10 тем нормальной физиологии

История открытия биопотенциалов. Физиология возбудимых тканей, центральной нервной системы, сенсорных систем и высшей нервной деятельности. Характеристика гуморальной регуляции. Рассмотрение крови и кровообращения, дыхания, пищеварения и выделений.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 09.12.2014
Размер файла 8,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сосудодвигательный центр.

Впервые был описан Ф.В.Овсянниковым (1871). Располагается в продолговатом мозге на дне IV желудочка, состоит из прессорного и депрессорного отделов.

Раздражение прессорного отдела вызывает сужение артерий и подъём АД.

Раздражение депрессорного отдела вызывает расширение артерий и падение АД.

Считается, что депрессорный отдел понижает тонус прессорного отдела, снижая тем самым сосудосуживающий эффект.

Влияния, идущие от сосудодвигательного центра продолговатого мозга, приходят к нервным центрам симпатического отдела АНС в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудодвигательного центра продолговатого мозга самостоятельно повышать давление, снизившееся после расширения артерий и артериол.

На сосудодвигательный центр продолговатого мозга влияют центры промежуточного мозга (гипоталамус, таламус) и коры больших полушарий.

Рефлекторная регуляция сосудистого тонуса.

Сосудистые рефлексы бывают собственные и сопряжённые (В.Н.Черниговский). Собственные рефлексы вызываются сигналами от рецепторов самих сосудов. Сопряжённые рефлексы - рецепторами, располагающимися в других системах и органах.

Для собственных рефлексов особенное значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии (сосудистые рефлексогенные зоны) - механорецепторы и хеморецепторы.

Механорецепторы возбуждаются при повышении давления крови в сосудах (прессорецепторы или барорецепторы).

Прессорецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, проходящих в составе аортального нерва (Цион и Людвиг обозначили его как депрессор). Его раздражение приводит к падению АД вследствие рефлекторного повышения тонуса ядер блуждающего нерва и депрессорного отдела сосудодвигательного центра. Если блуждающие нервы перерезаны, наблюдается рефлекторное расширение сосудов без замедления сердечного ритма.

Растяжение стенки сонной артерии возбуждает прессорецепторы каротидного синуса, от которых идут центростремительные волокна, образующие синокаротидный нерв (нерв Геринга). Он вступает в мозг в составе языкоглоточного нерва и при возбуждении рефлекторно повышает тонус депрессорного отдела сосудодвигательного центра и ядер блуждающего нерва.

Понижение АД (вследствие уменьшения объёма крови) ведёт к тому, что прессорецепторы дуги аорты и сонных артерий раздражаются менее интенсивно, тормозное влияние аортального и синокаротидного нервов на прессорный отдел сосудодвигательного центра ослабляется, сосуды суживаются, работа сердца усиливается, АД нормализуется.

Эти рефлексы - пример регуляции «на выходе по рассогласованию» по принципу отрицательной обратной связи, включающей компенсаторные реакции восстановления нормального АД.

Регуляция АД «на выходе по возмущению» включает компенсаторные реакции ещё до того, как АД изменится, т.е. предупреждает его отклонение от нормы. Запускаются сигналами, возникающими в рецепторах растяжения миокарда и коронарных сосудов, несущих информацию о степени наполнения кровью полостей сердца и артериальной системы. Т.е. эти реакции реализуются через внутрисердечную нервную систему и через вегетативные центры ЦНС.

Сосудистые рефлексы могут возникать также при повышении давления в сосудах лёгкого, кишечника, селезёнки.

Рефлексы регуляции давления крови осуществляются с помощью не только механорецепторов, но и хеморецепторов аорты и сонной артерии. Они чувствительны к СО2, недостатку О2 в крови, адреналину, никотину, СО, цианидам. Их возбуждение вызывает повышение тонуса прессорного отдела сосудодвигательного центра, сосуды суживаются, давление повышается. Одновременно возбуждается дыхательный центр. Т.о., в отличие от механорецепторов, возбуждение хеморецепторов аорты и сонной артерии вызывает прессорные сосудистые рефлексы. Хеморецепторы обнаружены также в сосудах селезёнки, надпочечников, почек, костного мозга.

Сопряжённые сосудистые рефлексы преимущественно вызывают повышение АД за счёт сужения сосудов. При болевых раздражениях поверхности тела особенно суживаются сосуды брюшной полости. При раздражениях кожи холодом суживаются, главным образом, кожные артериолы.

Кортикальная регуляция сосудистого тонуса была доказана как путём раздражения определённых участков коры, так и методом условных рефлексов. Многократное сочетание индифферентного раздражителя с согреванием, охлаждением, болевым раздражением приводит к выработке условного рефлекса, после чего в ответ на действие этого индифферентного ранее раздражителя возникают соответствующие сосудистые реакции. При этом часто возникают и соответствующие ощущения (тепла, холода, боли).

Гуморальные влияния на сосуды.

Сосудосуживающие вещества.

Катехоламины (адреналин, норадреналин) суживают артерии и артериолы кожи, органов брюшной полости, лёгких. Оказывают влияние в очень малых концентрациях (1Ч10-7 г/л).

Вазопрессин действует преимущественно на артериолы и прекапилляры.

Серотонин суживает сосуды и препятствует кровотечению из повреждённого участка. Однако во II-й фазе свёртывания крови, после образования тромба, наоборот, расширяет сосуды.

Ангиотензин II - активное сосудосуживающее вещество, разрушающееся ангиотензиназой. Для его образования необходим ренин. Ренин расщепляет ангиотензиноген, в результате чего образуются ангиотензин I, затем ангиотензин II. Образование ренина в почках увеличивается при снижении кровоснабжения.

Сосудорасширяющие вещества.

Медуллин - образуется в почках.

Во многих тканях тела образуются простагландины - производные ненасыщенных жирных кислот.

Брадикинин - полипептид, получен из подчелюстной, поджелудочной желёз, лёгких. Вызывает расслабление артериол.

Ацетилхолин - быстро разрушается в крови, местное действие.

Гистамин - расширяет артериолы. При введении больших доз вызывает шок, снижение АД, нарушения мозгового кровообращения. Обуславливает покраснение кожи при различных воздействиях на неё.

При работе скелетной мускулатуры образуются адениловая, молочная и угольная кислоты и др.

Местные и центральные механизмы регуляции кровообращения.

