Альтернативные силовые установки ракетно-космической техники

Автономные двигательные системы. Принципиальная схема термоэмиссионного преобразователя тепловой энергии в электрическую. Двигательные системы с внешними источниками энергии и с использованием внешних источников массы. Схема "гравитационного" двигателя.

Рубрика Военное дело и гражданская оборона
Вид реферат
Язык русский
Дата добавления 22.12.2010
Размер файла 259,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

Уфимский государственный авиационный технический университет

Реферат

по предмету: История ракетно-космической техники

на тему: Альтернативные силовые установки РКТ

УФА 2010 г.

Введение

Два с половиной десятка лет отделяют нас от 4 октября 1957 г., которому суждено было разделить историю человечества на две эпохи: докосмическую и космическую. Космосом сегодня в той или иной степени «занимаются» сотни тысяч людей в лабораториях, научных центрах, конструкторских бюро, заводах и фабриках. Он давно перестал быть сенсацией, но стал очень нужным. Пилотируемые аппараты, космические средства связи, метеорологические спутники и навигационные системы в значительной степени определяют облик нашего времени. Радикально изменились за прошедшие два с половиной десятилетия представления о первоочередных задачах освоения космического пространства. Почти очевидная не только для любителей, фантастов, но и для специалистов «магистральная» линия развития космонавтики «Луна -- Марс -- далее везде» значительно трансформировалась с учетом потребностей и возможностей общества. Ряд проектов, как, например, полет человека на Марс, оказались на грани технически реализуемых при современном уровне развития космической техники и в то же время за гранью экономически допустимых на эти цели затрат.[1] Сам факт отказа от дальнейшего следования по «магистральному» пути показывает, что космос и космическая индустрия превратились в весьма существенный не только эмоциональный и политический, но и экономический фактор. Дальнейшее увеличение затрат становится оправданным только в том случае, если от вложенных средств можно будет ожидать отдачи, покрывающей значительную часть вложений. Требование экономической окупаемости космических программ на этом новом этапе в значительной степени определяет пути развития космонавтики в целом. В данной работе сделана попытка представить себе возможные пути развития космических двигательных систем завтрашнего дня. Естественно, в создании космических средств, всегда существуют многочисленные варианты решения одной и той же задачи. Кроме того, арсенал технических идей и возможностей постоянно пополняется, и многие из новых могут оказаться в чем-то лучше тех, которые известны сегодня. Мы рассматрели ряд традиционных и новых идей и проектов в области космических двигателей, их возможности и соответствие тем задачам, которые по сегодняшним представлениям станут наиболее актуальными в не очень отдаленной перспективе. С точки зрения перспектив космического двигателестроения основные направления развития космической техники условно можно разбить на четыре группы.

1. Организация больших грузопотоков (десятки и сотни тысяч тонн в год) с поверхности Земли на низкие орбиты. В настоящее время эти грузопотоки примерно в 10 раз меньше. Значительное увеличение грузопотоков необходимо как для решения принципиально новых задач (в частности, для создания космических технологических производств и энергетических систем), так и для обеспечения продолжения исследований в дальнем космосе.

2. Транспортировка крупногабаритных грузов с низких орбит на высокие и обратно, транспортировка аналогичных грузов с околоземной орбиты к Луне. Для большинства задач вывод космического аппарата на опорную орбиту является промежуточным этапом. Спутники связи, упомянутые энергетические системы и многие другие космические средства должны располагаться на высоких орбитах. Поэтому растет потребность в экономичных средствах для межорбитальных перелетов.

3. Быстрые межпланетные перелеты.

4. Создание космических аппаратов для полетов вне Солнечной системы, запуск космических аппаратов к ближайшим звездам. В целях систематизации рассматриваемые в работе космические двигатели условно разбиты на три группы: 1) автономные, характеризующиеся тем, что источник энергии и рабочее тело у них находятся на борту; 2) двигательные системы с внешними источниками энергии и 3) двигательные системы, использующие в качестве рабочего тела внешние источники массы. В первую группу входят жидкостные и другие химические ракетные двигатели, ядерные и термоядерные двигатели, во вторую -- космические двигатели, использующие для ускорения рабочего тела энергию лазеров или сверхвысокочастотных генераторов, расположенных вне космического аппарата, а также двигатели, в той или иной форме использующие энергию Солнца. Наконец, к третьей группе относятся двигатели, в которых в качестве рабочего тела используется атмосфера, межпланетная среда, горные породы планет и астероидов.

Автономные двигательные системы

Роль ракетного двигателя заключается в преобразовании какого-либо вида энергии в кинетическую энергию ракеты. В соответствии с известным принципом реактивного движения это преобразование может быть реализовано путем отбрасывания вспомогательной массы, т. е. путем сообщения рабочему телу двигателя некоторой скорости. Таким образом, любая двигательная система должна включать в себя источник энергий, источник отбрасываемой массы (рабочее тело двигателя) и собственно двигатель -- устройство, в котором энергия источника преобразуется в кинетическую энергию рабочего тела. В некоторых схемах двигателей источник энергии и рабочее тело могут быть совмещены. Например, в жидкостных ракетных двигателях (ЖРД) энергия выделяется за счет химической реакции компонентов рабочего тела. Если же источник энергии и рабочее тело располагаются на борту ракеты, то такие двигательные системы называются автономными. Из закона сохранения энергии следует, что минимальный се запас на борту ракеты должен равняться сумме кинетической энергии полезного груза и работы, затрачиваемой на преодоление силы тяжести и сопротивления воздуха при старте ракеты с поверхности Земли. Например, затраты на вывод массы 1 кг при запуске искусственного спутника на орбиту высотой 300 км составляют 4,5 · 107 Дж. Поскольку на разгон источника энергии также требуются затраты работы, то желательно использовать такие источники, которые обладали бы максимальным энерговыделением на единицу массы. Энергия может быть запасена в самой разнообразной форме -- механической, электрической, магнитной, химической, ядерной. Наилучшие характеристики имеют источники энергии, использующие химические и ядерные реакции.

