Химические процессы и реакторы

Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов. Зависимость константы равновесия от температуры. Законы химической кинетики при выборе технологического режима и моделировании химических процессов.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 24.01.2015
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«Томский политехнический университет»

ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Химические процессы и реакторы

Учебное пособие

Ю. Б. Швалёв, В. В. Коробочкин

Издательство ТПУ

Томск 2008

УДК 66.0 (075)

Ш 33

Ш 33

Швалёв Ю. Б., Коробочкин В. В.

Общая химическая технология. Химические процессы и реакторы: учебное пособие. - Томск: Изд-во ТПУ, 2008. - 180 с.

В учебном пособии дано определение химической технологии как науки и объекта её исследования - химического производства. Рассмотрены теоретические закономерности химических процессов и основы теории химических реакторов, общие принципы разработки химико-технологических процессов на основе системного подхода.

Пособие подготовлено на кафедре общей химической технологии, соответствует программе дисциплины и предназначено для студентов специальностей 240801 «Машины и аппараты химических производств», 240403 «Химическая технология природных энергоносителей и углеродных материалов», 240304 «Химическая технология тугоплавких неметаллических и силикатных материалов», 240401 «Химическая технология органических веществ» Института дистанционного образования.

УДК 66.0 (075) химический температура кинетика

Рекомендовано к печати Редакционно-издательским

советом Томского политехнического университета

Рецензенты:

А. В. Кравцов - заведующий кафедрой ХТТ ТПУ, профессор,

доктор технических наук;

И. В. Гончаров -заведующий лабораторией пластовых нефтей

«Томск НИПИнефть, профессор, доктор геолого-минералогических наук, кандидат технических наук.

© Томский политехнический университет, 2008

ОГЛАВЛЕНИЕ

  • Введение
  • Глава 1. ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС И ЕГО СОДЕРЖАНИЕ
    • §1.1 Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов
    • §1.2 Стехиометрия химических реакций
    • §1.3 Технологические критерии эффективности химико-технологического процесса
    • Вопросы и упражнения для повторения и самостоятельной работы
  • Глава 2. ТЕРМОДИНАМИЧЕСКИЕ РАСЧЕТЫ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
    • §2.1 Равновесие химических реакций
    • §2.2 Способы смещения равновесия
    • §2.3 Зависимость константы равновесия от температуры
    • §2.4 Расчет равновесия по термодинамическим данным
    • Вопросы и упражнения для повторения и самостоятельной работы
  • Глава 3. ИСПОЛЬЗОВАНИЕ ЗАКОНОВ ХИМИЧЕСКОЙ КИНЕТИКИ ПРИ ВЫБОРЕ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА И МОДЕЛИРОВАНИИ ХИМИЧЕСКИХ ПРОЦЕССОВ
    • §3.1 Скорость гомогенных химических реакций
    • §3.2 Зависимость скорости химических реакций от концентрации реагентов. Кинетические уравнения
    • §3.3 Способы изменения скорости простых и сложных реакций
    • Вопросы и упражнения для повторения и самостоятельной работы
  • Глава 4. ОБЩИЕ СВЕДЕНИЯ О ХИМИЧЕСКИХ РЕАКТОРАХ
    • §4.1 Моделирование химических реакторов и протекающих в них химических процессов
    • §4.2 Структура математической модели химического реактора
    • §4.3 Уравнение материального баланса для элементарного объема проточного химического реактора
    • §4.4 Классификация химических реакторов и режимов их работы
    • Вопросы и упражнения для повторения и самостоятельной работы
  • Глава 5. ХИМИЧЕСКИЕ РЕАКТОРЫ С ИДЕАЛЬНОЙ СТРУКТУРОЙ ПОТОКА В ИЗОТЕРМИЧЕСКОМ РЕЖИМЕ
    • §5.1 Реактор идеального смешения
    • §5.2 Реактор идеального вытеснения
    • §5.3 Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
    • §5.4 Каскад реакторов идеального смешения
    • Вопросы и упражнения для повторения и самостоятельной работы
  • Глава 6. ТЕПЛОПЕРЕНОС В ХИМИЧЕСКИХ РЕАКТОРАХ
    • §6.1 Уравнение теплового баланса. Тепловые режимы химических реакторов
    • §6.2 Проточный реактор идеального смешения в неизотермическом режиме
    • §6.3 Тепловая устойчивость химических реакторов
    • §6.4 Оптимальный температурный режим и способы его осуществления в промышленных реакторах
    • Вопросы и упражнения для повторения и самостоятельной работы
  • Глава 7. ГЕТЕРОГЕННЫЕ ПРОЦЕССЫ
    • §7.1 Общие особенности
    • §7.2 Диффузионные стадии
    • §7.3 Гетерогенные некаталитические процессы в системе «газ - твердое вещество»
    • §7.4 Гетерогенные процессы в системе «газ - жидкость»
    • Вопросы и упражнения для повторения и самостоятельной работы
  • Глава 8. ГЕТЕРОГЕННО-КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ
    • §8.1 Общие представления о катализе
    • §8.2 Технологические характеристики твердых катализаторов
    • §8.3 Основные стадии и кинетические особенности гетерогенно-каталитических процессов
    • Вопросы и упражнения для повторения и самостоятельной работы
  • СПИСОК ЛИТЕРАТУРЫ

Введение

Под технологией в широком значении этого слова понимают научное описание методов и средств производства в какой-то отрасли промышленности. Например, методы и средства обработки металлов составляют предмет технологии металлов, методы и средства изготовления машин и аппаратов - предмет технологии машиностроения. Процессы механической технологии основаны преимущественно на механическом воздействии, изменяющем внешний вид или физические свойства обрабатываемых веществ, но не влияющем на их химический состав. Процессы химической технологии включают в себя химическую переработку сырья, основанную на сложных по своей природе химических и физико-химических явлениях.