Каждая клетка, ткань и орган нуждаются в поступлении строго определённого количества крови, несущей О2 и питательные вещества. Эти потребности определяются метаболизмом и интенсивностью функционирования, а обеспечиваются - поддержанием постоянного уровня АД и одновременно - непрерывным перераспределением протекающей крови между всеми органами и тканями.

Механизмы регуляции кровообращения делят на центральные и местные. Центральные определяют величину АД и системное кровообращение, а местные - величину кровотока через отдельные органы и ткани. Разделение условное, т.к. местная регуляция осуществляется с участием центральных механизмов, а управление системным кровообращением зависит от деятельности местных регуляторных механизмов.

При усиленной функции органа или ткани возрастает интенсивность метаболизма, повышается концентрация продуктов обмена - метаболитов - СО2, угольной кислоты, АДФ, фосфорной и молочной кислот и т.д. Увеличивается осмотическое давление вследствие появления большого количества низкомолекулярных продуктов, уменьшается рН. Это приводит к расширению сосудов в работающем органе, т.к. гладкая мускулатура очень чувствительна к действию этих продуктов обмена.

Попадая в общий кровоток и достигая сосудодвигательного центра, многие из этих веществ повышают его тонус. Возникает генерализованное повышение тонуса сосудов и увеличение системного АД при значительно возросшем кровотоке через работающие органы.

В работающей скелетной мышце число открытых капилляров на 1мм2 возрастает 100 раз. МОК, нагнетаемый сердцем при интенсивной физической работе, может увеличиться не более чем в 5 - 6 раз. Возрастание кровоснабжения работающих мышц в 100 раз возможно лишь вследствие перераспределения крови.

Мышечная работа ведёт к сужению сосудов пищеварительных органов и усилению притока крови к работающим мышцам.

В период пищеварения, наоборот, усиливается приток крови к пищеварительным органам и уменьшается кровоснабжение кожи и скелетной мускулатуры.

Во время напряжённой умственной работы усиливается кровоснабжение мозга.

В сосудах работающих мышц тонус понижается и в результате механических факторов - сокращение скелетных мышц сопровождается растяжением сосудистых стенок, уменьшающим сосудистый тонус и увеличивающим местное кровообращение.

Роль эндотелия сосудистой стенки в регуляции кровотока.

Эндотелиоциты под влиянием химических раздражителей, приносимых кровью, или под влиянием механического растяжения синтезируют и выделяют факторы, влияющие на тонус ГМК сосудов. Эти факторы вызывают сокращение или расслабление ГМК, срок их жизни мал, действие ограничивается сосудистой стенкой.

РЕГИОНАРНОЕ КРОВООБРАЩЕНИЕ

Этот термин традиционно употребляется для обозначения гемодинамики в органах, несмотря на то, что в отдельных органах кругооборота крови в процессе её движения не совершается.

Мозговое кровообращение.

В головном мозге непрерывно протекают энергоёмкие процессы и для его нормального функционирования необходима высокая интенсивность кровоснабжения. При средней массе 1400 - 1500 г мозг в состоянии спокойного функционирования получает крови ~750 мл/минуту (15% МОК). Серое вещество обеспечивается кровью интенсивнее, чем белое. Благодаря ауторегуляции мозгового кровотока, питание мозга остаётся неизменным при падении АД до 50 мм рт.ст.

Мозг располагается в ригидном костном образовании - черепе. Объём крови и цереброспинальной жидкости остаётся почти постоянным. При избыточности кровоснабжения может произойти излишняя гидратация ткани мозга с последующим развитием отёка и повреждениями не совместимыми с жизнью. Ауторегуляторные механизмы предохраняют мозг от избыточного кровенаполнения при повышении АД до 150 - 170 мм рт.ст.

Помимо ауторегуляции предохранение от высокого АД и избыточной пульсации осуществляется за счёт строения сосудистой системы мозга. Многочисленные изгибы (сифоны) по ходу сосудистого русла способствуют значительному перепаду давления и сглаживанию пульсирующего кровотока.

Специфические особенности:

1) при повышенной активности всего организма кровоток в головном мозге увеличивается на 20-25 %. Это не оказывает повреждающего действия, т.к. основной сосудистый бассейн располагается на поверхности (система сосудов мягкой мозговой оболочки) и располагает резервом кровенаполнения за счёт расстояния до твёрдой мозговой оболочки;

2) физиологически активное состояние характеризуется активацией в строго соответствующих нервных центрах, где формируются доминантные очаги. Нет необходимости в увеличении суммарного кровотока, а есть внутримозговое перераспределение кровотока в пользу активно работающих областей.

Венечное кровообращение.

Доставка артериальной крови в миокард осуществляется венечными (коронарными) артериями, которые, после разветвления, образуют густую сеть капилляров. Практически каждое мышечное волокно миокарда снабжено обменным сосудом. Венечный отток осуществляется через венечный (коронарный) синус, открывающийся в полость правого предсердия.

Кровоснабжение миокарда составляет 4-5% от МОК, т.е. ~200-250 мл/мин. При интенсивной работе оно возрастает в 5-6 раз. Снижение нормального кровоснабжения волокон миокарда приводит к развитию инфаркта.

Коронарный кровоток изменяется в зависимости от периода сердечного цикла. В систолу сдавливаются сосуды среднего и внутреннего слоёв миокарда и движение крови затруднено. В диастолу проходимость сосудов восстанавливается и кровоток увеличивается.

Функциональные особенности венечного (коронарного) кровообращения:

1) Высокая экстракция кислорода миоглобином мышцы сердца (до 75%);

2) Высокая объёмная скорость кровотока в миокарде;

3) Высокая растяжимость коронарных сосудов;

4) Фазные колебания кровотока в венах, противоположной направленности -

ускорение оттока в систолу, замедление в диастолу.

Когда укорачивается диастола (при тахикардии), эти особенности в меньшей степени компенсируют систолическое ограничение кровоснабжения миокарда.

Регуляция венечного кровообращения - сочетание местных и дистантных механизмов. Местные - базальный тонус, миогенная метаболическая активность ГМК сосудов. Дистантные - нервные и гуморальные влияния.

Симпатические адренергические волокна вызывают как расширение, так и сужение коронарных сосудов, за счёт избирательной настройки б- и в-адренорецепторов в ГМК коронарных сосудов.

Катехоламины вмешиваются в метаболизм ГМК коронарных сосудов в зависимости от их концентрации в крови.