Однако полное превращение энергии, запасенной на борту ракеты, в ее кинетическую энергию на практике неосуществимо. Во-первых, это связано с тем, что КПД преобразования запасенной энергии в кинетическую энергию рабочего тела всегда меньше 100 %. Часть энергии (в случае электрических двигателей -- большая часть) бесполезно рассеивается в пространстве в виде теплового излучения, а другая -- уносится в виде внутренней энергии отбрасываемой массы (тепла, энергии диссоциации и т. д.). Эти потери характеризуются КПД двигательной установки. Во-вторых, полное использование кинетической энергии отбрасываемой массы возможно лишь в том случае, когда ее скорость противоположна и равна скорости ракеты, т. е. если эта масса после ее выхода из двигателя остается неподвижной относительно точки старта ракеты. Потери, вызываемые разностью абсолютных величин скоростей отбрасываемой массы и ракеты, характеризуются так называемым тяговым КПД. Примерные значения относительных потерь даны для ЖРД, а также для электрического двигателя (в скобках).

Работа, затраченная ракетным двигателем на разгон единицы массы ракеты, имеет размерность квадрата скорости, поэтому в качестве меры этой работы удобно принять некоторую характеристическую скорость -- vx. При ускорении ракеты в пустоте в отсутствии гравитационных полей эта скорость совпадает с собственной скоростью ракеты. Соответственно работа, затраченная на разгон в двигателе рабочего тела, может быть выражена через его скорость -- так называемую скорость истечения vи. Зависимость между этими скоростями, при постоянной скорости истечения, описывается уравнением Циолковского vx = vиln(1 + z), где z -- число Циолковского, равное отношению массы рабочего тела, запасенного на борту ракеты, к массе «пустой» ракеты (включающей массу полезного груза, двигателя и конструкции). Характеристическую скорость обычно выражают через соответствующие скорости, обусловленные затратами энергии, необходимой для выполнения какой-либо задачи. Это скорость для выхода из сферы притяжения, орбитальная скорость и скорость сближения с планетой, если она является целью полета. Для запуска искусственного спутника Земли, например, характеристическая скорость равна 9,5 км/с, для выхода из сферы притяжения Земли -- 12,5, для межпланетных полетов -- 30-50 км/с. Число Циолковского является важнейшей характеристикой ракеты: для заданной массы полезного груза оно определяет стартовую массу ракеты и поэтому желательна как можно меньшая его величина. Из уравнения Циолковского следует, что для данной характеристической скорости число Циолковского можно уменьшить лишь за счет увеличения скорости истечения. Таким образом, скорость истечения является одной из основных характеристик двигателя, и ее повышение является главнейшей задачей совершенствования ракетных двигателей. Исходя из определения скорости истечения для двигателей с совмещенными источниками энергии и отбрасываемой массы, когда рабочее тело ускоряется за счет его внутренней энергии, скорость истечения легко подсчитать, приравнивая кинетическую энергию отбрасываемой массы ее внутренней энергии, помноженной на КПД двигателя. В табл. 1 были приведены скорости истечения, соответствующие различным реакциям при КПД двигателя, равном 100 %. На рис. 2 дан график зависимости характеристической скорости от скорости истечения для различных чисел Циолковского. Из сравнения этого графика с данными табл. 1 можно сделать вывод о том, что все задачи космических полетов легко решить, используя в качестве ракетного топлива уран-235, не говоря уже о дейтерии и тритии. Действительно, для характеристической скорости 50 км/с, необходимой для полета к планетам, число Циолковского при скорости истечения, соответствующей энергии деления урана, равно 5,5 · 10-3. Даже при КПД двигателя, равном 1 %, отношение массы урана к массе ракеты будет всего 0,056. Однако для достижения расчетной скорости истечения в двигателе должны прореагировать все атомы урана. Поскольку для осуществления самоподдерживающейся ядерной реакции деления необходима масса делящегося вещества, не меньшая так называемой критической (для урана примерно 1 кг), то при этом в двигателе за время около 10-6 с выделится громадная энергия 1013 Дж. Переход даже части этой энергии в кинетическую энергию ракеты за столь короткое время соответствует чрезвычайно большим ускорениям, а следовательно, и перегрузкам, которые не в состоянии выдержать никакая конструкция ракеты. Кроме того, продукты реакции имеют температуру более 50 млн. К, и взаимодействие их со стенками двигателя приведет к его тепловому разрушению.

В случае замедленной управляемой ядерной реакции, которая осуществляется в атомных реакторах, осколки деления теряют энергию на столкновения с еще не прореагировавшими атомами, концентрация которых на несколько порядков больше, и в целом все делящееся вещество приобретает энергию, намного меньшую удельной энергии ядерной реакции. Использовать эту энергию для создания скорости истечения самого делящегося вещества невыгодно, так как будет теряться слишком много энергии в виде внутренней энергии непрореагировавших ядер, и, следовательно, КПД двигателя будет недопустимо низким. В связи с этими ограничениями использование ядерных реакций в ракетных двигателях в первую очередь предполагает передачу энергии нейтральной массе, запасаемой на борту ракеты, т. е. источники энергии и отбрасываемой массы оказываются разделенными. Следует отметить следующую принципиальную разницу в требованиях к скорости истечения для таких двигателей и для двигателей, в которых рабочее тело является одновременно и источником энергии. Режим -- полета с постоянной скоростью истечения, описываемый уравнением Циолковского, не выгоден с точки зрения тяговых потерь (тяговый КПД равен 100 % лишь в той точке траектории, где скорость истечения равна скорости ракеты). Действительно, как следует из рис. 1, для типичного двигателя с постоянной скоростью истечения (ЖРД) потери, связанные с кинетической энергией отбрасываемой массы, составляют около половины всех потерь. Однако из анализа уравнений движения ракеты следует, что для двигателей, использующих в качестве источника энергии внутреннюю энергию рабочего тела, при максимально возможной для данного двигателя скорости истечения минимальное значение числа Циолковского обеспечивается независимо от величины характеристической скорости. В двигателях же с разделенными источниками энергии и отбрасываемой массы режим ускорения ракет с постоянной скоростью истечения уже не является оптимальным, и повышение тягового КПД может существенно улучшить характеристики ракеты. Скорость истечения в этом случае должна увеличиваться пропорционально скорости ракеты. Зависимости, описывающие конкретные значения скорости истечения, достаточно сложны и мы на них не будем останавливаться. Кроме того, двигатели с переменной скоростью истечения трудно осуществить на практике. Поэтому двигатели с разделенными источниками энергии и отбрасываемой массой целесообразно характеризовать некоторой средней скоростью истечения. Минимальный запас энергии на борту ракеты (характеризуемый, например, массой урана-235) достигается при скорости истечения, равной примерно 62 % от величины характеристической скорости, и числе Циолковского, равным 4. И наоборот, если заданы запас энергии па борту и характеристическая скорость, то данное оптимальное значение скорости истечения соответствует максимально возможному полезному грузу ракеты. Отсюда следует, что в двигателях с разделенными источниками энергии и отбрасываемой массы скорость истечения не должна превышать оптимальной величины, определяемой конкретной задачей космического полета. Это положение не противоречит сделанному выше утверждению о стремлении к повышению скорости истечения при разработке новых двигателей, так как для большинства задач в существующих схемах двигателей еще не достигнута оптимальная скорость истечения. В некоторых случаях даже для двигателей, использующих внутреннюю энергию рабочего тела, выгодно снижать скорость истечения за счет добавления пассивной массы. Например, ракета с ЖРД, покидающая Луну, должна сообщить полезному грузу характеристическую скорость около 2,5 км/с. Оптимальная же скорость истечения для выполнения данной задачи -- 1,6 км/с (0,62 vx). ЖРД имеет существенно большую скорость истечения, и поэтому оказывается выгодным снизить ее до оптимальной за счет добавления лунной пыли к рабочему телу (желательно тех ее компонентов, которые испаряются при рабочей температуре двигателя), если на ракете имеются пустые баки, освободившиеся при ее посадке на Луну.[2] В результате этой операции полезный груз может быть увеличен в зависимости от вида ракетного топлива на 20-50 %.