Химическая технология - наука о наиболее экономичных и экологически обоснованных методах химической переработки сырых природных материалов в предметы потребления и средства производства.

Современная химическая технология, используя достижения естественных и технических наук, изучает и разрабатывает совокупность физических и химических процессов, машин и аппаратов, оптимальные пути осуществления этих процессов и управления ими при промышленном производстве различных веществ, продуктов, материалов, изделий.

Химическая технология базируется, прежде всего, на химических науках, таких, как физическая химия, химическая термодинамика и химическая кинетика, но в то же время не просто повторяет, а развивает закономерности этих наук в приложении к крупномасштабным промышленным процессам. Поэтому химическая технология немыслима без тесной связи с экономикой, физикой, математикой, кибернетикой, прикладной механикой, другими техническими науками.

Развитие химической технологии как науки неотделимо от ее практических приложений. Химическая промышленность - одна из ведущих отраслей материального производства. Новые открытия и технологические разработки быстро становятся достоянием практики, тесно связывают науку с производством, и эта взаимная связь позволяет более рационально использовать сырье и топливно-энергетические ресурсы, создавать новые безотходные производства, в которых химико-технологические процессы протекают с высокими скоростями в оптимальных условиях, с получением продуктов высокого качества.

Учебный курс «Общая химическая технология» входит в цикл общепрофессиональных дисциплин и представляет собой введение в химическую технологию как науку. Целью курса является знакомство с химическим производством - сложной химико-технологической системой, а также рассмотрение общих проблем анализа и синтеза химических производств. Соответственно, обобщающее начало в курсе преобладает над описательным.

В задачи курса входит общее знакомство с химическим производством, его структурой и компонентами, изучение основ химических процессов и химических реакторов, освоение общих методов анализа и синтеза химического производства как химико-технологической системы, знакомство с некоторыми конкретными химическими производствами, на примере которых предметно демонстрируются теоретические положения курса. Значительное место уделяется физико-химическим и технологическим аспектам анализа процессов в химическом производстве, в основном в химических реакторах, и организации химико-технологических процессов.

Методологической основой изучения материала курса «Общая химическая технология» являются основные научные методы исследования химико-технологических процессов - математическое моделирование и системный анализ, базирующиеся на закономерностях протекающих химических и фазовых превращений, явлений переноса теплоты и вещества, равновесия, сохранения энергии и массы в сложных реагирующих системах, что делает представленный материал не просто изложением сведений о процессах и явлениях химической технологии, а их исследованием и разработкой.

Глава 1. ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС И ЕГО СОДЕРЖАНИЕ

Химико-технологический процесс представляет собой совокупность операций, позволяющих получить целевой продукт из исходного сырья. Все эти операции входят в состав трех основных стадий, характерных практически для каждого химико-технологического процесса.

На первой стадии проводят операции, необходимые для подготовки исходных реагентов к проведению химической реакции. Реагенты переводят, в частности, в наиболее реакционноспособное состояние. Например, известно, что скорость химических реакций сильно зависит от температуры, поэтому часто реагенты до проведения реакции нагревают. Газообразное сырье для повышения эффективности процесса и уменьшения размеров аппаратуры подвергают компримированию до определенного давления. Чтобы устранить побочные явления и получить продукт высокого качества, исходное сырье подвергают очистке от посторонних примесей, пользуясь методами, основанными на различии физических свойств (растворимость в различных растворителях, плотность, температуры конденсации и кристаллизации и т. д.). При очистке сырья и реакционных смесей широко применяют явления тепло- и массообмена, гидромеханические процессы. Могут быть использованы и химические методы очистки, основанные на химических реакциях, в результате которых ненужные примеси превращаются в легко отделимые вещества.

Соответствующим образом подготовленные реагенты на следующей стадии подвергают химическому взаимодействию, которое может состоять из нескольких этапов. В промежутках между этими этапами иногда необходимо вновь использовать тепломассообменные и другие физические процессы. Например, при производстве серной кислоты диоксид серы частично окисляют до триоксида, затем реакционную смесь охлаждают, извлекают из нее путем абсорбции триоксид серы и вновь направляют ее на окисление.

В результате химических реакций получают смесь продуктов (целевых, побочных, попутных) и не прореагировавших реагентов. Заключительные операции последней стадии связаны с разделением этой смеси, для чего вновь применяют гидромеханические, тепло- и массообменные процессы, например: фильтрование, центрифугирование, ректификацию, абсорбцию, экстракцию и т. д. Продукты реакции направляют на склад готовой продукции или на дальнейшую переработку; не прореагировавшее сырье вновь используют в процессе, организуя его рецикл.

На всех этапах, а особенно на заключительных, проводят также рекуперацию вторичных материальных и энергетических ресурсов. Потоки газообразных и жидких веществ, попадающих в окружающую среду, подвергают очистке и обезвреживанию от опасных примесей. Твердые отходы либо направляют на дальнейшую переработку, либо размещают для хранения в безопасных для окружающей среды условиях.