Парасимпатические холинергические влияния действуют опосредованно, угнетая сократительную активность сердечной мышцы и снижая её метаболические потребности.

Лёгочное кровообращение.

Лёгкие получают кровь из сосудов и малого круга, обеспечивающих газообменную функцию, и бронхиальных сосудов большого круга, удовлетворяющих метаболические потребности лёгочной ткани. МОК в малом круге соответствует МОК в большом круге и в условиях покоя составляет ~ 5 л/мин. При работе МОК возрастает до 25 л/мин.

Распределение кровотока неравномерно. Верхушки лёгкого расположены выше основания лёгочной артерии, что уравнивает АД в верхних долях с гидростатическим давлением. В нижних долях, благодаря суммированию АД с гидростатическим кровоснабжение более обильное.

Интенсивность кровоснабжения зависит от циклических изменений плеврального и альвеолярного давлений в различные фазы дыхательного цикла. Во время вдоха, когда плевральное и альвеолярное давления уменьшаются, происходит пассивное расширение лёгочных сосудов, их сопротивление снижается, кровоснабжение увеличивается.

Местные механизмы регуляции кровотока направлены на обеспечение соответствия локального кровотока уровню вентиляции данного участка. При снижении в альвеолах РО2 и/или повышении РСО2 происходит местная вазоконстрикция.

Нервная регуляция осуществляется в основном симпатическими сосудосуживающими волокнами.

Существует функциональная связь с механизмами регуляции гемодинамики большого круга. Рефлексы с баро- и хеморецепторов сонного (каротидного) синуса сопровождаются активными изменениями лёгочного кровотока. С другой стороны, рефлексогенные зоны малого круга порождают изменения гемодинамики большого круга.

Гуморальная регуляция обусловлена такими веществами как ангиотензин, серотонин, гистамин, простагландины, которые в основном вызывают вазоконстрикцию и повышение давления в лёгочных артериях.

Кровообращение плода.

Нет изоляции кругов кровообращения. Предсердия не обособлены (соединяются через овальное отверстие). В лёгкие кровь идёт в незначительном количестве, т.к. они не функционируют. Большая часть крови из лёгочной артерии, минуя лёгкие, направляется по боталлову протоку в аорту.

Важную роль играют пупочные артерии, отходящие от подвздошной артерии. Через пупочное отверстие они выходят из плода, разветвляются в алантохорионе, образуя густую сеть артерий и капилляров. Последние входят в ворсинки хориона, где кровь обогащается О2 и питательными веществами, перешедшими из крови матери путём диффузии по градиенту концентраций. От плаценты кровь оттекает по пупочной вене в том же канатике и попадает воротную вену печени. Система кровообращения плода замкнута, кровь матери никогда не попадает в плод, и наоборот. Все органы и ткани плода снабжаются смешанной кровью с небольшим содержанием О2 и повышенным содержанием СО2.

После рождения пупочные вены и артерии запустевают и превращаются в соединительнотканные тяжи (связки). С первым вдохом начинают функционировать лёгкие, устанавливается лёгочное кровообращение. Кровь из правого желудочка поступает в лёгочную артерию и дальше в лёгкие. Боталлов проток запустевает и зарастает, отверстие между предсердиями зарастает. Левое предсердие заполняется кровью из лёгочных вен, давление крови в обоих предсердиях выравнивается.

ЛИМФООБРАЩЕНИЕ

Лимфатическая система состоит из следующих образований:

1) лимфатических капилляров - замкнутых с одного конца эндотелиальных трубок,

пронизывающих все органы и ткани;

2) внутриорганных сплетений посткапилляров и мелких лимфатических сосудов,

снабжённых клапанами;

3) экстраорганных отводящих лимфатических сосудов, прерывающихся на своём пути

лимфатическими узлами, впадающих в главные лимфатические стволы;

4) главных лимфатических протоков - грудного и правого лимфатического, впадающих в

крупные вены шеи.

Функции лимфатической системы.

1) Возврат белков, электролитов и воды из интерстициального пространства в кровь.

2) Лимфоциркуляция участвует в формировании максимально концентрированной мочи.

3) Перенос продуктов (прежде всего жиров), всасывающихся в ЖКТ.

4) Перенос некоторых ферментов (гистаминаза, липаза).

5) Удаление эритроцитов, оставшихся в ткани после кровотечения.

6) Обезвреживание и удаление попавших в ткани бактерий.

7) Продукция и перенос лимфоцитов и других факторов иммунитета.

Лимфа - жидкость, возвращаемая из тканевых пространств по лимфатической системе. Лимфа образуется из тканевой (интерстициальной) жидкости, накапливающейся в межклеточном пространстве в результате преобладания фильтрации жидкости над реабсорбцией через стенку кровеносных капилляров.

Образование лимфы происходит в лимфатических капиллярах и посткапиллярах под влиянием изменяющихся градиентов гидростатического и коллоидно-осмотического давлений.

Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. По составу белков и липидов лимфа значительно отличается от плазмы крови.

Вследствие того, что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое их количество постоянно просачивается в интерстициальное пространство. При определённой концентрации белки (по градиенту) начинают поступать в лимфатические капилляры. Движение белков внутрь лимфатических капилляров осуществляется также посредством пиноцитоза.

Содержание белков в лимфе составляет в среднем 2-3% от объёма. Концентрация белков в лимфе зависит от скорости её образования - увеличение поступления жидкости вызывает рост объёма образующейся лимфы и уменьшение концентрации белков в ней.

В лимфе в небольшом количестве содержатся все факторы свёртывания, антитела и различные ферменты, имеющиеся в плазме.

Холестерин и фосфолипиды находятся в виде липопротеинов.

Содержание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника.

Клеточный состав лимфы в основном лимфоциты. Эритроциты в норме в ограниченном количестве. Тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции.

Факторы, обеспечивающие фильтрацию из кровеносных капилляров, участвуют и в лимфообразовании, и в создании первоначального гидростатического давления, необходимого для перемещения лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

В лимфатических сосудах основной силой, обеспечивающей перемещение лимфы до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов.

Лимфангион - морфофункциональная единица лимфатических сосудов, «трубчатое лимфатическое микросердце». Состоит из мышечной манжетки из спиралеобразно расположенных ГМК и 2-х клапанов - дистального и проксимального.

Рис. 27. Движение лимфы по лимфангионам лимфатических сосудов.