Другим важным параметром, по которому сравниваются между собой ракетные двигатели, является тяга, т. е. сила, создаваемая двигателем для ускорения ракет. Величина тяги равна произведению секундного расхода отбрасываемой массы (рабочего тела двигателя) на скорость истечения. По этому параметру различают двигатели большой тяги, когда тяга превосходит вес ракеты и последняя может стартовать с поверхности Земли, и малой тяги, пригодные лишь для старта с орбиты спутника. Разделение на двигатели малой и большой тяги непосредственно связано с еще одним параметром -- удельной массой двигателя, равной отношению веса двигателя к развиваемой им тяге. Естественно, что двигатели с удельным весом больше единицы должны быть отнесены к двигателям малой тяги. Рассмотрим теперь перспективные схемы автономных двигателей, а также способы улучшения существующих схем с точки зрения улучшения рассмотренных параметров, и в первую очередь скорости истечения.[3] Однако прежде отметим, что по способу преобразования энергии в кинетическую энергию отбрасываемой массы можно выделить два основных класса ракетных двигателей -- тепловые и электрические. Кроме того, существуют двигатели взрывные, фотонные и др. Тепловые двигатели. Основной механизм преобразования энергии в тепловых двигателях, как и в любых тепловых машинах (газовых турбинах, двигателях внутреннего сгорания), -- это расширение газа, предварительно сжатого и нагретого до высокой температуры. Устройством, осуществляющим это преобразование, является реактивное сопло (профилированный канал переменного сечения), через которое происходит истечение рабочего тела во внешнее пространство. Скорость истечения на выходе из сопла прямо пропорциональна корню квадратному из температуры рабочего тела и обратно пропорциональна его молекулярному весу. Термодинамический КПД сопла как тепло-. БОЙ машины определяется разностью температур газа на входе и на выходе из сопла, которая, в свою очередь, зависит от относительного перепада давлений, т. е. зависит от степени расширения газа. Степень расширения газа ограничена размерами и весом двигателя, и поэтому в реальных конструкциях термодинамический КПД не превосходит 60-70 %. Таким образом, имеются лишь две возможности улучшения характеристик тепловых ракетных двигателей -- повышение температуры рабочего тела и снижение его молекулярного веса. Предельные возможности химических двигателей. В тепловых двигателях, использующих энергию химических реакций, к которым относятся широко распространенные в наше время ЖРД и твердотопливные ракетные двигатели (РДТТ), рабочее тело образуется в результате реакции горючего с окислителем. Температура рабочего тела определяется теплотой реакции, а молекулярный вес -- молекулярным весом продуктов реакции. Приведенные химические реакции дают оптимальное соотношение между молекулярным весом и температурой с точки зрения получения наибольшей скорости истечения. В настоящее время химические ракетные двигатели почти достигли предела своих оптимальных характеристик. Наиболее оптимальные реакции с использованием кислорода в качестве окислителя освоены давно: кислород-керосиновые и водород-кислородные двигатели уже много лет используются в космической технике. Некоторое улучшение характеристик может быть получено при использовании фторсодержащих окислителей. Но так как фтор является химически весьма агрессивным веществом, то сравнительно небольшой выигрыш в удельной тяге, который может оправдать применение этого химического элемента, едва ли оправдает эксплуатационные неудобства. Наиболее радикальный путь улучшения характеристик химических двигателей -- это использование реакций рекомбинации свободных радикалов. Свободным радикалом называют электрически нейтральный атом или группу атомов с неустойчивым состоянием электронной оболочки, которые получаются в результате диссоциации молекулярных соединений. Например, в реакции Н2О > ОН + Н гидроксильный остаток и атомарный водород являются радикалами. Наибольшей энергией обладает реакция образования молекулы водорода Н + Н > Н2 (удельная энергия этой реакции соответствует скорости истечения около 30 км/с). Однако из-за высокой склонности свободных радикалов к слиянию в устойчивую молекулу их накопление и хранение возможно лишь при температурах, близких 0 К, когда резко снижаются скорости химических реакций. Но и при 0 К остается возможность для так называемых туннельных реакций. Поэтому в чистом виде свободные радикалы хранить невозможно.

