Характеристика ядерного оружия

Изучение ядерного оружия, его характеристика и принципы действия, специфические признаки и особенности. Поражающие факторы ядерного взрыва: ударная волна, сетевое излучение, проникающая радиация, радиоактивной заражение, электромагнитный импульс.

Рубрика Военное дело и гражданская оборона
Вид контрольная работа
Язык русский
Дата добавления 12.05.2011
Размер файла 23,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

15

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Характеристика ядерного оружия

Ядерное оружие - оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии. Ядерное оружие - одно из самых разрушительных средств ведения войны - входит в число основных видов оружия массового поражения. Оно включает в себя различные ядерные боеприпасы (боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины, снабженные ядерными зарядными устройствами), средства управления ими и средства доставки их к цели (носители). Поражающее действие ядерного оружия основано на энергии, выделяющейся при ядерных взрывах. Ядерный взрыв - процесс деления тяжелых ядер. Для того, чтобы произошла реакция, необходимо как минимум 10 кг высокообогащенного плутония. В естественных условиях это вещество не встречается. Данное вещество получается в результате реакций, производимых в ядерных реакторах. Естественный уран содержит приблизительно 0.7 процентов изотопа U-235, остальное - уран 238. Для осуществления реакции необходимо, чтобы в веществе содержалось не менее 90 процентов урана 235.

Виды ядерных взрывов

В зависимости от задач, решаемых ядерным оружием, от вида и расположения объектов, по которым планируются ядерные удары, а также от характера предстоящих боевых действий ядерные взрывы могут быть осуществлены в воздухе, у поверхности земли (воды) и под землей (водой). В соответствии с этим различают следующие виды ядерных взрывов:

1. воздушный (высокий и низкий)

2. наземный (надводный)

3. подземный (подводный)

Поражающие факторы ядерного взрыва

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:

1. ударная волна

2. световое излучение

3. проникающая радиация

4. радиоактивное заражение местности

5. электромагнитный импульс

Ударная волна

Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику. Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва.

Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек ударная волна проходит около 1000 м, за 5 сек-2000 м, за 8 сек - около 3000 м. Это служит обоснованием норматива N5 ЗОМП «Действия при вспышке ядерного взрыва»: отлично - 2 сек, хорошо - 3 сек, удовлетврительно-4 сек.

Поражающее действие ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того, поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны. Ударная волна способна наносить поражения и в закрытых помещениях, проникая туда через щели и отверстия.

Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые. Легкие поражения характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей. Тяжелые поражения характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей.

Степень поражения ударной волной зависит, прежде всего, от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние - до 2 км, тяжелые - до 1,5 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном - в воде. Кроме того, при этих видах взрывов часть энергии расходуется на создание ударной волны и в воздухе. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

Световое излучение

Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение. Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца. Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может приводить к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия, Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения. Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком, они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности. В зависимости от воспринятого светового импульса ожоги делятся на три степени.

Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени на коже появляются пузыри, наполненные прозрачной желтоватой жидкостью. При ожогах третьей степени наблюдается омертвление кожи и образование язв, а при ожогах IV степени омертвевают кожа и подлежащие ткани (подкожная жировая клетчатка, мышцы, кости).

При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени - на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и ШгТ.

Поражения глаз. Наиболее вероятное повреждение зрения при ядерном взрыве - повреждение роговицы, вследствие теплового действия света и временная слепота, при которой человек теряет зрение на время от нескольких секунд до нескольких часов. Более серьезные повреждения сетчатки происходят, когда взгляд человека направлен непосредственно на огненный шар взрыва. Яркость огненного шара не изменяется с расстоянием (за исключением случая тумана), просто уменьшается его видимый размер. Таким образом, повредить глаза можно на практически любом расстоянии, на котором видна вспышка. Вероятность этого выше в ночное время, из-за более широкого раскрытия зрачка.

Световое излучение, как и любой свет, не проходит через непрозрачные материалы, поэтому для укрытия от него подойдут любые предметы, создающие тень. На расстояния, равные границе распространения ожогов третьей степени, ударная волна подходит от нескольких секунд, для небольшого взрыва, до минуты при мегатонном взрыве. Это время можно использовать для нахождения более надежного убежища.

Хорошо известно и такое явление, как оставление «теней» непрозрачными объектами на каком-либо фоне. Образование «теней» происходит из-за выгорания (или, наоборот, обугливания) поверхности за непрозрачным предметом, в то время как в зоне его тени этого не происходит.