А - лимфангион в фазе сокращения; Б - лимфангион в фазе заполнения; В - лимфангион в состоянии покоя; а - мышечная манжетка лимфангиона; б - клапан.

По мере поступления лимфы стенки лимфангиона растягиваются, ГМК манжетки возбуждаются. Последующее сокращение ГМК повышает давление до уровня, достаточного для закрытия дистального конца и открытия проксимального, т.е. происходит перемещение лимфы в следующий лимфангион. Т.о. лимфа перемещается по лимфатическим коллекторам за счёт последовательного сокращения лимфангионов.

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль их заключается в модуляции параметров спонтанно возникающих ритмических сокращений.

При общем возбуждении симпатико-адреналовой системы могут происходить тонические сокращения гладких мышц лимфангионов, что приводит к повышению давления в системе лимфатических сосудов и быстрому поступлению лимфы в кровоток.

Транспорту лимфы способствуют дыхательные движения (на вдохе усиливается отток из грудного протока); сокращения мышц, окружающих лимфатические сосуды.

Дыхание

ДЫХАНИЕ, ЕГО ОСНОВНЫЕ ЭТАПЫ

Дыхание (respiration) - многоплановый термин.

В биохимии и биоэнергетике дыхание - это многоступенчатый ферментативный процесс окисления субстратов для внутриклеточного освобождения энергии. Если в качестве акцептора электронов выступают нитриты, сульфиты или другие неорганические соединения, то такое дыхание называется анаэробным. Если в качестве конечного акцептора используется молекула кислорода - то говорят об аэробном дыхании. Часть освобожденной в процессе дыхания энергии затрачивается на активный транспорт и создание электрохимических градиентов на мембранах, часть рассеивается в виде тепла, часть аккумулируется в форме высокоэнергетических соединений (АТФ).

В физиологии термином дыхание обозначают процесс газообмена между организмом и средой его обитания, сопровождающийся поглощением кислорода, выделением углекислого газа и метаболической воды.

У одноклеточных и ряда беспозвоночных, не имеющих специализированных образований для газообмена, осуществляется прямое дыхание через покровы без каких-либо движений и изменений объема тела. С увеличением массы тела в процессе эволюции возникают специализированные органы дыхания, имеющие развитую поверхность (жабры, легкие) и вспомогательные образования (дыхательные мышцы, осуществляющие принудительную вентиляцию), обеспечивающие непрямое дыхание.

Наиболее часто под термином «дыхание» подразумевают периодическое движение грудной клетки, изменяющее ее объем и вызывающие возвратно-поступательное движение воздуха в дыхательных путях (респирация). Однако это лишь легко наблюдаемое проявление вентиляции легких.

В случае легочного дыхания выделяется 5 основных этапов процесса дыхания:

1) внешнее дыхание, или вентиляция легких - обмен газов между альвеолами легких и атмосферным воздухом;

2) обмен газов в легких между альвеолярным воздухом и кровью;

3) транспорт газов кровью, т.е. процесс переноса О2 от легких к тканям и СО2 от тканей к легким;

4) обмен газов между кровью капилляров большого круга кровообращения и клетками тканей;

5) внутреннее дыхание - биологическое окисление в митохондриях клетки.

Последний этап в основном изучается биохимиками, а первые 4 являются объектами физиологических исследований. Ещё одним важнейшим объектом физиологического исследования процесса дыхания является нейрогуморальный аппарат его регуляции.

Помимо лёгочной существуют и иные формы внешнего дыхания.

Кожное дыхание у человека в покое обеспечивает около 1,5 - 2,0 % всего газообмена организма за счет кожи, общая поверхность которой составляет 1,5 - 2,0 м2 (зависит от роста, масса тела, пола, возраста). В сутки через кожу в организм попадает около 4 г кислорода и выделяется около 8 г углекислого газа. Эти количества зависят от чистоты кожных покровов, температуры окружающего воздуха и кожи, степени физической нагрузки, давления и др.

То, что газообмен осуществляется в основном в легких, определяется рядом факторов: а) поверхность легких значительно больше поверхности кожи (общая поверхность альвеол по мнению различных авторов составляет от 40 до 140 м2); б) толщина легочной мембраны значительно меньше (0,3-2,0 мкм), чем толщина кожи; в) объемная скорость кровотока легких в 313 раз выше, чем в коже.

Дыхание через слизистые желудка и кишечника. На ранних стадиях эволюции животных пищеварительный тракт выполнял по совместительству дыхательную функцию. В дальнейшем, по мере появления специфических органов дыхания, пищеварительная и дыхательная функции полностью разделились, а дыхательная функция желудочно-кишечного тракта перешла в категорию атавистической. Однако в желудке в обычных условиях может всасываться до 5% кислорода, необходимого для жизнедеятельности организма, в тонком кишечнике - 0,15 мл кислорода на 1 см2 за 1 час, в толстом кишечнике - 0,11 мл. В толстом кишечнике человека в покое всасывается 0,02-0,04 мл кислорода на 1 см2.

Влияние кишечника на дыхание может состоять и в том, что наполнение толстого кишечника газами приводит к подъему диафрагмы и затруднению дыхательных движений.

Искусственное дыхание - это искусственные пути введения кислорода и выведения углекислого газа:

подкожное и внутривенное введение кислорода;

введение О2 в крупные полости (плевральную, перитонеальную, в суставную сумку);

осуществление дыхания с подключением экстракорпорального кровообращения в системе аппарата искусственного кровообращения (оксигенатор-инжектор).

Лёгкие - парные дыхательные органы, расположенные в плевральных полостях. Состоят из разветвлений бронхов, образующих бронхиальное дерево (воздухоносные пути легкого), и системы альвеол, которые вместе с дыхательными бронхиолами, альвеолярными ходами и альвеолярными мешочками составляет альвеолярное дерево (дыхательную паренхиму легкого). На стенках альвеолярных ходов и альвеолярных мешочков, а также дыхательных бронхиол располагаются открывающиеся в их просвет альвеолы легкого. Морфофункциональной единицей респираторного отдела легкого является ацинус. В понятие «ацинус» включаются все разветвления одной концевой бронхиолы - дыхательные бронхиолы всех порядков, альвеолярные ходы и альвеолы. Кровоснабжение легкого осуществляется легочными и бронхиальными сосудами. Легочные сосуды составляют малый круг кровообращения и выполняют главным образом функцию газообмена между кровью и воздухом. Бронхиальные сосуды обеспечивают питание легких и принадлежат большому кругу кровообращения. Между этими двумя системами существуют достаточно выраженные анастомозы. Капилляры образуют 4-12 петель на стенке альвеол и сливаются в посткапилляры. Сеть капилляров в легких очень густая. Общая площадь капиллярной сети одного легкого составляет 35-40 м2.