Предполагается вмораживать радикалы в нейтральную матрицу (например, атомарный водород помещать в кристаллическую решетку твердого водорода), при этом концентрация свободных радикалов принципиально не может превосходить 50 %. Даже смесь из 10 %-ного атомарного водорода и 90 %-ного молекулярного водорода позволит получить скорость истечения около 5 км/с при температуре всего 1200 К. За более чем 20 лет работы над этой проблемой удалось добиться концентрации свободных радикалов, не превышающей десятые доли процента. Тем не менее те преимущества, которые может дать применение свободных радикалов, стимулируют дальнейшие исследования. Ядерные тепловые двигатели. Наиболее перспективным направлением улучшения характеристик тепловых ракетных двигателей представляется использование энергии ядерных реакций. Как уже указывалось, ядерные реакции целесообразно применять лишь в схемах с разделенными источниками энергии и отбрасываемой массой. Ядерное горючее здесь выступает в качестве источника тепла, которое передается рабочему телу. В простейшем ядерном ракетном двигателе, как и в реакторах атомных электростанций, активная зона состоит из тепловыделяющих элементов, которые представляют собой соединения урана или плутония, заключенные в оболочку. В результате ядерного распада горючего они нагреваются. Жидкое рабочее тело с помощью насосов подается в активную зону, где оно, отбирая тепло от активной зоны, испаряется, температура его повышается, а в реактивном сопле происходит увеличение его скорости. Наивысшая температура рабочего тела ограничена температурой плавления тепловыделяющих элементов, а с учетом необходимого температурного перепада (для теплопередачи) и химической стойкости материалов не может превышать 2000 К. Так как в химических двигателях температура рабочего тела составляет 3000-3500 К, то единственным способом увеличения скорости истечения в ядерных двигателях с твердой активной зоной по сравнению с химическими является снижение молекулярного веса рабочего тела. Минимальным молекулярным весом обладает водород (2 г/моль), для него возможно получение скорости истечения 8-9,5 км/с. Это верхний предел для ядерных тепловых ракетных двигателей с твердой активной зоной. Близкие к этим значениям характеристики были получены в США на экспериментальном ядерном двигателе «Нерва». Для дальнейшего повышения температуры рабочего тела в ядерных двигателях необходим переход к реакторам, в которых делящееся вещество находится в газообразной фазе. Однако при разработке этих газофазных ядерных реакторов возникает ряд проблем. Для самоподдерживающейся ядерной реакции необходимо, чтобы в реакции участвовала масса ядерного горючего, не меньшая критической. Поскольку плотность ядерного горючего в газообразной фазе при высокой температуре мала, для достижения критической массы нужны высокие давления и большие объемы активной зоны.[4] Вторая трудноразрешимая проблема разработки газофазных реакторов -- это вынос непрореагировавшего ядерного горючего вместе с рабочим телом, что сильно снижает энергетические характеристики ракеты. В зависимости от того, перемешивается ли рабочее тело с ядерным горючим или отделено от него, различают схемы соответственно гомогенных и гетерогенных двигателей. Принципиальным недостатком гомогенных схем, который ставит под сомнение их целесообразность, является большой вынос урана вместе с рабочим телом -- около 100 кг на 1 т рабочего тела. В гетерогенных схемах можно существенно снизить вынос ядерного горючего или даже свести его к нулю. В объеме реактора с помощью соленоидов создается сильное магнитное поле, нарастающее к краям. Конфигурация поля при этом образует так называемую магнитную «бутылку». Магнитная «бутылка» обладает тем свойством, что вещество в состоянии плазмы может удерживаться в ней достаточно долго без наличия каких-либо твердых стенок. В результате ядерных реакций уран переходит в состояние плазмы и магнитное поле удерживает его от смешения с рабочим телом (водородом). Последнее обтекает магнитную «бутылку» с ядерным горючим, отнимая от нее тепло. Для того чтобы не происходило перемешивания, должно соблюдаться условие ламинарного обтекания. В этом случае эффективный теплообмен между активной зоной и рабочим телом возможен лишь излучением. Так как водород прозрачен для излучения урановой плазмы, в него добавляют литий в количестве 1-2 %, который, ионизуясь, сильно поглощает излучение. В такой схеме ожидается получение скорости истечения 20-30 км/с при выносе урана менее 2 % относительно расхода рабочего тела. Исследуются также схемы газофазных двигателей, в которых вообще отсутствует вынос делящегося вещества. Схема тепловыделяющего элемента такого двигателя приведена на рис. 4. Двигатель представляет собой капсулу с двойными стенками, выполненную из прозрачного тугоплавкого материала (например, лейкосапфира). Внутри капсулы помещают делящееся вещество, которое в рабочих условиях находится в газовой фазе. Между стенками для их охлаждения прокачивается водород. Поскольку и стенки и водород прозрачны для излучения, выделяющаяся ядерная энергия в виде излучения выходит наружу, где нагревает тот же водород, но уже с добавками лития. Из таких тепловыделяющих элементов набирают активную зону реактора. Реализация этой схемы тормозится отсутствием подходящих материалов для прозрачных стенок, стойких в контакте с газообразным ураном в условиях высоких температур и больших радиационных потоков. При удержании плазмы в магнитной «бутылке» возможна реализация термоядерного двигателя, использующего реакцию синтеза ядер. Однако более перспективными способами использования термоядерного синтеза считаются импульсные схемы, которые будут рассмотрены несколько позже.

Электрические реактивные двигатели. Электрический реактивный двигатель представляет собой устройство для преобразования электрической энергии, вырабатываемой на борту ракеты, в кинетическую энергию отбрасываемой массы. Самый простой способ преобразования осуществляется в так называемых электротермических двигателях, когда рабочее тело нагревается электрическим током и затем ускоряется в реактивном сопле, как в обычных тепловых двигателях. Хотя при электрическом нагреве могут быть получены очень высокие температуры, более предпочтительными являются двигатели с электромагнитным ускорением рабочего тела. В таких двигателях в кинетическую энергию преобразуется энергия электромагнитного поля и, следовательно, в них кет термодинамических ограничений на величину скорости истечения и на КПД преобразования энергии. По тем электромагнитным силам, которые используются для ускорения рабочего тела, различают ионные, плазменные и высокочастотные двигатели. В ионных двигателях ускорение происходит за счет взаимодействия электрического поля с ионами или заряженными макрочастицами рабочего тела. В плазменных двигателях используется взаимодействие тока с магнитным полем. И наконец, в высокочастотном двигателе ускорение осуществляется полем бегущей электромагнитной волны. В электрических двигателях относительно несложно получить сколь угодно большие скорости истечения, вплоть до скоростей, близких к скорости света (например, если использовать в качестве двигателя ускорители элементарных частиц). Из-за отсутствия легких накопителей электрической энергии (аккумуляторов) использование принципа электромагнитного ускорения имеет смысл лишь в сочетании с преобразованием ядерной энергии в электрическую. В настоящее время не известны сколь-нибудь эффективные прямые способы такого преобразования, и поэтому использование автономных электрических двигателей всегда рассматривается в сочетании с бортовой атомной электростанцией, работающей по тепловому циклу. Принципиальная схема космической энергоустановки включает в себя, как и любая наземная электростанция, источник тепла (в данном случае ядерный реактор), тепловую машину (преобразующую подведенное тепло в электроэнергию) и холодильник (устройство, отводящее отработанное тепло). Самым существенным отличием космических энергоустановок от их наземных аналогов является способ отвода тепла. В космическом пространстве сброс тепла возможен только излучением. Насколько это серьезное обстоятельство, можно представить себе из следующего примера. Для излучения тепла в 1 кВт при средней температуре теплосброса в наземных электростанциях 50 °C требуется площадь излучающей поверхности холодильника 1,64 м2. Для электрического двигателя мощностью 100 кВт, что соответствует мощности ЖРД с тягой всего около 30 кгс, и общим КПД двигательной системы 20 % при этой же температуре потребуется холодильник площадью 1300 м2. Энергия, излучаемая единицей поверхности, пропорциональна четвертой степени температуры, и поэтому для сокращения площади холодильника необходимо повышать его температуру. Поскольку КПД электростанции как тепловой машины пропорционален разности температур источника тепла и холодильника, то для сохранения величины КПД необходимо соответствующее увеличение температуры источника. Таким образом, общей задачей повышения эффективности как тепловых, так и электрических двигателей является создание высокотемпературного реактора. Потребности в космической энергетике вызвали интенсивные исследования в области высокотемпературного прямого преобразования тепла в электричество. Наиболее перспективными системами преобразования для космических установок оказались термоэлектронные преобразователи (ТЭП). Принцип работы ТЭП иллюстрируется на рис. 5, где ТЭП представляет собой диод, межэлектродный зазор которого заполнен парами цезия. При высокой температуре катод испускает электроны, которые конденсируются на аноде, заряжая его до отрицательного потенциала относительно катода. В результате между катодом и анодом возникает разность потенциалов, и при замыкании их на нагрузку в цепи идет электрический ток. Охлаждение катода, вызванное «испарением» электронов и потерями на излучение, компенсируется подводом тепла от ядерного реактора. Тепло, выделяющееся на аноде в результате конденсации электронов и лучистого подогрева со стороны катода, отводится теплоносителем или непосредственно излучением в космическое пространство.