Таким образом, химико-технологический процесс в целом - это сложная система, состоящая из единичных связанных между собой процессов (элементов) и взаимодействующая с окружающей средой.

Элементами химико-технологической системы являются перечисленные выше процессы тепло- и массообмена, гидромеханические, химические и т. д. Их рассматривают как единичные процессы химической технологии.

Важной подсистемой сложного химико-технологического процесса является химический процесс.

Химический процесс представляет собой одну или несколько химических реакций, сопровождаемых явлениями переноса теплоты, массы и импульса, оказывающих влияние как друг на друга, так и на протекание химической реакции.

Анализ единичных процессов, их взаимного влияния позволяет разработать технологический режим.

Технологическим режимом называется совокупность технологических параметров (температуры, давления, концентраций реагентов и т. д.), определяющих условия работы аппарата или системы аппаратов (технологической схемы).

Оптимальные условия ведения процесса - это сочетание основных параметров (температуры, давления, состава исходной реакционной смеси и т. д.), позволяющее получить наибольший выход продукта с высокой скоростью или обеспечить наименьшую себестоимость при соблюдении условий рационального использования сырья и энергии и минимизации возможного ущерба окружающей среде.

Единичные процессы протекают в различных аппаратах - химических реакторах, абсорбционных и ректификационных колоннах, теплообменниках и т. д. Отдельные аппараты соединены в технологическую схему процесса.

Технологическая схема - рационально построенная система единичных аппаратов, соединенных различными видами связей (прямых, обратных, последовательных, параллельных), позволяющая получить заданный продукт заданного качества из природного сырья или полуфабрикатов.

Технологические схемы бывают открытыми и закрытыми, могут содержать байпасные (обводные) потоки и рециклы, позволяющие повышать эффективность функционирования химико-технологической системы в целом.

Разработка и построение рациональной технологической схемы - важная задача химической технологии.

§1.1 Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов

В современной химии известно большое число различных химических реакций. Многие из них осуществляются в промышленных химических реакторах и, следовательно, становятся объектом изучения химической технологии.

Чтобы облегчить изучение близких по природе явлений, в науке принято их классифицировать по общим признакам. В зависимости от того, какие признаки взяты при этом за основу, существует несколько видов классификации химических реакций.

Важным видом классификации является классификация по механизму осуществления реакции. Различают простые (одностадийные) и сложные (многостадийные) реакции, в частности параллельные, последовательные и последовательно-параллельные.

Простыми называют реакции, для осуществления которых требуется преодоление лишь одного энергетического барьера (одна стадия).

Сложные реакции включают в себя несколько параллельных или последовательных стадий (простых реакций).

Реальные одностадийные реакции встречаются чрезвычайно редко. Однако некоторые сложные реакции, проходящие через ряд промежуточных стадий, удобно считать формально простыми. Это возможно в тех случаях, когда промежуточные продукты реакции в условиях рассматриваемой задачи не обнаруживаются.

Классификация реакций по молекулярности учитывает, сколько молекул участвует в элементарном акте реакции; различают моно-, би- и тримолекулярные реакции.

Вид кинетического уравнения (зависимости скорости реакции от концентраций реагентов) позволяет проводить классификацию по порядку реакции. Порядком реакции называется сумма показателей степеней у концентраций реагентов в кинетическом уравнении. Существуют реакции первого, второго, третьего, дробного порядков.

Химические реакции различают также по тепловому эффекту. При протекании экзотермических реакций, сопровождающихся выделением теплоты (Q > 0), происходит уменьшение энтальпии реакционной системы (?H < 0); при протекании эндотермических реакций, сопровождающихся поглощением теплоты (Q < 0), происходит увеличение энтальпии реакционной системы (?H > 0).

Для выбора конструкции химического реактора и способов управления проведением процесса существенное значение имеет фазовый состав реакционной системы.

В зависимости от того, сколько (одну или несколько) фаз образуют исходные реагенты и продукты реакции, химические реакции делят на гомофазные и гетерофазные.

Гомофазными называют реакции, в которых исходные реагенты, стабильные промежуточные вещества и продукты реакции находятся в пределах одной фазы.

Гетерофазными называют реакции, в которых исходные реагенты, стабильные промежуточные вещества и продукты реакции образуют более чем одну фазу.

В зависимости от зоны протекания реакции делятся на гомогенные и гетерогенные реакции.

Понятия «гомогенная» и «гетерогенная» реакции не совпадают с понятиями «гомофазный» и «гетерофазный» процессы. Гомогенность и гетерогенность реакции отражает в определенной степени ее механизм: протекает ли реакция в объеме какой-то одной фазы или на поверхности раздела фаз. Гомофазность и гетерофазность процесса позволяют лишь судить о фазовом составе участников реакции.

В случае гомогенных реакций реагенты и продукты находятся в одной фазе (жидкой или газообразной) и реакция протекает в объеме этой фазы. Например, окисление оксида азота кислородом воздуха в производстве азотной кислоты - газофазная реакция, а реакции этерификации (получение эфиров из органических кислот и спиртов) - жидкофазные.