Основная функция лёгких - дыхательная. Но существуют и недыхательные функции лёгких:

Метаболическая. Участие в обмене жиров для образования сурфактантов, синтез простагландинов, синтез тромбопластина и гепарина, синтез протеолитических и липолитических ферментов.

Терморегуляторная. При снижении температуры в легких активируются экзотермические процессы (химическая теплопродукция), одновременно уменьшается капиллярный кровоток, а значит и физическая теплоотдача.

Барьерная. При вдыхании задерживаются механические частицы, которые потом удаляются ресничками мерцательного эпителия. Для крови - инактивация серотонина, простагландинов, ацетилхолина, брадикина, а также очистка крови от механических примесей.

Секреторная. Железы и секреторные клетки продуцируют 300-400 мл в сутки серозно-мукоидного секрета (защита). Эндокринная функция: продукция простагландинов и других биологически активных веществ.

Экскреторная. Удаляется углекислый газ, летучие метаболиты, вода (до 500 мл в сутки).

Всасывательная. Хорошо всасывается эфир, хлороформ. Возможен ингаляционный путь введения паров и аэрозолей ряда лекарственных веществ.

Очистительная. Секреторная деятельность. Активность ресничного эпителия, сосудисто-лимфатический путь.

МЕХАНИЗМ ВНЕШНЕГО ДЫХАНИЯ И ГАЗООБМЕН В ЛЁГКИХ

У мелких животных дыхательный цикл состоит из вдоха и выдоха, у крупных - включает три фазы: вдох, выдох и паузу. У человека длительность спокойного выдоха на 10-20 % больше длительности вдоха. В условиях полного покоя дыхательная пауза имеет максимальную длительность, при физических или эмоциональных нагрузках - резко сокращается.

Вентиляция лёгких осуществляется за счет создания разности давления между альвеолярным и атмосферным воздухом.

При вдохе давление в альвеолярном пространстве значительно снижается (за счет расширения грудной полости) и становится меньше атмосферного (на 3-5 мм рт. ст.), поэтому воздух из атмосферы входит в воздухоносные пути.

При выдохе давление в альвеолярном пространстве приближается к атмосферному давлению или даже становится выше его (форсированный выдох). Это приводит к удалению очередной порции воздуха из легких.

Внутриплевральное давление меньше атмосферного: на вдохе на 4-9 мм рт.ст., на выдохе на 2-4 мм рт.ст..

При спокойном вдохе и выдохе через легкие проходит около 500 мл воздуха - дыхательный объём (ДО). Из них часть заполняет анатомическое мертвое пространство (около 175 мл). До основной среды доходит около 325 мл воздуха.

В среднем акт дыхания совершается за 4-10 с. Акт вдоха проходит несколько быстрее, чем акт выдоха. За минуту совершается 6-16 дыхательных циклов. Через легкое за минуту проходит около 3-8 л воздуха - это минутный объем дыхания (МОД) или легочная вентиляция.

При форсированном (глубоком) вдохе человек может, после ДО, дополнительно вдохнуть до 2500 мл. Это резервный объем вдоха (РОВд).

Резервный объем выдоха (РОВ) - количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

Остаточный объем лёгких (ООЛ) - количество воздуха, оставшееся в легких после максимального выдоха. Даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха.

Ёмкости легких:

Общая емкость легких (ОЕЛ) - количество воздуха, находящегося в легких после максимального вдоха. Равна сумме - остаточный объем + жизненная емкость легких.

Жизненная емкость легких (ЖЕЛ) - наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. ЖЕЛ = дыхательный объем + резервный объем вдоха + резервный объем выдоха. У мужчин ростом 180 см ЖЕЛ ~ 4,5 л. У пловцов и гребцов до 8,0 л.

Резерв вдоха - максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равен сумме - дыхательный объем + резервный объем вдоха.

Функциональная остаточная емкость (ФОЕ) - количество воздуха, остающееся в легких после спокойного выдоха. Равен сумме - резервный объем выдоха + остаточный объем. У молодых - 2,4 л и около 3,4 у пожилых.

Ключевыми показателями являются - ДО, ЖЕЛ, ФОЕ. У женщин эти показатели, как правило, на 25 % ниже, чем у мужчин.

При спокойном дыхании ФОЕ обновляется примерно на 1/7 часть. За счет этого процентное содержание кислорода и углекислого газа (парциальное давление этих газов) сохраняется на постоянном уровне. Задача всех регуляторных механизмов дыхания - поддерживать постоянство парциального давления кислорода и углекислого газа в альвеолярном пространстве.

Дыхательная мускулатура.

Акт вдоха (инспирация) - процесс активный. Расширение грудной полости совершается дыхательными мышцами. Главная мышца - диафрагма. При её сокращении уплощается купол диафрагмы, что приводит к увеличению верхне-нижнего размера грудной полости. 70-100% вентиляции легких обеспечивается работой диафрагмальных мышц. При спокойном вдохе участвуют т, акже межхрящевые участки межреберных мышц краниальных межреберий, а также наружные межреберные мышцы. При их сокращении поднимаются ребра, отходит грудина. Размеры грудной полости увеличиваются в переднезаднем и поперечном направлениях. При форсированном вдохе дополнительно включаются лестничная, грудино-ключично-сосцевидная, трапециевидная, большая и малая грудные мышцы, мышцы-разгибатели позвоночника.

Акт выдоха (экспирация) в условиях покоя - процесс пассивный. Он происходит на фоне расслабления инспираторной мускулатуры за счёт эластической отдачи энергии, которая накопилась во время вдоха при растяжении эластических структур легких.

При форсированном выдохе сокращаются внутренние межреберные мышцы, которые активно уменьшают объем грудной полости и тем самым повышают плевральное давление, т.е. создают в альвеолах более высокое давление, чем в атмосфере. Кроме того, сокращаются мышцы брюшной стенки - косая и прямая мышцы живота, межкостные части внутренних межреберных мышц, а также мышцы, сгибающие позвоночник.