Рис. 5. Принципиальная схема термоэмиссионного преобразователя тепловой энергии в электрическую: 1 -- катод, 2 -- межэлектродный зазор, заполненный парами цезия, 3 -- анод, 4 -- нагрузка

Термоэлектронный преобразователь с вольфрамовым катодом может работать при температуре катода до 2500 К и температуре анода 1000-1400 К с удельной мощностью от 5 до 40 Вт/см2 при КПД до 25 %. Недостатком ТЭП является его малое рабочее напряжение (около 0,5 В), и поэтому используется последовательное соединение элементов. Теоретически температура теплосброса, оптимальная с точки зрения размеров холодильника, должна составлять 75 % от температуры источника тепла. При температурных ограничениях, накладываемых твердотельным реактором, холодильник-излучатель всегда будет если не самой тяжелой, то самой громоздкой частью космической энергоустановки. Для эффективной работы холодильника его поверхность должна иметь температуру, близкую к нижней температуре теплового цикла. Добиться этого за счет естественной теплопроводности материалов нельзя, необходим принудительный перенос тепла путем циркуляции жидкого или газообразного теплоносителя. При этом появляются дополнительные потери энергии на прокачку теплоносителя, и установка оказывается весьма уязвимой к метеоритному пробою. При больших поверхностях холодильника резко возрастает вероятность попадания метеорита размером, достаточным для разрушения стенки канала с теплоносителем, что приведет к разгерметизации и выходу установки из строя. Наиболее удачным конструктивным решением, позволяющим обойти эти проблемы (потеря мощности и метеоритный пробой), является использование тепловых труб. Тепловая труба представляет собой канал с циркулирующим теплоносителем, на внутренних стенках которого с зазором располагается так называемый фитиль (в простейшем случае это мелкоячеистая сетка). Предварительно откачанная труба заполняется жидкостью в количестве, достаточном для заполнения зазора между фитилем и стенкой трубы, где она удерживается затем капиллярными силами. В тепловой трубе различают зоны нагрева, переноса тепла и охлаждения. В холодильнике-излучателе две последние зоны, как правило, совмещены. Тепло, подводимое к зоне нагрева, испаряет жидкость, пары которой проходят через отверстия фитиля во внутреннее пространство трубы и устремляются к зоне охлаждения. Там происходит конденсация жидкости с передачей тепла конденсации стенкам трубы, от которых оно отводится излучением. Жидкость, образовавшаяся в результате конденсации, возвращается капиллярными силами, создающимися в фитиле и в зазоре между фитилем и стенкой трубы, назад в зону нагрева. Такой процесс теплопередачи настолько эффективен, что, например, сейчас испытаны трубы, передающие тепловой поток 10 кВт на каждый 1 см2 поперечного сечения трубы на расстояние в несколько метров при перепаде температур между концами трубы менее 0,01 К. Это эквивалентно теплопередаче сплошного стержня с коэффициентом теплопроводности, в несколько тысяч раз превышающим соответствующее значение для меди. С тепловыми трубами по возможностям транспортировки тепла могут конкурировать лишь системы с жидкометаллическим теплоносителем, но в них требуются затраты работы на прокачку.

Рис. 6. Схема пылевого холодильника-излучателя: 1 -- насос, 2 -- теплообменник, 3 -- ферромагнитная пыль, 4 -- обмотка соленоида, 5 -- силовые линии магнитного поля