При протекании гетерогенных реакций, по меньшей мере, один из реагентов или продуктов находится в фазовом состоянии, отличающемся от фазового состояния остальных участников, и при ее анализе обязательно должна учитываться поверхность раздела фаз. Например, нейтрализация кислоты щелочью - это гомофазный гомогенный процесс. Каталитический синтез аммиака - это гомофазный гетерогенный процесс. Окисление углеводородов в жидкой фазе газообразным кислородом представляет собой гетерофазный процесс, но протекающая химическая реакция является гомогенной. Гашение извести СаО + Н2О Са(ОН)2, при котором, все три участника реакции образуют отдельные фазы, а реакция идет на границе раздела воды и оксида кальция, является гетерофазным гетерогенным процессом.

В зависимости от того, применяются или не применяются для изменения скорости реакции специальные вещества - катализаторы, различают каталитические и некаталитические реакции и соответственно химико-технологические процессы. Подавляющее большинство химических реакций, на которых основаны промышленные химико-технологические процессы, - это каталитические реакции.

§1.2 Стехиометрия химических реакций

Для описания химических реакций, лежащих в основе промышленных химико-технологических процессов, используют основные законы химии - законы стехиометрии, химического равновесия, химической кинетики. В гл. 2 и 3 рассмотрены основные принципы использования законов химической термодинамики и химической кинетики в технологии. В этом параграфе кратко изложены основы использования законов стехиометрии.

Стехиометрия - это учение о соотношениях масс или объемов реагирующих веществ. В основе стехиометрии лежат законы Авогадро, Гей-Люссака, а также сохранения массы, эквивалентов, постоянства состава, кратных соотношений.

Соотношения, в которых вещества вступают в реакцию, называют стехиометрическими. Законы стехиометрии в химии могут быть использованы в расчетах, связанных с формулами веществ, а также с нахождением теоретически возможных масс получающихся продуктов реакции.

Стехиометрическое уравнение реакции отвечает законам сохранения. Оно может быть записано как в привычном виде (слева - реагенты, справа - продукты)

аА + bВ = rR + sS,(I)

так и в соответствии с алгебраическими правилами в виде

-аА - bВ + rR + sS = 0(II)

или еще в более общем виде

. (1.1)

В такой записи знак стехиометрического коэффициента ji позволяет определить, является ли данное вещество реагентом (тогда стехиометрический коэффициент отрицателен: ji < 0) или продуктом реакции (тогда ji > 0).

Если реакция сложная и состоит из п независимых последовательных или параллельных стадий, то стехиометрия реакции может быть выражена системой из п уравнений типа уравнения (1.1):

;

; (1.2)

.

В соответствии с алгебраическими правилами каждое из этих уравнений может быть умножено на любую константу (кроме нуля) и смысл этих уравнений не изменится.

Если при стехиометрических расчетах количество вещества выражают в молях, то они сводятся к сравнительно простым стехиометрическим балансам. Например, если протекает реакция

2А + В 2R,(III)

то в соответствии с законами стехиометрии всегда на каждые 2 моль вступившего в реакцию вещества А одновременно вступит в реакцию 1 моль вещества В и образуется 2 моль продукта R.

Если исходные количества участников реакции (I) составляют nA,0, nB,0 и nR,0, а текущие количества пА, пB и nR, то для любого момента времени будут справедливы как стехиометрические соотношения

так и другие вытекающие из них соотношения, называемые стехиометрическими балансами, например

и др.

Следует иметь в виду, что для стехиометрических расчетов и составления стехиометрических балансов не имеет значения, является реакция обратимой или необратимой. Стехиометрический расчет ведется в предположении, что реакция может пройти до конца.

Стехиометрические балансы позволяют решить задачу о количестве независимых реакций в случае протекания сложных многостадийных реакций. При анализе механизма протекания таких реакций важно выделить независимые реакции, которые не могут быть получены простым алгебраическим суммированием двух или большего количества отдельных стадий.

§1.3 Технологические критерии эффективности химико-технологического процесса

Об эффективности осуществления любого промышленного процесса судят прежде всего по экономическим показателям, таким, как приведенные затраты, себестоимость продукции и т. д. Естественно, что окончательная оценка эффективности химико-технологического процесса выводится из этих критериев. Однако они характеризуют весь процесс в целом, его конечный результат, не входя в детальное рассмотрение внутренней сущности, особенностей процесса.

Для оценки эффективности отдельных этапов процесса необходимо помимо общих экономических показателей использовать такие критерии эффективности, которые более полно отражали бы химическую и физико-химическую сущность явлений, происходящих в отдельных аппаратах технологической схемы.

В качестве таких показателей принято, прежде всего, использовать степень превращения исходного реагента, выход продукта, селективность. Они с разных сторон характеризуют полноту использования возможностей осуществления конкретной химической реакции.

Степень превращения. Степень превращения реагента показывает, насколько полно в химико-технологическом процессе используется исходное сырье.

Степень превращения - это доля исходного реагента, использованного на химическую реакцию.

Степень превращения реагента J

где nJ, 0 - количество реагента J в исходной реакционной смеси;

пJ, f - количество реагента J в реакционной смеси, выходящей из аппарата или находящейся в реакторе; ?nJ - изменение количества реагента J в ходе химической реакции.

Чаще всего в химической реакции участвует не один, а два реагента (или даже больше). Степень превращения может быть рассчитана по первому, второму или третьему реагенту, причем в общем случае не обязательно получаются равные результаты.