Проникающая радиация

Проникающая радиация представляет собой невидимый поток гамма квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма кванты и нейтроны распространяются во все стороны от центра взрыва на сотни метров. С увеличением расстояния от взрыва количество гамма квантов и нейтронов, проходящее через единицу поверхности, уменьшается.

При подземном и подводном ядерных взрывах действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма - квантов водой. Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением. Поражающее действие проникающей радиации определяется способностью гамма квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (р). Дозе радиации 1 р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов. В зависимости от дозы излучения различают три степени лучевой болезни.

Первая (легкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя.

Вторая (средняя) степень лучевой болезни развивается при получении дозы 200-300 р; в этом случае признаки поражения - головная боль, повышение температуры, желудочно-кишечное расстройство - проявляются более резко и быстрее, личный состав в большинстве случаев выходит из строя.

Третья (тяжелая) степень лучевой болезни возникает при дозе свыше 300 р; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением и другими недомоганиями; тяжелая форма нередко приводит к смертельному исходу.

Радиоактивное заражение

Радиоактивное заражение - результат выпадения из поднятого на большую высоту облака взрыва огромного количества радиоактивных веществ - как ставших таковыми из-за наведенной радиоактивности, так и продуктов деления. Оседая на поверхность земли по направлению движения ветра, они создают радиоактивный участок, называемый радиоактивным следом. В зависимости от степени заражения этот участок условно делят на три зоны - умеренного, сильного и опасного заражения. Распад атомного ядра может пойти по 40 различным путям, с образованием 80 различных изотопов. Часть из них не радиоактивна, часть имеет очень короткий период полураспада, часть - очень длинный. Наибольшую опасность являют изотопы с периодом полураспада, измеряемым годами (а не днями или тысячами лет) - с одной стороны их активность достаточно велика, а с другой - сохраняется по меркам человеческой жизни очень долго, такие как цезий-137, стронций-89, 90, углерод-14, еще и трансурановые элементы - источники альфа-частиц.

Всего несколько кюри изотопа на км2 делают район непригодным для проживания по современным нормам радиационной безопасности. Заряд мегатонного уровня производит достаточно радиоактивных веществ, чтобы покрыть территорию около 200 000 км2 и сделать ее непригодной для хозяйственной деятельности.

При мощных взрывах (> 200 кт) столб гриба взрыва достигает верхних слоев стратосферы (30-40 км), что резко замедляет скорость выпадения осадков. Которые, при таких обстоятельствах, могут разноситься за сотни и тысячи километров от места взрыва.

Радиоактивное заражение характеризуется относительно невысоким уровне радиоактивности, но зато сохраняющимся в течении долгого периода времени и большой вероятностью попадания радиоактивных изотопов в организм человека. Это приводит к «отложенности» эффекта его проявления. Низкий фон позволяет организму восстанавливать поврежденные клетки, однако, вследствие долговременного облучения, существует вероятность «неправильной» починки или повреждения ДНК, в результате которого может развиться рак.

При распаде нестабильного изотопа испускается ионизирующее излучение. Оно бывает трех типов: альфа, бета, гамма. Испускаться может один или несколько из этих видов. Альфа-лучи состоят из положительно заряженных частиц - дважды ионизированных атомов гелия. Бета-лучи - это поток электронов. Гамма-лучи - высокоэнергетические фотоны.

Например, радий - излучает все три вида лучей, а стронций-90 - только бета. Для измерения радиоактивности наиболее часто используют кюри - 1 кюри - такое количество радиоактивного материала, что в нем происходит 3.7x1010 распадов в секунду (как в 1 г радия-226).

Внешнее облучение

Внешнее облучение - это когда организм подвергается действию ионизирующего излучения, поступающего извне Тяжелые и неповоротливые альфа-частицы создают вокруг себя огромное количество ионов, но именно благодаря этому, их пробег в воздухе составляет несколько сантиметров, а задерживаться они могут листом бумаги или верхним слоем эпидермиса.

Бета-излучение обладает большей проникающей способностью, но все равно способно воздействовать исключительно на ткани организма, прилегающие к коже (в зависимости от энергии электрона глубина его проникновения от 1 мм до 1 см) и то, только на неприкрытые одеждой участки. Дезактивация (простое смывание с себя попавших на кожу частичек радиоактивных веществ, стрижка волос) способна практически исключить влияние этого типа радиоактивности. Но все же, если облучения не удалось избежать, развиваются такие симптомы: на коже ощущается зуд и чувство жжения во время первых 24-48 часов. Затем это проходит, но через 2-3 недели появляется покраснение, усиливается пигментация кожи. Затем следует выпадение волос.

