 5 "....................... 1,75 (1,6)

для фундаментов из одиночной сваи под колонну при нагрузке на забивную сваю квадратного сечения более 600 кН (60 тс) и набивную сваю -- более 2500 кН (250 тс) значение коэффициента k следует принимать равным 1,4, если несущая способность сваи определена по результатам испытаний статической нагрузкой, и 1,6, если несущая способность сваи определена другими способами; k = 1 -- для сплошных свайных полей жестких сооружений с предельной осадкой 30 см и более (при числе свай более 100), если несущая способность сваи определена по результатам статических испытаний.

Расстояние между осями забивных висячих свай должно быть не менее 3d, где d - диаметр круглого или сторона квадратного сечения сваи. Максимальное расстояние обычно не превосходит 6d. Минимальное расстояние между сваями-стойками 1,5d. При редком расположении свай они начинают работать как одиночные, исчезает кустовой эффект. При одинаковой нагрузке осадка сваи в кусте превышает осадку одиночной сваи. В глинистых грунтах несущая способность сваи в кусте получается меньшей, чем у одиночной сваи.

Кустовой эффект - это взаимное влияние свай при небольшом расстоянии между ними. Работа свай в кусте отличается от работы одиночных свай. Осадка сваи в кусте превышает осадку одиночной сваи, поскольку сопротивляющиеся этому силы бокового трения полностью не мобилизуются. Число свай определяется путем деления величины нагрузки на свайный куст на несущую способность одиночной сваи, которая определяется как расчетная несущая способность сваи, деленная в свою очередь на коэффициент надежности по нагрузке g k (обычно g k = 1,4), то есть уменьшенная в 1,4 раза. Для ростверка подбирается наиболее компактное очертание. Сваи размещаются рядами или в шахматном порядке. Шаг свай в кусте выбирается кратным 5 см. При расчете ленточного ростверка число свай n на 1 п.м. длины может оказаться дробным. Тогда расстояние a, м, между сваями будет a=1/n.

Ленточные свайные фундаменты: проектирование и расчет

Ленточные свайные фундаменты устраивают под стенами зданий и другими протяженными конструкциями. Различают однорядное и многорядное (в 2...3 ряда и более) размещение свай. При многорядном размещении свай свайный фундамент легко воспринимает не только вертикальную нагрузку, но и момент; при однорядном размещении свай внецентренно приложенная нагрузка вызывает изгиб свай. В случае однорядного размещения свай под внутренними и наружными стенами здания, обладающего пространственной жесткостью, верхние части свай не могут испытывать изгиба, так как надподвальные перекрытия и пересечения стен препятствуют развитию деформаций изгиба в сваях.

Расчет фундамента из висячих свай и его основания по деформациям следует, как правило, производить как для условного фундамента на естественном основании в соответствии с требованиями СНиП 2.02.01-83. Границы условного фундамента (см. чертеж) определяются следующим образом:

снизу - плоскостью АБ, проходящей через нижние концы свай;

с боков - вертикальными плоскостями АВ и БГ, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии htg(II,mt/4) (см. чертеж, а), но не более 2d в случаях, когда под нижними концами свай залегают пылевато-глинистые грунты с показателем текучести IL > 0,6 (d - диаметр или сторона поперечного сечения сваи), а при наличии наклонных свай - проходящими через нижние концы этих свай (см. чертеж, б);

сверху - поверхностью планировки грунта ВГ, здесь II,mt - осредненное расчетное значение угла внутреннего трения грунта, определяемое по формуле

II,mt = (29)

где II,i - расчетные значения углов внутреннего трения для отдельных пройденных сваями слоев грунта толщиной hi;

h - глубина погружения свай в грунт.

- угол рассеивания напряжений по длине ствола сваи.
Определив (), и используя графические построения, находят ширину и длину условного фундамента:

Определяют давление по подошве условного фундамента:

Обычно условие удовлетворяется. Далее строят эпюры 0z и бz для условного фундамента и определяют его осадку, используя метод послойного суммирования.

Необходимое соблюдение условия SSu. (Расчет по II предельному состоянию)

Определение несущей способности свай динамическим методом

свая грунт фундамент нагрузка

Ещё в 1911 г. профессор Н.М. Герсеванов предложил уравнение для определения несущей способности свай динамическим способом, т.е. в момент забивки:

QH = A + B + C,

где QH - работа свайного молота;

A = Pe - работа, затраченная на погружение сваи;

В = Qh - работа упругих деформаций (подскок свайного молота);

С = aQH - потерянная работа (трение, смятие, нагрев и т.д.).