Альфа-мотонейроны диафрагмальной мышцы локализованы в шейных сегментах спинного мозга - С2 - С5 . В момент возбуждения нейроны посылают к мышечным волокнам ПД с частотой до 50 Гц и вызывают их тетанус.

Мотонейроны межреберных мышц расположены в грудном отделе спинного мозга (Th1 - Th12) и представлены б- и г-мотонейронами. За счет г-мотонейронов происходит оценка степени податливости грудной клетки к растяжению. Когда сила дыхательной мускулатуры недостаточна для акта вдоха, происходит активация проприорецепторов дыхательных мышц, а затем - как следствие - б-мотонейронов.

Респираторное сопротивление состоит из эластического и неэластического.

Эластичность включает в себя растяжимость и упругость. Эластические свойства легких обусловлены: 1) эластичностью альвеолярной ткани (35-40 %) и 2) поверхностным натяжением пленки жидкости, выстилающей альвеолы (55-65 %).

Растяжимость альвеолярной ткани связана с наличием эластиновых волокон, которые вместе с коллагеновыми волокнами (обеспечивают прочность альвеолярной стенки) образуют спиральную сеть вокруг альвеол. Длина эластиновых волокон при растяжении увеличивается почти в 2 раза, коллагеновых - на 10%.

Поверхностное натяжение создаётся за счёт сурфактанта, благодаря которому альвеолы не спадаются. Сурфактант обеспечивает эластичность альвеол.

В целом, эластическое сопротивление пропорционально степени растяжения легких при вдохе: чем глубже дыхание, тем больше эластическое сопротивление (эластическая тяга легких).

Реактивное сопротивление обусловлено: 1) аэродинамическим сопротивлением в дыхательных путях, 2) динамическим сопротивлением перемещающихся при дыхании тканей, 3) инерционным сопротивлением перемещающихся тканей. Основной фактор - аэродинамическое сопротивление.

Основное сопротивление, которое испытывает воздух, возникает при прохождении от трахеи до терминальных бронхиол. Именно в этих зонах совершается перемещение воздушного потока путем конвекции. Линейная скорость воздушного потока максимальна в трахее - 98,4 см/с и минимальна в альвеолярных мешках - 0,02 см/с.

В альвеолах (респираторной зоне) воздушный поток не движется, а происходит диффузия кислорода, углекислого газа, паров воды по градиенту парциального давления. В этой области воздушные потоки уже не испытывают аэродинамического сопротивления.

Особенности носового и ротового дыхания.

При дыхании через нос воздух проходит с большим сопротивлением, чем при дыхании через рот, поэтому при носовом дыхании работа дыхательных мышц возрастает и дыхание становится более глубоким. Атмосферный воздух, проходя через нос, согревается, увлажняется, очищается. Согревание происходит за счет тепла, отдаваемого кровью, протекающей по хорошо развитой системе кровеносных сосудов слизистой оболочки носа. Носовые ходы имеют сложно извилистое строение, что увеличивает площадь слизистой оболочки, с которой контактирует атмосферный воздух.

В носу происходит очищение вдыхаемого воздуха, причем в полости носа захватываются частицы пыли размером больше 5-6 мкм в диаметре, а более мелкие проникают в нижележащие отделы. В полости носа выделяется 0,5-1 л слизи в сутки, которая движется в задних двух третях носовой полости со скоростью 8-10 мм/мин, а в передней трети - 1-2 мм/мин. Каждые 10 минут проходит новый слой слизи, которая содержит бактерицидные вещества (лизоцим, секреторный иммуноглобулин А).

Ротовая полость наибольшее значение для дыхания имеет у низших животных у низших животных (амфибий, рыб). У человека дыхание через рот появляется при напряженном разговоре, быстрой ходьбе, беге, при другой интенсивной физической нагрузке, когда потребность в воздухе велика; при заболеваниях носа и носоглотки.

Дыхание через рот у детей первого полугодия жизни почти невозможно, так как большой язык оттесняет надгортанник кзади.

Газообмен в легких.

Газовая смесь в альвеолах, участвующих в газообмене, обычно называется альвеолярным воздухом или альвеолярной смесью газов. Содержание кислорода и углекислого газа в альвеолах зависит, прежде всего, от уровня альвеолярной вентиляции и интенсивности газообмена.

Содержание О2 в альвеолярной смеси - 14 об. %.

Содержание СО2 в альвеолярной смеси - 5,6 об. %.

Оставшаяся часть альвеолярной газовой смеси приходится на долю азота и очень небольшого количества инертных газов.

В атмосферном воздухе содержится:

20,9 об. % кислорода,

0,03 об. % углекислого газа,

79,1 об. % азота.

В выдыхаемом воздухе содержится:

16 об. % кислорода,

4,5 об. % углекислого газа,

79,5 об. % азота.

Состав альвеолярного воздуха при нормальном дыхании остается постоянным, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха. Кроме того газообмен в легких протекает непрерывно, при вдохе и при выдохе, что способствует выравниванию состава альвеолярной смеси.

Парциальное давление газов в альвеолах составляют: 100 мм рт.ст. для О2 и 40 мм рт.ст. для СО2. Парциальные давления кислорода и двуокиси углерода в альвеолах зависят от отношения альвеолярной вентиляции к перфузии легких (капиллярный кровоток). У здорового человека в покое это отношение равно 0,9-1,0. В патологических условиях это равновесие может претерпевать значительные сдвиги. При увеличении этого отношения парциальное давление кислорода в альвеолах увеличивается, а парциальное давление углекислого газа - падает и наоборот.

Рис. 28. Зависимости парциальных давлений О2 и СО2 в альвеолах от альвеолярной вентиляции у человека в состоянии покоя.

Атмосферное давление соответствует давлению на уровне моря.

Красная линия указывает уровни парциальных давлений О2 и СО2 при нормальной вентиляции.

Нормовентиляция - парциальное давление углекислого газа в альвеолах поддерживается в пределах 40 мм рт.ст.

Гипервентиляция - усиленная вентиляция, превышающая метаболические потребности организма. Парциальное давление углекислого газа меньше 40 мм рт.ст.

Гиповентиляция сниженная вентиляция по сравнению с метаболическими потребностями организма. Парциальное давление СО2 больше 40 мм рт.ст.

Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя независимо от парциального давления газов в альвеолах (например: при мышечной работе).

Эйпноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.