При легком и умеренном течении болезни страдают только верхние участки кожи. Образуется корка, которая сменяется здоровой кожей, окруженной зоной усиленной пигментации. Нормальная пигментация восстанавливается в течении нескольких недель. В тяжелых случаях появляются глубокие язвы. Излечение занимает месяцы.

Еще одна опасность от бета-лучей может состоять в том, что тормозясь в какой-либо металлической пластине, электроны рождают рентгеновское излучение, обладающее большой проникающей способностью.

Гамма-излучение имеет очень большую проникающую способность, из-за чего облучению подвергаются все ткани организма.

Внутреннее облучение

Внутреннее облучение особо опасно - ведь в этом случае радиация действует изнутри непосредственно на клетки человека. Среди всех изотопов, находящихся в облаке взрыва, наибольший вред наносят изотопы углерода, йода, цезия и стронция.

I-131.

Йод-131 излучатель бета - и гамма-лучей с периодом полураспада 8.07 дней (активность 124 000 кюри/г). Его энергетика распада 970 кэВ, обычно распределена между 606 кэВ бета и 364 кэВ гамма. Вследствие короткого времени жизни, йод представляет особую опасность в течение нескольких недель и опасность в несколько месяцев. Его удельное образование - примерно 2% от продуктов при взрыве бомбы деления - 1.6x105 кюри/кт. Йод-131 легко поглощается телом, в особенности щитовидной железой, и может стать причиной ее рака.

Cs-137.

Цезий-137 испускает бета- и гамма-излучение, со временем полураспада 30 лет (активность 87 кюри/г). Энергетика распада - 1.176 МэВ делится на: 514 кэВ энергия бета-частицы, 622 кэВ энергия гамма-кванта. Образуется его примерно 200 кюри/кт. Он представляет опасность в первую очередь как долговременный источник сильного гамма-излучения.

Цезий, как щелочной металл, имеет некоторое сходство с калием и распределяется равномерно по всему телу. Он может выводиться из организма - период его полувыведения около 50-100 дней.

St-89 и St-90.

Стронций-90 излучает только бета-частицы с энергией 546 кЭв, имеет период полураспада 28.1 года (активность 141 кюри/г), стронций-89 аналогично испускает электроны с энергией 1.463 МэВ, период полураспада 52 дня (активность 28200 кюри/г). Их выход при взрыве составляет 190 кюри Sr-90 и 3.8x104 Sr-89 на килотонну. Стронций-89 представляет опасность в течении нескольких лет после взрыва, стронций-90 остается в опасных концентрациях на столетия. Помимо излучения бета-частицы, распадающийся атом стронция-90 превращается в изотоп иттрия - иттрий-90, тоже радиоактивный, с периодом полураспада 64.2 часа, испускающего очень энергичный электрон при распаде - 2.27МэВ.

Поскольку стронций химически ведет себя подобно кальцию, он поглощается и накапливается в костях. Хотя большая его часть и выводится из организма (период полувыведения около 40 дней), чуть менее 10% стронция попадает в кости, период полувыведения из которых - 50 лет.

Безопасным считается содержание 2 микрокюри (14 нанограммов) стронция-90 в теле отдельного человека, а среднее его содержание у всех жителей не должно превышать 0.067 микрокюри. Это означает, что наличие 10 микрокюри Sr-90 в организме значительно увеличивает вероятность возникновения рака. Несколько тысяч испытанных мегатон в конечном итоге повысили содержание стронция в теле среднестатистического человека выше установленного предела для профессионального облучения на пару последующих поколений.

C-14 и T.

Изотопы углерод-14 и тритий (водород-3) не являются напрямую продуктами распада ядер тяжелых элементов. Они образуются при взрыве обычной атомной бомбы деления при взаимодействии испускаемых нейтронов с азотом воздуха.

Тритий источник очень слабого бета-излучения (18.6 кэВ - примерно как в электронной трубке телевизора), период полураспада 12.3 года (активность 9700 кюри/г). Из-за того, что углерод и водород - основа белковой жизни, если такой радиоактивный элемент встроится в молекулу какого-либо белка, или ДНК, то распад его приведет к порче всей структуры молекулы. Поэтому попадание их в организм даже в незначительном количестве создает повышенную опасность мутаций.

Электромагнитный импульс

Ядерный взрыв производит огромное количество ионизированных частиц, сильнейшие токи и электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). На человека оно не оказывает никакого влияния (по крайней мере в пределах изученного), зато повреждает электронную аппаратуру. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров.

На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотах как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов.