Если протекает реакция (I), то в соответствии с ее стехиометрическим уравнением изменения количеств ее участников ?nJ связаны между собой следующими соотношениями:

(1.3)

Степени превращения реагентов А и В, участвующих в реакции (I):

(1.4)

Из уравнений (1.3) и (1.4) следует

,

или (1.5)

Уравнение (1.5) устанавливает связь между степенями превращения реагентов А и В и позволяет рассчитать неизвестную степень превращения одного реагента, зная степень превращения другого.

Если т. е. реагенты А и В взяты для проведения реакции в стехиометрическом соотношении (количество реагентов А и В соотносится между собой как соответствующие этим веществам стехиометрические коэффициенты в уравнении реакции), то степени превращения хА и хВ равны между собой: хА = хВ.

Если т. е. реагент А взят в избытке, то, как следует из уравнения (1.5), хА < хВ.

Если же (1.6)

т. е. взят в избытке реагент В, то хА > хВ.

Необходимо помнить, что степень превращения - это доля первоначального количества реагента, т. е. пределы изменения х определяются соотношением

0 ? х ? 1.

Следовательно, если один из реагентов (например, реагент В) взят в избытке, то с учетом выражений (1.5) и (1.6) всегда хВ < 1, даже в том случае, когда хА = 1.

Обычно при выборе первоначального состава реакционной смеси берут в избытке более дешевый реагент (например, воздух, воду и т. д.) с целью повышения степени использования более ценного сырья.

Не всегда возможно достичь полного использования реагента (т. е. условия х = 1). Большинство химических реакций обратимы. Для обратимых реакций при заданных условиях их осуществления предельным является состояние химического равновесия. Этому состоянию соответствует и предельно достижимая при данных условиях равновесная степень превращения

где nА,е - количество реагента А в условиях равновесия; | nА,е | - изменение количества реагента А к моменту наступления равновесия (максимально возможное при данных условиях осуществления химической реакции).

Используя степень превращения реагентов, можно определить количество продуктов R и S, образовавшихся в результате реакции (I), не осложненной наличием побочных взаимодействий. Изменение количества продукта реакции (I), например продукта R, в соответствии со стехиометрическими соотношениями (1.2) можно выразить через изменение количества реагента А или реагента В. Если первоначальное количество продукта R равно нулю (пR,0 = 0), то

, (1.7)

или.

В качестве ключевого реагента, через степень превращения которого выражают количества продуктов, удобно брать реагент, взятый либо в недостатке, либо в стехиометрическом соотношении к другому реагенту. Например, если в качестве такого выбран реагент А, должно выполнятся условие

. (1.8)

Максимально возможное количество продукта R, которое может быть получено при проведении обратимой реакции

аА+ bB rR + sS,(IV)

рассчитывают как равновесное количество этого продукта R, e:

. (1.9)

Если реакционный объем V - постоянная величина (V = const), то во всех приведенных выше соотношениях количества реагентов и продуктов могут быть заменены молярными концентрациями. Например,

и т. д.

Выход продукта. Степень превращения характеризует эффективность проведения процесса с точки зрения использования исходного сырья, но этой величины не всегда достаточно для характеристики процесса с точки зрения получения продукта реакции. Поэтому вводят еще один критерий эффективности - выход продукта.

Выход продукта - отношение реально полученного количества продукта к максимально возможному его количеству, которое могло бы быть получено при данных условиях осуществления химической реакции.

Обозначим выход продукта R через ФR. Тогда

ФR = nR / nR,max. (1.10)

Величина nR,max в уравнении (1.10) зависит от типа осуществляемой химической реакции. Рассмотрим несколько различных реакций.

Необратимая химическая реакция (I). Максимально возможное количество продукта R в такой реакции будет получено, если весь реагент А (nА,0) вступит в реакцию [при этом в качестве реагента А должен быть выбран такой, который удовлетворяет условию (1.8)]

nR,max = na,0(r / a).

В этом случае

. (1.11)

Так как в соответствии с уравнением (1.7) nR = nA,0xA(r/a), то

т. е. для простых необратимых реакций выход продукта и степень превращения реагента совпадают. Однако для других типов химических реакций эти два критерия эффективности различаются.

Обратимая химическая реакция (III). Для такой реакции максимально возможное количество продукта R определяется по уравнению (1.9) как равновесное количество продукта R при данных условиях осуществления реакции (температура, давление, соотношение начальных концентраций реагентов). Тогда с учетом уравнения (1.7)

(1.12)

Таким образом, для обратимых реакций выход продукта равен доле, которую составляет реально достигнутая степень превращения от равновесной для данных условий проведения реакции.

Пример 1.1. Пусть протекает реакция

А + 2В 2R + S.

Начальное количество реагентов nА,0 = 10 кмоль; nB,0 = 25 кмоль. В реакционной смеси, выходящей из реактора, содержится 12 кмоль продукта R. Известно, что в равновесной смеси при данных условиях проведения реакции содержится 2,5 кмоль продукта А.

Определим выход продукта RR). В соответствии с уравнением (1.12)

ФR = xA - xA,e.

Определим степень превращения хА, используя уравнение (1.7):

Равновесная степень превращения

Тогда

ФR = хА/xA,e = 0,6 / 0,75 = 0,8.

Для определения выхода продукта ФR в данном примере можно также рассчитать nR,e = (nA,0 - nA,e)(r/a) = 15 кмоль и воспользоваться уравнением (1.10): ФR = nR / nR,e = l2 / 15 = 0,8.