Данное Герсевановым уравнение работ, с принятыми обозначениями, в наиболее наглядной форме, может быть представлено на следующей схеме.

Схема импульсного ударного воздействия молота на голову сваи в момент забивки и упругого подскока.

Выполнив подстановку в исходное уравнение принятых обозначений, получим:

QH = Pe + Qh + aQH,

где Р - сопротивление сваи погружению (несущая способность сваи);

a - коэффициент, учитывающий потерю работы.

В результате получаем квадратное уравнение, решение которого можно представить в виде:

,

где А - площадь поперечного сечения сваи;

е - действительный отказ сваи;

Q - вес ударной части молота;

q - вес сваи; n - коэффициент, учитывающий упругие деформации (150 т/м2 - для ж/б сваи).

На практике при проектировании эту формулу используют для определения величины отказа (е), определив заранее расчётом величину (Р).

.

Производитель работ на строительной площадке по вычисленной величине отказа (е) и по результатам нивелирования, судит о несущей способности забиваемой сваи. С этой целью на строительной площадке ведётся журнал сваебойных работ, в который записываются отказы для всех свай. Если измеренный на площадке отказ (после отдыха) превышает вычисленную величину отказа (см. формулу), то несущая способность сваи не обеспечена. В этом случае необходимо использовать дублирующую сваю.

Достоинства динамического метода испытаний Недостатки динамического метода испытаний

-простота -неточные результаты для глинистых грунтов

-малая стоимость

Определение несущей способности свай статической нагрузкой

Метод испытания свай вертикальной статической нагрузкой, несмотря на сложность, длительность и значительную стоимость, позволяет наиболее точно установить предельное сопротивление сваи с учетом всех геологических и гидрогеологических условий строительной площадки. Метод используется либо с целью установления предельного сопротивления сваи, необходимого для последующего расчета фундамента, либо с целью проверки на месте несущей способности сваи, определенной каким-либо другим методом, например практическим. Так, по ГОСТ 5686 -- 78* проверке подвергается до 1% общего числа погружаемых свай, но не менее двух, если их число меньше 100. В случае применения свай, изготовленных в грунте, испытания вертикальной нагрузкой Могут также проводиться для контроля качества их исполнения.

Для проведения испытаний оборудуется специальная установка, показанная на рис. , а. Вертикальная нагрузка чаще всего гидравлическим домкратом, установленным на голову сваи.

Упором для домкрата служит мощная сварная металлическая балка, соединенная с анкерными сваями, забитыми в грунт на расстоянии, достаточном, чтобы быть вне напряженной зоны, образующейся при загрузке испытуемой сваи. Осадка сваи измеряется прогибомерами с точностью до 0,1мм. При испытании вертикальную нагрузку на сваю увеличивают ступенями, равными 1/10-1/15 от ожидаемого предельного сопротивления сваи. Каждая последующая ступень нагрузки прикладывается после условной стабилизации осадки сваи на предыдущей ступени. Осадка считается условно стабилизировавшейся, если ее приращение не превышает 0,1мм за 1 ч наблюдения для песчаных грунтов и за 2 ч для глинистых.

По данным испытания вычерчивается график зависимости осадки от нагрузки, по которому определяется предельное сопротивление испытываемой сваи. Практика показала, что графики испытаний свай делятся на два типа. Для графиков типа 1 характерен резкий перелом, после которого осадка непрерывно возрастает без увеличения нагрузки. За предельную нагрузку Fи в этом случае принимают ту, которая вызвала непрерывную осадку (срыв сваи). Для графиков типа 2 характерно плавное очертание без резких переломов, что затрудняет определение предельной нагрузки. Предельной в этом случае считается такая нагрузка, под воздействием которой испытываемая свая получила осадку

где ж -- переходной коэффициент, su.mt - предельное значение средней осадки фундамента проектируемого здания или сооружения, устанавливаемое по СНиП 2.02.01-83.