Из тепловых труб собирается поверхность холодильника-излучателя. Зона подвода тепла может либо непосредственно контактировать с охлаждаемым узлом, либо омываться промежуточным теплоносителем. Поскольку для создания излучающей поверхности нужно использовать много тепловых труб, а их каналы могут быть между собой несвязанными, то повреждение одной или нескольких труб метеоритом лишь несущественно скажется на работе всей установки. Возможны схемы теплосброса, когда теплоносителем является ферромагнитная пыль (рис. 6), которая прокачивается насосом через теплообменник, снимая отработанное тепло энергоустановки, и выбрасывается во внешнее пространство. Там они захватываются и возвращаются снова на вход насоса. В магнитном поле ферромагнитные частицы, сцепляясь друг с другом, выстраиваются вдоль силовых линий, создавая излучающую оболочку. При достаточной магнитной проницаемости вещества пыли все внешнее магнитное поле оказывается сосредоточенным в этой оболочке и не происходит его бесполезного рассеяния. Преимуществом такого типа холодильника-излучателя является его полная неуязвимость к поражению метеоритами, а также малые размеры при транспортировке энергоустановки с поверхности Земли на орбиту спутника, так как при этом пыль может находиться в малогабаритном контейнере. В настоящее время эта схема находится еще в стадии теоретических проработок. Ее реализация сдерживается отсутствием легких и экономичных источников магнитного поля. Импульсные двигатели на микровзрывах и фотонный двигатель. Принцип действия импульсных ядерных ракетных двигателей (ИЯРД), схемы которых приведены на рис. 7, а и б, заключаются в том, что над поверхностью массивного отражателя производятся периодические ядерные или термоядерные взрывы. Существенными элементами ИЯРД являются источник магнитного поля, которое препятствует попаданию заряженных продуктов реакции на поверхность отражателя, и демпфер, служащий для сглаживания импульсной нагрузки, передаваемой ракете. Обычно в таких двигателях в результате воздействия взрыва испаряется либо материал отражателя, либо рабочее тело, подаваемое на поверхность отражателя. Кроме того, для улучшения условий протекания ядерной реакции, увеличения доли прореагировавших атомов и уменьшения температуры взрыва ядерный заряд заключают в достаточно толстую оболочку пассивного вещества. В результате отбрасываемая масса будет состоять в основном из веществ, не принимающих участие в реакции (водород, литий и др.), и скорость истечения в таких двигателях ограничена 100 км/с. Если будут найдены удовлетворительные технические решения для охлаждения отражателя без испарения его материала и удастся осуществить ядерную реакцию без образования оболочки, окружающей заряд, то скорости истечения в таких двигателях могут приблизиться к теоретически возможным величинам -- 105 км/с. При этом ИЯРД будут иметь меньшую удельную массу, чем электрические двигатели, ибо доля отводимого тепла у них будет существенно меньше (для электрических двигателей она составляет 75-90 % от мощности ядерной установки), а теплообмен можно осуществлять при более высокой температуре. В результате площадь и соответственно масса холодильника-излучателя будут существенно меньше.

Рис. 7. Схемы импульсных двигателей (а -- на трансурановых элементах, б -- термоядерный двигатель): 1 -- космический корабль, 2 -- демпфер, 3 -- система подачи ядерного горючего, 4 -- отражатель, 5 -- зона взрыва, 6 -- система преобразования энергии, 7 -- обмотка для создания магнитного поля, 8 -- система поджига реакции (ускорители заряженных частиц или лазеры)