Параллельные и последовательные реакции. Рассмотрим две параллельно протекающие реакции, в которых наряду с целевым продуктом R получаются продукты побочной реакции:

(V)

Максимально возможное количество продукта R будет получено в том случае, если весь исходный реагент А при соблюдении условия (1.8) будет реагировать только по целевой реакции. Тогда

. (1.13)

Следует помнить, что выразить nR через степень превращения и начальное количество А в случае сложной реакции нельзя, так как расходование вещества А происходит не только в целевом направлении, но и в побочном.

Так же будет выглядеть и выражение для выхода целевого продукта R для последовательных реакций, например реакций типа

rR sS.

При протекании обратимых параллельных и последовательных реакций максимально возможным количеством целевого продукта будет то количество R, которое было бы получено, если бы реагент А расходовался только на целевую реакцию и в момент равновесия продуктов побочных реакций не было бы.

Таким образом, для обратимых сложных реакций

(1.14)

Как и степень превращения, выход продукта для реакционных систем с постоянным объемом может быть определен как отношение концентраций. Следует также помнить, что выход, выражаемый как доля от некоторой предельно возможной величины, изменяется от 0 до 1.

Селективность. Выход продукта характеризует полученный результат, как долю от предельно возможного результата. Целесообразно оценить и реальную ситуацию, т. е. дать количественную оценку эффективности целевой реакции по сравнению с побочными взаимодействиями.

Критерием для такой оценки является селективность. Селективность, как и два предыдущих критерия эффективности, выражают в долях единицы или процентах.

Полная, или интегральная, селективность ц - это отношение количества исходного реагента, расходуемого на целевую реакцию, к общему количеству исходного реагента, пошедшего на все реакции (и целевую, и побочные):

.

Мгновенной, или дифференциальной, селективностью ц/ называют отношение скорости превращения исходных реагентов в целевой продукт к суммарной скорости расходования исходных реагентов:

,

где - скорость расходования реагента А по целевой реакции; - суммарная скорость расходования реагента А.

Использование дифференциальной селективности при анализе технологических процессов будет описано в гл. 3. Здесь рассмотрим только полную селективность.

Для реакций (III) полная селективность по целевому продукту R может быть выражена через количество полученного продукта R и количество реагента А, суммарно израсходованного на реакцию.

С учетом стехиометрических соотношений количество реагента А, вступившего в реакцию образования целевого продукта, равно (a/r) nR.

Тогда полная селективность

(1.15)

Знаменатель в уравнении (1.15) можно заменить через количество полученных продуктов целевой и побочной реакции с учетом стехиометрических соотношений:

Пример 1.2. Рассмотрим в качестве примера параллельные реакции

4NH3 + 5О2 4NO + 6Н2О;

4NH3 + ЗО2 2N2 + 6H2O.

Целевой является реакция получения оксида азота NO.

Селективность можно рассчитать по количеству полученных на выходе из реактора продуктов целевой реакции (оксида азота) и побочной реакции (азота):

Между выходом целевого продукта, степенью превращения исходного реагента и селективностью существует простая связь. Рассмотрим ее сначала на примере необратимых параллельных реакций (IV).

В соответствии с уравнением (1.13) выход продукта R

(1.16)

Реально полученное количество продукта R можно выразить через селективность, пользуясь уравнением (1.15)

. (1.17)

После подстановки уравнения (1.17) в уравнение (1.16) получим

. (1.18)

Если параллельные реакции обратимы, то максимально возможное количество продукта R, которое могло бы получиться при отсутствии побочной реакции, определяется условиями равновесия. Тогда для определения выхода продукта нужно применить уравнение (1.14). Подставляя в него значение количества реально полученного продукта R, выраженного с помощью уравнения (1.17), будем иметь более общее уравнение связи между выходом, селективностью и степенью превращения:

,

или

. (1.19)

Из уравнений (1.18) и (1.19) следует, что при выборе условий проведения сложных химических реакций недостаточно обеспечить только высокое значение степени превращения реагентов или только высокую селективность; высокое значение выхода целевого продукта определяется некоторой совокупностью этих критериев эффективности.

Оптимальными значениями выхода, селективности и степени превращения будут, как правило, такие, достижение которых позволяет обеспечить максимальную экономическую эффективность процесса.

Производительность и интенсивность. Важным критерием эффективности работы отдельных аппаратов, цехов или заводов в целом является производительность.

Производительность - это количество продукта, полученное в единицу времени:

,

где П - производительность; nR - количество продукта; ф - время. Производительность измеряется в кг/ч, т/сут, т/год и т. д. Например, производительность современного агрегата синтеза аммиака составляет 1360 т аммиака в сутки; производительность агрегата по производству серной кислоты - 1 млн т серной кислоты в год и т. д. Иногда производительность оценивают по количеству переработанного сырья, например производительность печи обжига колчедана - 450 т колчедана в сутки. Если известны концентрация продукта в реакционной смеси, для определения производительности удобно воспользоваться следующей формулой:

П = cRv,

где cR - концентрация продукта; v - объемный расход реакционной смеси.

Максимально возможная для данного агрегата, машины производительность (проектная) называется мощностью. Одним из основных направлений развития химической промышленности является увеличение единичной мощности агрегатов, так как оно ведет к снижению удельных капитальных затрат, повышению производительности труда.

Для сравнения работы аппаратов различного устройства и размеров, в которых протекают одни и те же процессы, используют понятие «интенсивность».