Коэффициент ж комплексно учитывает ряд факторов: несоответствие между осадкой одиночной сваи и сваи в кусте, кратковременность испытания сваи статической нагрузкой по сравнению с длительностью эксплуатации здания и т. п. Значение этого коэффициента устанавливается наблюдениями за осадками зданий на свайных фундаментах и в настоящее время принимается равным ж =0,2.

Нагрузки и воздействия на основания

Усилия, передаваемые сооружением на фундаменты, устанавливаются в соответствии со СНиП 2.01.07 -- 85 «Нагрузки в воздействия». Для зданий и сооружений III класса при расчетах средних значений деформаций основания или деформаций основания в стадии привязки типового проекта к местным грунтовым условиям допускается определять нагрузки без учета их перераспределения надфундаментной конструкцией. В остальных случаях такой учет должен выполняться.

Следует иметь в виду, что нагрузки, устанавливаемые СНиПом, соответствуют нормативным их значениям. Расчеты оснований производятся по расчетным значениям нагрузок, которые определяются как произведение нормативных нагрузок на коэффициент надежности по нагрузке, учитывающий возможное отклонение нагрузок в неблагоприятную сторону от их нормативных значений. Значения коэффициентов при расчетах оснований по несущей способности и для различных случаев изменяются от 1 до 1,4. При расчетах оснований по деформациям значение этого коэффициента принимается равным единице.

В зависимости от продолжительности действия нагрузки подразделяются на постоянные (собственный вес несущих и ограждающих конструкций, вес и давление грунта и т. п.) и временные. Временными считаются нагрузки, которые в отдельные периоды строительства и эксплуатации могут отсутствовать. К ним относятся:

-длительные (вес стационарного оборудования, нагрузки на перекрытия в складских помещениях, библиотеках и т. п.);

-кратковременные (вес людей, материалов, продукции технологического назначения сооружения, снеговые ,:ветровые и т. д.);

-особые (сейсмические, аварийные и др.).

Различают следующие сочетания нагрузок: основные, состоящие из постоянных, длительных и кратковременных, и особые, включающие, кроме того, и одну из особых нагрузок. Расчеты по деформациям производятся на основное сочетание нагрузок, по несущей способности -- на основное и особое сочетание.

При расчетах оснований необходимо также учитывать нагрузки от соседних фундаментов, оборудования и складируемого материала, размещенных вблизи фундамента.

При расчетах оснований численными методами, как было указано в гл. 8, возможна более полная имитация в расчетной схеме характера и последовательности приложения нагрузок.

Порядок проектирования оснований и фундаментов

Проектирование оснований и фундаментов включает ряд операции, которые обычно выполняются в указанной ниже последовательности.

1) Оценка результатов инженерно-геологических, инженерно-геодезических и инженерно-гидрометеорологических изысканий для строительства. Состав этих данных определяется соответствующими нормами и инструкциями я рассматривается в курсе инженерной геологии. От качества и полноты материалов изысканий во многом зависят надежность и экономичность принимаемых в проекте решений основания и фундаментов.

В общем случае результаты изысканий должны содержать сведения о местоположении территории строительства, ее климатических и сейсмических условиях, инженерно-геологическом строении и литологическом составе толщи грунтов, наблюдаемых неблагоприятных факторах (наличие просадочности грунтов, карста, оползневых процессов, горных выработок и т. п.). Особое внимание уделяется, сведениям о наличии в горизонтах подземных вод, колебаниях их уровней, агрессивности по отношению к материалам фундаментов и подземных частей зданий. Результаты детальных исследований, проводимых на площадке строительства, должны содержать сведения о стратиграфической последовательности напластования грунтов, формах залегании, размерах в плане и до глубине, происхождении, составе и состоянии всех инженерно-геологических элементов, о подземных водах. Данные представляются в виде инженерно-геологических колонок по отдельным выработкам (скважинам, шурфам и т. д.) и разрезов, построенных по этим выработкам, а также соответствующих текстовых материалов и таблиц. На инженерно-геологических документах обязательно приводятся места отбора проб для лабораторных определений характеристик физико-механических свойств грунтов, пункты проведения полевых опытов, включая статическое и динамическое зондирование.

Количество выработок, назначаемых для изысканий, определяется сложностью инженерно-геологических условий площадки и чувствительностью проектируемого сооружения к неравномерным осадкам. Глубина выработок должна не менее чем на 1...2 м превышать нижнюю границу сжимаемой толщи основания, а в случае слабых грунтов полностью прорезать их толщу. Результаты изысканий должны содержать все необходимые данные о физико-механических свойствах грунтов основания, сведения о методах их определения, прогноз возможных изменений показателей этих свойств.