Зарождение ЭМИ начинается с чрезвычайно короткого, но мощного выброса гамма-лучей из зоны реакции. На протяжении ~10 наносекунд в виде гамма-лучей выделяется 0.3% энергии взрыва. Гамма-квант, сталкиваясь с атомом какого-либо газа и воздуха, выбивает из него электрон, ионизируя атом. В свою очередь этот электрон сам способен выбить своего собрата из другого атома. Возникает каскадная реакция, сопровождающаяся образованием до 30 000 электронов на каждый гамма-квант.

На низких высотах, гамма-лучи, испущенные по направлению к земле, поглощаются ею, не производя большого количества ионов. Свободные электроны, будучи гораздо легче и проворнее атомов, быстро покидают область, в которой они зародились. Образуется очень сильное электромагнитное поле. Это создает очень сильный горизонтальный ток, искру, рождающую широкополосное электромагнитное излучение. В то же время, на земле, под местом взрыва, собираются электроны «заинтересовавшиеся» скоплением положительно заряженных ионов непосредственно вокруг эпицентра. Поэтому сильное поле создается и вдоль Земли.

На больших высотах происходит ионизация расположенных ниже плотных слоев атмосферы. На космических высотах (500 км) область такой ионизации достигает 2500 км. Максимальная ее толщина - до 80 км. Магнитное поле Земли закручивает траектории электронов в спираль, образуя мощный электромагнитный импульс на несколько микросекунд. В течении нескольких минут между поверхностью Земли и ионизированным слоем возникает сильное электростатическое поле (20-50 кВ/м), пока большая часть электронов не будет поглощена вследствие процессов рекомбинации. Хотя пиковая напряженность поля при высотном взрыве составляет всего 1-10% от наземного, на образование ЭМИ уходит в 100 000 больше энергии - 1/3x10-5 всей выделившейся, напряженность остается примерно постоянной под всем ионизированным районом.

Воздействие ЭМИ на технику. Сверхсильное электромагнитное поле индуцирует высокое напряжение во всех проводниках. ЛЭП будут фактически являться гигантскими антеннами, наведенное в них напряжение вызовет пробой изоляции и выход из строя трансформаторные подстанции. Выйдет из строя большинство специально не защищенных полупроводниковых приборов.

Заключение

излучение радиационный ядерный оружие

Ученые считают, что при нескольких крупномасштабных ядерных взрывах, повлекших за собой сгорание лесных массивов, городов, огромные слоя дыма, гари поднялись бы к стратосфере, блокируя тем самым путь солнечной радиации. Это явление носит название «ядерная зима». Зима продлится несколько лет, может даже всего пару месяцев, но за это время будет почти полностью уничтожен озоновый слой Земли. На Землю хлынут потоки ультрафиолетовых лучей.

Моделирование данной ситуации показывает, что в результате взрыва мощностью в 100 Кт температура понизится в среднем у поверхности Земли на 10-20 градусов. После ядерной зимы дальнейшее естественное продолжение жизни на Земле будет довольно проблематичным:

1) Возникнет дефицит питания и энергии. Из-за сильного изменения климата сельское хозяйство придет в упадок, природа будет уничтожена, либо сильно изменится.

2) Произойдет радиоактивное загрязнение участков местности, что опять же приведет к истребление живой природы

3) Глобальные изменения окружающей среды (загрязнение, вымирание множества видов, разрушение дикой природы).

Ядерное оружие - огромная угроза всему человечеству. Так, по расчетам американских специалистов, взрыв термоядерного заряда мощностью 20 Мт может сравнять с землей все жилые дома в радиусе 24 км и уничтожить все живое на расстоянии 140 км от эпицентра.

Учитывая накопленные запасы ядерного оружия и его разрушительную силу, специалисты считают, что мировая война с применением ядерного оружия означала бы гибель сотен миллионов людей, превращение в руины всех достижений мировой цивилизации и культуры.

К счастью, окончание холодной войны немного разрядило международную политическую обстановку. Подписан ряд договоров о прекращении ядерных испытаний и ядерном разоружении.

Также важной проблемой на сегодняшний день является безопасная эксплуатация атомных электростанций. Ведь самое обыкновенное невыполнение техники безопасности может привести к таким же последствиям, что и ядерная войны.

Сегодня люди должны подумать о своем будущем, о том в каком мире они будут жить уже в ближайшие десятилетия.

Используемая литература

1. П. Подвиг, «Ядерная энциклопедия», 2009

2. А. Волков, статья «Поражающие факторы ядерного взрыва»

3. Самуэль Гласстон, Филип Долан, «Характеристики ядерного оружия» (The

Effects of Nuclear Weapon), 1977.

4. А.И. Иойрыш, «О чем звенит колокол», 1991.