Интенсивностью называется производительность, отнесенная к какой-либо величине, характеризующей размеры аппарата, - его объему, площади поперечного сечения и т. д.

Например,

,

где V - объем аппарата. Интенсивность измеряется в кг/(ч · м3), т/(сут · м3) и т. д.

При разработке новых процессов или усовершенствовании существующих стремятся к созданию высокоинтенсивных аппаратов. Увеличение интенсивности аппарата часто возможно при создании таких условий проведения процесса, которые обеспечивают его протекание с высокой скоростью.

При анализе работы каталитических реакторов принято относить производительность аппарата в целом к единице объема или массы катализатора, загруженного в реактор. Такую величину, численно равную количеству продукта, полученного с единицы объема или массы катализатора, называют производительностью катализатора, или его напряженностью.

Вопросы и упражнения

для повторения и самостоятельной работы

Из каких основных стадий состоит химико-технологический процесс? В каких стадиях химико-технологического процесса участвуют химические реакции?

Что такое химический процесс? Почему химический процесс как единичный процесс химической технологии сложнее по сравнению с тепловыми и массообменными процессами?

Объясните взаимное влияние химической реакции и явлений тепло- и массопереноса на примерах:

а) сгорание в потоке воздуха частицы колчедана;

б) разложение фторапатита Ca5F(PO4)3 серной кислотой;

в) получение аммиачной селитры при взаимодействии газообразного аммиака с раствором азотной кислоты.

Какие технологические критерии эффективности химико-технологического процесса вы знаете? Дайте их определения.

Каковы пределы изменения степени превращения, выхода продукта, селективности?

Что означает выражение «реагенты взяты в стехиометрическом соотношении»?

Выведите уравнение связи между степенями превращения двух реагентов, вступающих в реакцию

аА + bВ rR + sS,

если известно, что для проведения реакции взято nА,0 моль реагента А и nB,0 моль реагента В.

В химической реакции участвуют два реагента А и В, причем на каждый моль реагента А взято по 2 моль реагента В. В каком случае будет справедливо утверждение, что степень превращения хА реагента А больше степени превращения хВ реагента В?

В чем различия между действительной и равновесной степенями превращения реагента?

С какой целью при проведении химических процессов в промышленных условиях один из реагентов часто берут в избытке по отношению к стехиометрии реакции? Каковы пути использования реагента, взятого в избытке и не вступившего в реакцию?

Определите состав смеси (сА, сВ, cR, cS) и степень превращения jcb для реакции А + 2В 2R + S, если хА = 0,6, сА,0 = 1 кмоль/м3,

сB,0 = 1,5 кмоль/м3.

Выведите уравнение связи между выходом продукта и степенью превращения одного из реагентов для обратимой химической реакции, не сопровождающейся побочными взаимодействиями.

Рассчитайте выход продукта Р, если известно, что при проведении последовательных реакций

А+ В Р + R,

Р + М S + Z

получено 12 моль продукта Р, 4 моль продукта S, а для проведения реакций было взято по 20 моль реагентов А и В.

В чем различие между полной (интегральной) и мгновенной (дифференциальной) селективностями?

Выведите уравнение взаимосвязи между выходом целевого продукта R, степенью превращения реагента А и полной селективностью ц при проведении двух необратимых последовательных реакций

А R (целевая реакция),

R S (побочная реакция).

Выведите уравнение взаимосвязи между выходом целевого продукта, степенью превращения реагента и полной селективностью при проведении параллельных обратимых реакций

а1А + b1В rR (целевая реакция),

a2А + b2B sS (побочная реакция).

Рассчитайте полную селективность, если при проведении последовательных реакций

A R + М (целевая реакция),

R S + N (побочная реакция)

получено 6 моль продукта R и 2,5 моль продукта S.

Протекают последовательные реакции А 2R и R 3S, целевым продуктом которых является вещество R. Определите выход продукта R, степень превращения хА и полную селективность ц, если известен конечный состав реакционной смеси: сА, f = 1 кмоль/м3, cR, f = 2 кмоль/м3, cS, f = 2 кмоль/м3.

Определите выход продукта R и степень превращения хА реагента А, если обратимая реакция А 2R протекает при условиях, когда равновесная степень превращения xA,е = 0,75, а отношение концентраций продукта и реагента после окончания реакции сR: сА = 1.

Протекают параллельные реакции

2А R,

А 3S.

Определите выход продукта R, степень превращения хА реагента А и полную селективность ц, если на выходе из реактора сА,f = 2 кмоль/м3, cR, f = 3 кмоль/м3, cS, f = 3,5 кмоль/м3.

Что называется производительностью, мощностью, интенсивностью?

Как связаны между собой:

а) производительность и степень превращения реагента;

б) производительность и выход целевого продукта?

Определите понятия «технологический режим», «технологическая схема процесса».

Глава 2. ТЕРМОДИНАМИЧЕСКИЕ РАСЧЕТЫ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

При проектировании технологических процессов очень важны термодинамические расчеты химических реакций. Они позволяют сделать заключение о принципиальной возможности данного химического превращения; предварительно выбрать условия проведения процесса; определить равновесный состав продуктов; рассчитать теоретически достижимые степени превращения исходных веществ и выходы продуктов, а также энергетические эффекты (теплоту реакции, теплоту изменения агрегатного состояния и т. д.). Это необходимо для составления энергетических балансов и определения энергетических затрат.