Для ядерных реакций деления основной проблемой является сокращение массы ядерного горючего, необходимой для самоподдерживающейся ядерной реакции (критическая масса). Для широкоиспользуемого в настоящее время ядерного горючего из урана-235 и плутония критическая масса настолько велика (скажем, 1 и 3 кг), что из-за слишком большой энергии, выделяемой при взрыве такой массы, исключается прямое применение этих элементов в ИЯРД. Существенно уменьшить критическую массу можно либо увеличивая плотность делящегося вещества путем его сжатия давлением в 1014 -- 1015 Па, либо переходя к химическим элементам с большими ядерными массами -- трансурановым элементам. Современная техника позволяет создавать импульсные давления требуемой величины, но это возможно лишь при использовании сложных и тяжелых устройств, которые более целесообразно применить для реакций синтеза. Поэтому в качестве горючего в ИЯРД деления могут быть использованы лишь трансурановые элементы (в первую очередь калифорний-252). Критическая масса калифорния равна примерно 7 г, и при взрыве такой массы выделяется 1010 Дж. Схема двигателя с использованием калифорния приведена на рис. 7, а. В ней с помощью специальных ускорителей, расположенных на периферии отражателя, выстреливаются частицы калифорния, которые одновременно, сталкиваясь, образуют в сумме критическую массу, инициируя ядерный взрыв. Причем за счет сжатия, возникающего при столкновении частиц, критическая масса может быть уменьшена в 1,5-2 раза. Взрывы повторяются до тех пор, пока ракета не наберет нужную скорость: для разгона ракеты с конечной массой 100 т до скорости 10 км/с нужно несколько килограмм калифорния. Однако двигатели с использованием трансурановых элементов при всей их принципиальной простоте обладают рядом существенных недостатков и едва ли могут быть осуществлены в ближайшее время. Калифорний очень дорог, он отсутствует в природе и его получают облучением тяжелых элементов в протонных ускорителях или мощными нейтронными потоками. При этом полезный выход калифорния очень мал, и, например, производство калифорния в США в 60-х годах составляло всего около 1 г в год. Поскольку период полураспада калифорния-252 составляет 2,5 года, то при таком уровне производства вообще невозможно накопить критическую массу. И наконец, если нужное количество калифорния будет получено, то хранить его на ракете возможно лишь в виде малых частиц, разделенных большим количеством поглотителя нейтронов, что увеличивает массу двигателя. Кроме того, при взрыве трансурановых элементов образуются тяжелые осколки деления, которые трудно задержать магнитным полем отражателя, и большое количество нейтронов, практически не взаимодействующих с магнитным полем. В результате охлаждение конструкции двигателя становится трудноразрешимой проблемой. Запас калифорния можно несколько сократить, если в зону взрыва через интервал времени 10-6 -- 10-5 с подавать уран примерно в тех же количествах, что и калифорний. При этом в нейтронном потоке, созданном взрывом калифорния, будет происходить выгорание урана. Затем через такой же интервал времени можно подать следующую порцию урана. Таким образом будет организована каскадная реакция, но она является затухающей и после 3-5 циклов необходимо вновь взрывать калифорний. Более перспективным может быть использование калифорния для инициирования термоядерной реакции. При этом калифорний применяется только один раз, а потом в зону реакции непрерывно подаются порции термоядерного горючего (например, дейтерий-тритиевой смеси). Термоядерное горючее несравнимо дешевле калифорния и экономические факторы не будут играть столь существенной роли при разработке такого двигателя. Кроме того, при термоядерной реакции образуются легкие элементы, что значительно упрощает тепловую защиту отражателя. Однако, если даже отвлечься от проблемы подачи термоядерного горючего в зону горения, то минимальный уровень непрерывной мощности для осуществления этой самоподдерживающейся реакции составит 1014 Вт. Это более чем в 1000 раз превосходит мощность двигателей ракеты «Сатурн-5». При скорости истечения 103 км/с такой двигатель будет иметь тягу 10 000 тс. И, следовательно, проблемы теплоотвода при требуемом уровне мощности становятся чрезвычайно трудноразрешимыми. Если допустить, что в элементах конструкции двигателя выделяется всего 0,1 % энергии, то и для отвода такого количества потребуется холодильник-излучатель площадью 10 000 м2. При темплосъеме, использующем рабочее тело, скорость истечения снизится в 3 раза, и соответственно тяга возрастет до 30 000 тс. Для создания такой тяги потребуется расход рабочего тела в 1000 кг/с. Ракета массой 10 000 т с таким двигателем могла бы достичь скорости 100 км/с за время, немногим более 1 ч. Более близкими к реализации, однако, представляются схемы двигателей с термоядерными микровзрывами. Эти двигатели довольно широко обсуждались в печати, опубликовано несколько концептуальных проектов этих двигателей. Суть термоядерных микровзрывов состоит в так называемом инерциальном удержании плазмы, когда реакция успеет произойти раньше, чем под воздействием высоких температур, необходимых для поджига термоядерной реакции, разлетится разогретое термоядерное горючее. В упомянутой ранее схеме стационарного термоядерного реактора основная и до сих пор не решенная проблема состоит в удержании горячей плазмы магнитным полем. Для получения управляемой термоядерной реакции при температуре в несколько миллионов градусов должен выполняться критерий Лоусона nф ?1014, где n -- концентрация частиц (число атомов в 1 см3), а ф -- время. При инерциальном удержании критерий Лоусона выполняется за счет резкого повышения концентрации, в результате на столько же сокращается время, необходимое для протекания термоядерной реакции. Это достигается симметричным импульсным облучением небольшой мишени ядерного горючего, используя излучение мощного лазера или высокоинтенсивные потоки заряженных частиц (электроны и ионы). Причем поток энергии во время импульса должен резко нарастать. В результате облучения происходит интенсивное испарение поверхностного слоя мишени, так называемая абляция. Испаряющиеся частицы приобретают большую скорость и, подобно тому как это происходит в реактивных двигателях, создают импульс отдачи, что приводит к развитию громадного давления, достигающего многих миллиардов паскаль. Эффект абляции многократно усиливается сходящейся ударной волной, в результате в центре мишени плотность горючего возрастает в несколько тысяч раз, а давление достигает величины, соответствующей давлению в центре звезд (около 1016 Па). При этом происходит разогрев термоядерного горючего и наступают условия для протекания термоядерной реакции. Для осуществления микровзрыва достаточны мишени массой всего 0,001 -- 0,01 г. Такой массе соответствует энергия микровзрыва 108 -- 1010 Дж. Около 80 % вещества мишени уносится в результате абляции и в реакции не участвует; кроме того выход реакции едва ли превысит 30 %. В результате предельная скорость истечения для термоядерных микровзрывов будет составлять около 6 · 106 м/с, что соответствует удельной тяге 6 · 105 с. Для взрывов, инициируемых пучками электронов, необходимо окружать мишень оболочкой из элементов с большим атомным весом, что еще более снизит предельную скорость истечения. Схема двигателя с использованием термоядерных микровзрывов приведена на рис. 7, б. Принципиальное отличие таких двигателей от двигателей на трансурановых элементах состоит в наличии системы инициирования термоядерной реакции и источника электрической энергии для ее питания. Система инициирования представляет собой либо набор источников светового излучения, либо ускорителей заряженных частиц, расположенных таким образом, чтобы по возможности симметрично облучать мишень. В качестве источника излучения может использоваться один мощный лазер с разделением его луча на несколько или комбинацию лазеров. Мишень выстреливается в пространство над отражателем, и в тот момент, когда она проходит точку фокусировки лучей, создается поджигающий импульс. Термоядерная плазма отражается от магнитного поля, создаваемого сверхпроводящими соленоидами, и выбрасывается во внешнее пространство, создавая реактивную тягу. Для выработки электроэнергии могут использоваться либо специальные соленоиды, либо те же соленоиды, которые являются источниками защитного магнитного поля. При взаимодействии движущейся плазмы с магнитным полем в соленоидах находится ЭДС, и вырабатываемая электроэнергия идет на генерацию последующего импульса. В американском проекте термоядерного двигателя с лазерным поджигом реакции предполагается использовать лазер с энергией в импульсе 1 МДж, длительностью импульса 10 нс и частотой следования импульсов 500 Гц. Масса лазера оценивается в 150 т. При энергии, выделяемой в одном микровзрыве, 108 Дж такой двигатель, по расчетам авторов проекта, может разогнать полезный груз массой 100 т до характеристической скорости 10 км/с за одни сутки. Для этого потребуется около 108 микровзрывов. Английские исследователи в проекте двигателя на термоядерных микровзрывах предлагают осуществлять инициирование термоядерной реакции с помощью электронных ускорителей. Частота следования «поджигающих» импульсов составляет 100 Гц, энергия в каждом микровзрыве 1011 Дж. В двигателе для разгона полезного груза 100 т до скорости 0,15 скорости света сжигается несколько сотен тонн термоядерного горючего в течение года. Основной трудностью при создании импульсных термоядерных двигателей является разработка системы инициирования реакции. Именно отсутствие соответствующих лазерных и ускорительных устройств определенным образом сказывается на том, что до сих пор не осуществлена управляемая термоядерная реакция. Масса инициирующей системы пропорциональна энергии микровзрыва, поэтому желательно иметь как можно меньшее энерговыделение в каждом взрыве. Но тогда при заданной тяге должна быть обеспечена высокая частота повторения импульсов, а для достижения заданной характеристической скорости -- соответственно большее их количество. Допустимое же число импульсов ограничено ресурсом системы. В связи с этим советские ученые Е. П. Велихов и В. В. Чернуха предложили способ каскадного поджига термоядерных мишеней. Суть способа состоит в том, что через время около 10-6 с после поджига первой мишени в область взрыва подается более массивная мишень, на инициирование реакции в которой используется часть энергии первого взрыва. Потом подается мишень еще большей массы и т. д. Используя в каждом каскаде мишени с десятикратным увеличением выделения энергии, можно получить энергию взрыва 1010 -- 1011 Дж для системы инициирования с энерговыделением 108 Дж. При этом соответственно уменьшается частота повторения импульсов, но в то же время, конечно, увеличивается импульсная нагрузка на отражатель. В каскадной схеме появляется возможность использовать в последующих ступенях каскада более трудновоспламеняемое горючее (например, чистый дейтерий). Это резко сокращает потребность в тритии и одновременно уменьшает выход нейтронов. Другой не менее важной задачей разработки импульсных термоядерных двигателей является отвод тепла, выделяющегося в конструкции. Как указывалось раньше, в дейтерий-тритиевой реакции до 80 % энергии уносится нейтронами, которые не задерживаются магнитным полем отражателя. Кардинальным решением проблемы было бы использование смеси обычного водорода с изотопом бор-11 в качестве термоядерного горючего. Хотя энерговыделение при сгорании этого горючего меньше, чем для дейтерий-тритиевой смеси, но зато полностью отсутствуют нейтроны. Однако эта реакция требует для своего инициирования более высокой температуры, и освоение ее является делом отдаленного будущего. Согласно основному постулату теории относительности максимально возможная скорость в природе есть скорость света -- 300 000 км/с. Естественно, эта скорость будет предельной и для скорости истечения в ракетных двигателях. Скорости, близкие к скорости света, можно получить в электрических двигателях, например в электронных или ионных ускорителях. Однако, как это следует из общефизических соображений, в этом случае энергию, затрачиваемую на ускорение частиц, более целесообразно с точки зрения получения максимальной характеристической скорости использовать для создания тяги с помощью электромагнитного излучения. Известно, что электромагнитное излучение, к которому относится и видимый свет, оказывает давление на материальные тела. Соответственно этому излучающее тело испытывает импульс отдачи фотонов электромагнитного поля. Поэтому каждое направленно излучающее тело может являться фотонным двигателем. Реактивная тяга направленного излучения равна мощности излучения, деленной на скорость света, т. е. каждый 1 кВт излучаемой мощности создает тягу 3,3· 10-7 кгс. Простейшим фотонным двигателем может быть заэкранированный с одной стороны холодильник-излучатель. Поскольку в энергию струи электрореактивного двигателя переходит около 10 % энергии, вырабатываемой бортовой энергоустановкой, то при скорости истечения, равной 0,1 скорости света, тяга, создаваемая холодильником-излучателем, становится сравнимой с тягой двигателя. Несмотря на относительную простоту фотонных двигателей, их нецелесообразно применять с любыми, используемыми в настоящее время источниками энергии, включая термоядерные. Обычно в энергию переходит лишь часть массы источника: для ядерных реакций деления -- 0,5 %, для термоядерных -- 0,15 %. Если в качестве рабочего тела использовать лишь фотоны, то одновременно с полезным грузом придется разгонять до конечной скорости и продукты реакции. Поэтому фотонные двигатели имеет смысл использовать лишь в сочетании с источниками энергии, в которых вся масса или по крайней мере ее большая часть преобразуется в энергию. Таким источником по современным представлениям может быть лишь реакция аннигиляции, т. е. взаимодействие частиц и античастиц. Для синтеза античастиц (например, антипротонов) необходимы мощные ускорители, причем выход античастиц в реакции очень мал. Считается, что для получения энергии в 1 Дж, заключенной в антипротонах, потребуется затратить электроэнергии не менее 100 кДж. Таким образом, накопление сколь-нибудь значительного количества антивещества находится за пределами возможностей современной техники. Другой проблемой, возникающей при реализации фотонных двигателей, является хранение антивещества. Поскольку материал конструкции ракеты является обычным веществом, то должен быть исключен всякий контакт антивещества со стенками баков. Поэтому антивещество может быть «подвешено» в электрических или магнитных полях. Требования к системе теплосъема в фотонных двигателях будут чрезвычайно жесткими. Реализуемые в настоящее время системы теплоотвода, включая холодильник-излучатель, имеют массу не менее 0,01 кг на 1 кВт сбрасываемой мощности. В этом случае, даже если пренебречь другими составляющими ракеты, она будет иметь ускорение не более 2 · 10-4 м/с2, и разгон такой ракеты до скорости всего 10 км/с будет продолжаться более года. Из всего сказанного следует, что создание фотонного двигателя дело чрезвычайно отдаленного будущего. Ряд исследователей подвергают сомнению рациональность и даже принципиальную возможность его создания, другие прямо относят фотонный двигатель к области научной фантастики.