2) Анализ проектируемого здания и сооружения. В соответствии с заданием на проектирование определяются плановые и высотные размеры сооружения, устанавливаются его конструктивная и расчетная схемы, материалы элементов конструкций, способы передачи нагрузок на основание. Исходя из конструктивных и эксплуатационно-технологических требований определяется чувствительность сооружения или отдельных его частей к неравномерным осадкам, назначаются предельные значения деформаций основания.

Важным этапом является определение нагрузок, действующих на сооружение (ветровых, снеговых, особых и т. п.), а также нагрузок от несущих конструкций сооружения, перекрытий, различного рода оборудования и эксплуатационных условий, передающихся на фундаменты. Равнодействующие всех нагрузок в зависимости от расчетной схемы сооружения прикладываются в уровне верхнего обреза или подошвы фундамента.

3) Выбор типа основания и конструкций фундаментов. Имея приведенные выше данные, осуществляют привязку проектируемого сооружения к строительной площадке, т. е. совмещение осей сооружения с инженерно-геологическими разрезами и выбор глубины заложения подошвы фундаментов. С этого, собственно, и начинается проектирование оснований и фундаментов.

На этой стадии проектирования следует стремиться так разместить сооружение на площади застройки, чтобы по возможности избежать влияния на сооружение источников вредных воздействий: линз слабых грунтов, карстовых полостей, посторонних коммуникаций и т. п.

В массовом строительстве обычно применяются два класса фундаментов: мелкого заложения и свайные фундаменты. Более сложные конструкции (сваи-оболочки, опускные колодцы, кессоны и т. д.) используются для специальных сооружений или в сложных инженерно-геологических условиях. Обычно уже сама схема сооружения (каркасное, бескаркасное, многоэтажное, одноэтажное, наличие или отсутствие подвальных помещений и т. д.), а также величина и характер нагрузок, передаваемых на основание (моментные, безмоментные и т. п.), в совокупности с данными об основании (характер залегания, несущая способность, деформируемость грунтов, наличие и уровень залегания подземных ВОД и т. д.) позволяют наметить несколько вариантов конструкций фундаментов, наиболее подходящих для конкретных условий строительства.

Заканчивается этот этап выбором типа основания и нескольких (обычно не менее трех) конструктивных типов фундаментов проектируемого сооружения, намеченных для дальнейшего, более детального анализа. Поскольку в качестве проектного решения будет принят один из этих вариантов, значение рассматриваемого этапа в общей цепочке проектирования очень велико.

4) Расчеты оснований по предельным состояниям, технико-экономический анализ вариантов и принятие окончательного решения. Для одного или нескольких сечений сооружения в зависимости от его конфигурации, нагрузок, сложности напластования грунтов проводятся расчеты выбранных вариантов фундаментов по предельным состояниям. Определяются окончательные размеры фундаментов в плане, количество и расположение свай, проектируются фундаменты для каждого варианта. Оцениваются все виды работ по возведению фундаментов и, если нужно, по устройству искусственных оснований а других мероприятий, направленных на уменьшение неравномерных деформаций основания. Проводится технико-экономическое сравнение рассматриваемых вариантов и по минимуму приведенных затрат устанавливается оптимальное проектное решение. В отдельных случаях, при соответствующем технико-экономическом обосновании, может быть принято и более дорогое решение, если это обеспечивает ускорение ввода объекта в действие и получение за счет этого дополнительных прибылей.

Расчет оснований по 2-м группам предельных состояний

Расчет свайных фундаментов и их оснований производят по двум группам предельных состояний:

по первой группе -- по несущей способности грунта основания свай; по устойчивости грунтового массива со свайным фундаментом; по прочности материала свай и ростверков;

по второй группе -- по осадкам свайных фундаментов от вертикальных нагрузок; по перемещениям свай совместно с грунтом оснований от действия горизонтальных нагрузок и моментов; по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

Расчет по несущей способности грунтов основания заключается в выполнении условия

N?Fd/гk,

где N -- расчетная нагрузка, передаваемая на сваю, кН;

Fd-- несущая способность сваи, определяемая любым из методов, изложенных в § 11.3;

гk --коэффициент надежности, принимаемый равным: 1,2--если несущая способность сваи определена по результатам ее испытания статической нагрузкой; 1,25 -- по результатам динамических испытаний, выполненных с учетом упругих деформаций грунта, а также по результатам статического зондирования грунта или его испытания эталонной сваей или сваей-зондом; 1,4 -- по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта, или расчетом практическим методом.