В самом широком смысле термодинамика - это наука о преобразовании энергии. Понятие «энергия» неотъемлемо от движения материи. Движение связано с материей, являясь формой ее существования, а энергия есть мера движения материи. Факт взаимного превращения различных форм движения материи при сохранении количества этого движения является содержанием закона сохранения и превращения энергии.

Наиболее важные понятия термодинамики - «теплота процесса» и «работа». Преобразование теплоты в работу или работы в теплоту осуществляется обычно в термодинамическом процессе посредством рабочего тела. Термодинамическая система называется однородной, если во всех частях системы свойства одинаковы. Совокупность физических свойств рабочего тела (или термодинамической системы) в рассматриваемых условиях называется состоянием тела (или системы). Величины, характеризующие состояние термодинамической системы, называют термодинамическими параметрами. К ним относят температуру, давление, удельный объем, плотность, молярный объем, удельную внутреннюю энергию и др.

Термодинамические параметры делят на экстенсивные и интенсивные. Величины, пропорциональные массе (или количеству вещества) рассматриваемого рабочего тела или термодинамической системы, называются экстенсивными. Это - объем, внутренняя энергия, энтальпия, энтропия и т. п. Экстенсивные параметры обладают свойством аддитивности.

Интенсивные величины не зависят от массы термодинамической системы, и только они служат термодинамическими параметрами состояния. Это - температура, давление, а также экстенсивные величины, отнесенные к единице массы, объема или количества вещества. Изменение интенсивных параметров для ускорения химико-технологических процессов называется интенсификацией.

§2.1 Равновесие химических реакций

Под воздействием подвода или отвода энергии в форме теплоты или работы происходит изменение состояния термодинамической системы (значений термодинамических параметров), называемое термодинамическим процессом. Процессы, представляющие собой непрерывный ряд равновесных состояний, называют равновесными. При этом равновесным считают состояние, в которое приходит система при постоянных внешних условиях, характеризуемое неизменностью во времени термодинамических параметров и отсутствием в системе потоков вещества и теплоты.

Устойчивое равновесие характеризуется следующими общими условиями:

1) неизменностью равновесного состояния системы во времени при постоянных внешних условиях;

2) подвижностью равновесия (самопроизвольным восстановлением состояния равновесия после снятия внешнего воздействия, вызвавшего отклонение системы от положения равновесия);

3) динамическим характером равновесия, т. е. установлением и сохранением равновесия вследствие равенства скоростей прямого и обратного процессов;

4) возможностью подхода к состоянию равновесия с двух противоположных сторон;

5) минимальным значением энергии Гиббса G в изобарно-изотермических и энергии Гельмгольца F в изохорно-изотермических процессах (dG = 0, d2G > 0, dF = 0, d2F > 0).

Из этих общих условий выводятся конкретные условия для химического равновесия.

Химические реакции, как правило, обратимы: наряду с химическим взаимодействием между исходными веществами (прямая реакция) протекает взаимодействие и между продуктами (обратная реакция). По мере протекания процесса скорость прямой реакции уменьшается, а скорость обратной реакции увеличивается; в какой-то момент времени скорости прямой и обратной реакций становятся равными - наступает состояние химического равновесия. Химическое равновесие характеризуется неизменностью числа молекул веществ, составляющих химическую систему, при неизменных внешних условиях. Так как условием равновесия при постоянных температурах Тир служит минимум энергии Гиббса (G = 0), то в условиях химического равновесия должно также соблюдаться равенство

,

где мJ - химический потенциал компонента J; nJ - количество компонента J (моль).

Известно, что химическим потенциалом называется величина

Большая положительная величина м указывает на высокую реакционную способность частиц.

Закон действующих масс. Впервые зависимость направления химического процесса от концентрации реагирующих веществ установил Н. Н. Бекетов (1865), убедительно обосновав это положение значительным числом опытов. В математической форме закон действующих масс был выражен Гульдбергом и Вааге (1867).

Рассмотрим кинетический вывод закона действующих масс на примере гомогенной реакции

аА + bВ rR + sS. (I)

Как известно из курса общей химии, скорость прямой реакции пропорциональна произведению концентраций реагентов А и В:

а скорость обратной реакции - произведению концентраций продуктов R и S:

Каждая концентрация возведена в степень, равную стехиометрическому коэффициенту компонента в химическом уравнении. Из условия равенства скоростей прямой и обратной реакций в момент химического равновесия

Получаем

где - равновесные концентрации.


Подобные документы

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция [46,2 K], добавлен 18.02.2009

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

  • Методы построения кинетических моделей гомогенных химических реакций. Расчет изменения концентраций в ходе химической реакции. Сравнительный анализ численных методов Эйлера и Рунге-Кутта. Влияние температуры на выход продуктов и степень превращения.

    контрольная работа [242,5 K], добавлен 12.05.2015

  • Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.

    лабораторная работа [282,5 K], добавлен 08.10.2013

  • Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.

    контрольная работа [41,1 K], добавлен 13.02.2015

  • Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа [1,1 M], добавлен 18.01.2014

  • Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

    презентация [2,2 M], добавлен 19.10.2014

  • Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат [773,3 K], добавлен 25.07.2010

  • Методы построения кинетических моделей гомогенных химических реакций. Исследование влияния температуры на выход продуктов и степень превращения. Рекомендации по условиям проведения реакций с целью получения максимального выхода целевых продуктов.

    лабораторная работа [357,5 K], добавлен 19.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.