5. «Гражданская оборона», В.Г. Атаманюк, Л.Г. Ширшев, Н.И. Акимов, Москва, 1999.

6. Гражданская оборона: под ред. Н.П. Оловянишникова - М.:Высш. школа, 1979.

7. Авартьянов М.В. Основы безопасности жизнедеятельности человека: учебник для ВУЗов. - М.: Инфра-М, 2003.

8. Арустамов Э.А. Безопасность жизнедеятельности: Учебник. - М.: Инфра-М, 2002.

9. Безопасность жизнедеятельности: методические указания и курс лекции / сост.: д-р химич. Наук, профессор Г.Н. Доленко, ст. преподаватель Н.Н. Симакова. - Новосибирск: СибУПК, 2003.

10. Змановский Ю.Ф. Безопасность жизнедеятельности человека. - Москва: Инфра-М, 1999.

11. Хухлаев Д.В. Безопасность жизнедеятельности. - М.: Просвещение, 2003.

12. «ЧП природного, техногенного и социального характера и защита от них», М. Леонидов, 2009 г.

13. «Основы БЖД», М.П. Фролов, Е.Н. Литвинов, А.Т. Смирнов. Под редакцией Ю.Л. Воробьева, ООО «Издательство АСТ», 2003

14. «Ядерное оружие и национальная безопасность», под редакцией В.Н. Михайлова, Москва, 2008

15. Безопасность жизнедеятельности: Учеб. Пособие для вузов / Под ред. Проф. Л.А. Муравья. - 2-е изд., перераб. и доп. - М.: ЮНИТИ - ДАНА, 2002

Размещено на Allbest.ru


Подобные документы

  • Разработка физических принципов осуществления ядерного взрыва. Характеристика ядерного оружия. Устройство атомной бомбы. Поражающие факторы ядерного взрыва: воздушная (ударная) волна, проникающая радиация, световое излучение, радиоактивное заражение.

    презентация [1,2 M], добавлен 12.02.2014

  • Поражающее действие ядерного взрыва, его зависимость от мощности боеприпаса, вида, типа ядерного заряда. Характеристика пяти поражающих факторов (ударная волна, световое излучение, радиоактивное заражение, проникающая радиация и электромагнитный импульс).

    реферат [63,6 K], добавлен 11.10.2014

  • Ядерное оружие и виды ядерных взрывов. Воздействие поражающих факторов на элементы объектов полиграфии. Воздушная ударная волна, излучение, проникающая радиация, заражение местности, электромагнитный импульс. Вторичные поражающие факторы ядерного взрыва.

    реферат [529,4 K], добавлен 29.02.2012

  • Предпосылки создания атомного оружия в США. Применение первого атомного оружия, атомная бомбардировка Японии. Поражающие факторы ядерного взрыва: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, электромагнитный импульс.

    реферат [30,0 K], добавлен 28.05.2010

  • Последовательность событий при ядерном взрыве. Основные поражающие факторы ядерного оружия: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, электромагнитный импульс. Способы их воздействия на человека и методы защиты.

    реферат [829,8 K], добавлен 27.03.2010

  • Краткая характеристика ядерного оружия, его воздействие на объекты и человека. Поражающие факторы ядерного взрыва: световое излучение, проникающая радиация. Четыре степени лучевой болезни. Правила поведения и действия населения в очаге ядерного поражения.

    реферат [25,3 K], добавлен 15.11.2015

  • Поражающие факторы ядерного взрыва. Воздушная ударная волна и световое излучение ядерного взрыва. Толщина слоев половинного ослабления. Радиоактивное заражение при ядерных взрывах. Загрязнение местности при разрушении предприятий атомной энергетики.

    курсовая работа [838,9 K], добавлен 24.10.2010

  • Знакомство с историей создания ядерного оружия. Анализ поражающих факторов ядерного взрыва: ударная волна, излучение, радиация. Ядерное оружие как боеприпасы, разрушающее и поражающее действие которых основано на использовании энергии атомного ядра.

    презентация [2,4 M], добавлен 14.05.2016

  • Роль ядерного оружия в безопасности России. История развития ядерного и нейтронного оружия в США. Первый взрыв нейтронного зарядного устройства. Создание ядерного оружия третьего поколения - Супер-ЭМИ с усиленным выходом электромагнитного излучения.

    реферат [28,7 K], добавлен 03.04.2011

  • Поражающие факторы ядерного оружия. Атомный, термоядерный и комбинированный виды ядерных боеприпасов. Виды ядерных взрывов. Способы защиты человека от влияния ядерного оружия. Использование населением коллективных и индивидуальных средств защиты.

    курсовая работа [66,4 K], добавлен 25.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.