Подобные документы

  • Крупнейшие авиастроительные предприятия России. Развитие ракетно-космической промышленности. Артиллерийско-стрелковое вооружение как важная отрасль военно-промышленного комплекса. Производство бронетанковой техники, ядерного и стрелкового оружия.

    презентация [8,3 M], добавлен 11.12.2010

  • Анализ взглядов вероятного противника на применение танков в современном бою. Система противотанковой обороны. Схема следящей системы. Анализ показателей безотказности системы со смешанным соединением элементов. Ведение эффективной стрельбы ракетами.

    дипломная работа [1,4 M], добавлен 30.04.2012

  • Схема действия парашютной системы. Тактико-технические требования. Классификация парашютов: грузовые, тормозные, вспомогательные, пристрелочные, людские. Предварительное определение параметров парашютной системы. Траектория системы "груз-парашют".

    курсовая работа [1,1 M], добавлен 20.02.2012

  • Высвобождение большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления или реакции термоядерного синтеза. Характеристика ядерных взрывов, их поражающих факторов. Виды ядерных взрывов. Бомбардировка Хиросимы и Нагасаки.

    презентация [745,4 K], добавлен 06.12.2010

  • Ядерный взрыв - неуправляемый процесс высвобождения большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления. Его классификация по мощности заряда, применение в мирных и военных целях. Природные проявления взрывов.

    презентация [334,1 K], добавлен 26.12.2012

  • Векторная схема и уравнение задачи прицеливания. Составление скалярных уравнений задачи прицеливания. Вычисляемые величины. Расчет дополнительных параметров условий стрельбы. Расчет и анализ прицельных поправок. Функциональная схема прицельной системы.

    курсовая работа [904,8 K], добавлен 21.06.2011

  • Сбор данных военными комиссариатами. Структурная схема учета техники организаций и граждан. Информация о наличии и техническом состоянии транспортных средств военными комиссариатами. Инструкция по учету в вооруженных силах Российской Федерации техники.

    статья [3,2 M], добавлен 05.08.2009

  • Математическая модель пиротехнической установки для испытания ракетной практики. Определение оптимальных параметров установки и ее ствола. Пневматические ударные установки. Площадь прохода между снарядом и каналом ствола. Давление пороховых газов.

    дипломная работа [2,2 M], добавлен 07.07.2013

  • Характеристика и предназначение кислородного изолирующего противогаза КИП-8, его принципиальная схема, комплект инструмента и запасных частей, техническое обслуживание и боевая проверка. Основные правила организации деятельности газодымозащитной службы.

    контрольная работа [717,7 K], добавлен 19.09.2012

  • Виды медицинской помощи, оказываемые пострадавшим при ведении спасательных работ. Формирования гражданской обороны; порядок, принципиальная схема их развертывания и подготовки к выполнению задач по медико-санитарному обеспечению пострадавшего населения.

    лекция [7,4 M], добавлен 25.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.