Гиперпноэ - увеличение глубины дыхания, независимо от того, повышена или снижена частота дыхания.

Тахипноэ - увеличение частоты дыхания.

Брадипноэ - снижение частоты дыхания.

Апноэ - остановка дыхания, обусловленная отсутствием стимуляции дыхательного центра (например: при гипокапнии).

Диспноэ - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания (одышка).

Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате сердечной недостаточности. В горизонтальном положении это состояние усугубляется и поэтому лежать таким больным тяжело.

Асфиксия - остановка или угнетение дыхания, связанные главным образом с параличом дыхательного центра. Газообмен при этом резко нарушен: наблюдается гипоксия и гиперкапния.

Диффузия газов в легких.

Парциальное давление кислорода в альвеолах (100 мм рт.ст.) значительно выше, чем напряжение кислорода в венозной крови, поступающей в капилляры легких (40 мм рт.ст.). Градиент парциального давления углекислого газа направлен в обратную сторону (46 мм рт.ст. в начале легочных капилляров и 40 мм рт.ст. в альвеолах). Эти градиенты давлений являются движущей силой диффузии кислорода и двуокиси углерода, т.е. газообмена в легких.

Согласно закону Фика диффузный поток прямо пропорционален градиенту концентрации. Коэффициент диффузии для СО2 в 20-25 раз больше, чем кислорода. При прочих равных условиях углекислый газ диффундирует через определенный слой среды в 20-25 раз быстрее, чем кислород. Именно поэтому обмен СО2 в легких происходит достаточно полно, несмотря на небольшой градиент парциального давления этого газа.

При прохождении каждого эритроцита через легочные капилляры время, в течение которого возможна диффузия (время контакта) относительно невелико (около 0,3 с). Однако этого времени вполне достаточно для того, чтобы напряжения дыхательных газов в крови и их парциальное давление в альвеолах практически сравнялись.

Диффузионную способность легких, как и альвеолярную вентиляцию, следует рассматривать в отношении к перфузии (кровоснабжению) легких.

ТРАНСПОРТ ГАЗОВ КРОВЬЮ

Почти во всех жидкостях может содержаться некоторое количество физически растворенных газов. Содержание растворенного газа в жидкости зависит от его парциального давления.

Хотя содержание в крови О2 и СО2 в физически растворенном состоянии относительно невелико, это состояние играет существенную роль в жизнедеятельности организма. Для того, чтобы связаться с теми или иными веществами, дыхательные газы сначала должны быть доставлены к ним в физически растворенном виде. Таким образом, при диффузии в ткани или кровь каждая молекула О2 или СО2 определенное время пребывает в состоянии физического растворения.

Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином. 1 моль гемоглобина может связать до 4 молей кислорода, а 1 грамм гемоглобина - 1,39 мл кислорода. При анализе газового состава крови получают несколько меньшую величину (1,34 - 1,36 мл О2 на 1 г. Hb). Это обусловлено тем, что небольшая часть гемоглобина находится в неактивном виде. Таким образом, ориентировочно можно считать, что in vivo 1г Hb связывает 1,34 мл О2 (число Хюфнера).

Исходя из числа Хюфнера, можно, зная содержание гемоглобина, вычислить кислородную емкость крови: [О2] макс = 1,34 мл О2 на 1 г Hb; 150 г Hb на 1 л крови = 0,20 л О2 на 1 л крови. Однако, такое содержание кислорода в крови может достигаться лишь в том случае, если кровь контактирует с газовой смесью с высоким содержанием кислорода (РО2 = 300 мм рт.ст.), поэтому в естественных условиях гемоглобин оксигенируется не полностью.

Реакция, отражающая соединения кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что отношение между количеством гемоглобина и оксигемоглобина зависит от содержания физически растворенного О2 в крови; последнее же пропорционально напряжению О2. Процентное отношение оксигемоглобина к общему содержанию гемоглобина называется насыщением гемоглобина кислородом. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О2. Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S - образную форму (Рис. 29.).

Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения РО2, т.е. такое напряжение О2, при котором насыщение гемоглобина кислородом составляет 50 %. В норме РО2 артериальной крови составляет около 26 мм рт.ст.

Рис. 29. Кривые диссоциации оксигемоглобина при различных рН крови.

Конфигурация кривой диссоциации оксигемоглобина важна для переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О2 в крови приближается к парциальному давлению этого газа в альвеолах. У молодых людей РО2 артериальной крови составляет около 95 мм рт.ст. При таком напряжении насыщение гемоглобина кислородом равно примерно 97 %. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО2 в артериальной крови до 60 мм рт.ст. насыщение гемоглобина кислородом равно 90 %. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, насыщение артериальной крови кислородом сохраняется на высоком уровне даже при существенных сдвигах РО2.

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует о благоприятной ситуации для отдачи кислорода тканям. В состоянии покоя РО2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст., что соответствует примерно 73 % насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст., то насыщение гемоглобина кислородом снижается на 75 %: высвобождающийся при этом О2 может быть сразу же использован для процессов метаболизма.

Несмотря на то, что конфигурация кривой диссоциации оксигемоглобина обусловлена главным образом химическими свойствами гемоглобина, существует и ряд других факторов, влияющих на сродство крови к кислороду. Как правило, все эти факторы смещают кривую, увеличивая или уменьшая ее наклон, но не изменяя при этом ее S-образную форму. К таким факторам относятся температура, рН, напряжение СО2 и некоторые другие факторы, роль которых возрастает в патологических условиях.

Равновесие реакции оксигенации гемоглобина зависит от температуры. При понижении температуры наклон кривой диссоциации оксигемоглобина увеличивается, а при ее повышении - снижается. У теплокровных животных этот эффект проявляется только при гипотермии или лихорадочном состоянии.

Форма кривой диссоциации оксигемоглобина в значительной степени зависит от содержания в крови ионов Н+. При снижении рН, т.е. закислении крови, сродство гемоглобина к кислороду уменьшается, и кривая диссоциации оксигемоглобина называется эффектом Бора.

РН крови тесно связано с напряжением СО2 (РСО2): чем РСО2 выше, тем рН ниже. Увеличение напряжения в крови СО2 сопровождается снижением сродства гемоглобина к кислороду и уплощение кривой диссоциации НbО2. Эту зависимость также называют эффектом Бора, хотя при подобном количественном анализе было показано, что влияние СО2 на форму кривой диссоциации оксигемоглобина нельзя объяснить только изменением рН. Очевидно, сам углекислый газ оказывает на диссоциацию оксигемоглобина «специфический эффект».