Проверку устойчивости свайного фундамента совместно с грунтовым массивом производят только в случае передачи на свайные фундаменты больших горизонтальных нагрузок, а также если фундамент расположен на косогоре или его основание имеет откосный профиль. Проверку производят по расчетной схеме сдвига грунта по круглоцилиндрической поверхности скольжения.

Расчет свайных фундаментов по предельному состоянию второй группы (по деформациям) при действии вертикальных нагрузок производят исходя из условия

S?Su,

где S -- деформация свайного фундамента (осадка и относительная разность осадок), определяемая расчетом;

Su -- предельно допустимое значение деформации свайного фундамента, устанавливаемоезаданием на проектирование или определяемое по СНиП 2.02.01 -- 83*.

Фундаменты из свай, работающих как сваи-стойки, рассчитывать по деформациям от вертикальных нагрузок не требуется.


Подобные документы

  • Применение коротких свай в промышленном и гражданском строительстве. Методы расчета сопротивления коротких забивных свай. Применения численных методов расчета свай и свайных фундаментов. Применение МГЭ в расчетах сопротивления бипирамидальных свай.

    диссертация [170,4 K], добавлен 29.12.2003

  • Область применения, технология изготовления и виды буронабивных свай. Классификация оборудования по способу крепления и бурения скважин. Испытания буронабивных свай статической нагрузкой. Способы транспортировки разбуренной породы из скважины.

    реферат [582,6 K], добавлен 08.03.2013

  • Общее понятие, история появления и распространения набивных свай. Виды набивных свай и способы их изготовления. Особенности технологии устройства буронабивных, пневмотрамбованных, вибротрамбоваиных, частотрамбованных, песчаных и гpунтобетонных свай.

    реферат [1,9 M], добавлен 05.05.2011

  • Назначение и конструктивные особенности подземной части здания. Строительная классификация грунтов площадки. Определение несущей способности сваи и расчетной нагрузки. Выбор типа свай. Назначение глубины заложения ростверка. Расчет осадки фундамента.

    курсовая работа [848,1 K], добавлен 28.01.2016

  • Типы применяемых в строительстве свай. Подготовительные работы при устройстве фундаментов из забивных свай. Технологические схемы забивки и контроль погружения. Технология устройства буронабивных, пневмонабивных, частотрамбованных, грунтовых свай.

    контрольная работа [450,0 K], добавлен 15.10.2014

  • Особенности расчетов несущей способности висячих свай при действии вертикальных нагрузок. Метод испытания свай вертикальной статической нагрузкой. Расчет притока воды к строительному котловану (пластовый дренаж). Давление грунта на подземные трубопроводы.

    методичка [140,0 K], добавлен 22.02.2013

  • Оценка инженерно-геологических условий, анализ структуры грунта и учет глубины его промерзания. Определение размеров и конструкции фундаментов из расчета оснований по деформациям. Определение несущей способности, глубины заложения ростверка и длины свай.

    курсовая работа [1,1 M], добавлен 07.05.2014

  • Постоянные и временные нагрузки от подвижного состава и пешеходов. Горизонтальные поперечные удары. Ледовая и ветровая нагрузки, гидростатическое выталкивание. Определение нагрузки на голову сваи и несущей способности сваи. Нагрузка от толпы на тротуаре.

    курсовая работа [54,9 K], добавлен 22.06.2012

  • Основное назначение свай, их классификация на погружаемые и набивные по методу погружения. Методы погружения заранее изготовленных свай и их комбинирование. Ударный метод и процесс забивки сваи. Выбор типа молота с учетом коэффициента применимости.

    презентация [517,3 K], добавлен 28.07.2013

  • Выбор глубины заложения подошвы фундамента. Расчет несущей способности сваи и определение количества свай в фундаменте. Конструирование ростверка свайного фундамента. Проверка напряжений под подошвой условного фундамента, определение его размеров.

    методичка [1,7 M], добавлен 12.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.