При ряде патологических состояний наблюдаются изменения процесса транспорта кислорода кровью. Так, есть заболевания (например, некоторые вида анемий), которые сопровождаются сдвигами кривой диссоциации оксигемоглобина вправо (реже - влево). Причины таких сдвигов окончательно не раскрыты. Известно, что на форму и расположение кривой диссоциации оксигемоглобина оказывают выраженное влияние некоторые фосфорорганические соединения, содержание которых в эритроцитах при патологии может изменяться. Главным таким соединением является 2,3-дифосфоглицерат - (2,3 - ДФГ). Сродство гемоглобина к кислороду зависит также от содержания в эритроцитах катионов. Необходимо отметить также влияние патологических сдвигов рН: при алкалозе поглощение кислорода в легких в результате эффекта Бора увеличивается, но отдача его тканям затрудняется; а при ацидозе наблюдается обратная картина. Наконец, значительный сдвиг кривой влево имеет место при отравлении угарным газом.

Транспорт СО2 кровью. Формы транспорта. Значение карбоангидразы.

Двуокись углерода - конечный продукт окислительных обменных процессов в клетках - переносится с кровью к легким и удаляется через них во внешнюю среду. Так же как и кислород, СО2 может переноситься как в физически растворенном виде, так и в составе химических соединений. Химические реакции связывания СО2 несколько сложнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт СО2 должны одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.

Напряжение СО2 в артериальной крови, поступающей в тканевые капилляры составляет 40 мм рт.ст. В клетках же, расположенных около этих капилляров, напряжение СО2 значительно выше, так как это вещество постоянно образуется в результате метаболизма. В связи с этим физически растворенный СО2 переносится по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в состоянии физического растворения, но большая часть СО2 претерпевает ряд химических превращений. Прежде всего происходит гидратация молекул СО2 с образованием угольной кислоты.

В плазме крови эта реакция протекает очень медленно; в эритроците же она ускоряется примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в клетках, практически все молекулы СО2, участвующие в реакции гидратации, должны сначала поступить в эритроциты.

Следующая реакция в цепи химических превращений СО2 заключается в диссоциации слабой кислоты Н2СО3 на ионы бикарбоната и водорода.

Накопление НСО3- в эритроците приводит к тому, что между его внутренней средой и плазмой крови создается диффузионный градиент. Ионы НСО3- могут передвигаться по этому градиенту лишь в том случае, если при этом не будет нарушаться равновесное распределение электрических зарядов. В связи с этим одновременно с выходом каждого иона НСО3- должен происходить либо выход из эритроцита одного катиона, либо вход одного аниона. Поскольку мембрана эритроцита практически не проницаема для катионов, но сравнительно легко пропускает небольшие анионы, взамен НСО3- в эритроцит поступают ионы Сl-. Этот обменный процесс называется хлоридным сдвигом.

СО2 может связываться также путем непосредственного присоединения к аминогруппам белкового компонента гемоглобина. При этом образуется так называемая карбаминова связь.

Гемоглобин, связанный с СО2, называется карбогемоглобином.

Содержание углекислого газа, находящегося в крови в виде химических соединений, непосредственно зависит от его напряжения. В свою очередь величина РСО2 определяется скоростью образования СО2 в тканях и его выделения легкими. Зависимость содержания СО2 от его напряжения описывается кривой, аналогичной кривой диссоциации оксигемоглобина.

Зависимость содержания СО2 от степени оксигенации гемоглобина называется эффектом Холдейна. Данный эффект частично обусловлен различной способностью оксигемоглобина и дезоксигемоглобина к образованию карбаминовой связи.

РЕГУЛЯЦИЯ ДЫХАНИЯ

Регуляцию дыхания можно определить как приспособление внешнего дыхания к потребностям организма. Главное в регуляции дыхания - обеспечить смену дыхательных фаз.

Режим смены дыхательных фаз должен быть адекватен метаболическим потребностям организма. Так, при физической работе скорость поглощения кислорода и удаления углекислого газа должна возрастать в несколько раз по сравнению с покоем. Для этого необходимо увеличить вентиляцию легких. Увеличение минутного объема дыхания может быть достигнуто путем повышения частоты и глубины дыхания. Регуляция дыхания должна обеспечивать наиболее экономичное соотношение между этими двумя параметрами. Кроме того, при осуществлении некоторых рефлексов (глотание, кашель, чихание) и при определенных видах деятельности (речь, пение и т.д.), характер дыхания должен оставаться более или менее постоянным. Учитывая все это разнообразие запросов организма для оптимального функционирования дыхательной системы необходимы сложные регуляторные механизмы.


Подобные документы

  • Роль Павлова в создании учения о высшей нервной деятельности, объяснении высших функций мозга животных и человека. Основные периоды научной деятельности ученого: исследования в областях кровообращения, пищеварения, физиологии высшей нервной деятельности.

    реферат [25,7 K], добавлен 21.04.2010

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.

    курсовая работа [61,7 K], добавлен 09.06.2011

  • Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.

    реферат [35,3 K], добавлен 01.08.2010

  • Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа [26,4 K], добавлен 21.02.2009

  • Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа [1,6 M], добавлен 26.08.2009

  • Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат [1,6 M], добавлен 15.02.2011

  • Свойства возбудимых тканей. Рефлекторные функции продолговатого мозга. Функции ядер гипоталамуса и сенсорных систем. Стадии свертывания крови. Фазы работы сердца. Свойства желез внутренней секреции. Функции промежуточного мозга, осуществляющие их отделы.

    реферат [47,0 K], добавлен 18.05.2015

  • Значение высшей нервной деятельности в жизнедеятельности человека. Анатомия, физиология и гигиена высшей нервной деятельности. Безусловные и условные нервные рефлексы. Эмоции, память, сон, прогноз и внушение. Нарушения высшей нервной деятельности.

    реферат [19,6 K], добавлен 14.04.2011

  • Исследование психики в трудах ученых до второй половины XIX в. Высказывания о душе древних мыслителей, учение Р. Декарта. И.М. Сеченов как теоретик рефлекторной природы психической деятельности. Исследование физиологии условных рефлексов И.П. Павловым.

    контрольная работа [15,5 K], добавлен 22.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.