Диагностирование деталей цилиндропоршневой группы дизельного двигателя

История дизелестроения в России. Предмет и система диагностирования. Субъективные и инструментальные методы диагностирования двигателей. Распределение потока отказов двигателей. Комплектация цилиндропоршневой группы. Поршни, гильзы и поршневые кольца.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 21.05.2019
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ярославский государственный технический университет»

Кафедра «Автомобильный транспорт»

Реферат по дисциплине

«Диагностика транспортных и ТТМ и оборудования»

Диагностирование деталей цилиндропоршневой группы дизельного двигателя

Работу выполнил

студент гр. ЗАТ-43

А.Н. Привалов

2019

Реферат

Цель данного реферата - изучение методов диагностирования деталей цилиндропоршневой группы дизельного двигателя.

В ходе работы изучена история дизелестроения в России и в Ярославской области на примере Ярославского моторного завода. Были рассмотрены методы диагностирования двигателей: субъективные и инструментальные. Инструментальные методы диагностирования являются наиболее объективными методами, т.к. при диагностировании применяются измерительные приборы, позволяющие количественно измерять диагностические параметры, а по их значениям оценивать техническое состояние двигателя. Так же изучены внешние проявления неисправностей деталей цилиндропоршневой группы и сделан вывод, что диагностирование состояния деталей цилиндропоршневой группы по указанным проявлениям достаточно затруднено, т.к. на них могут влиять неисправности других узлов и систем двигателя. Например, на пусковые качества двигателя наряду с износом и дефектами деталей цилиндропоршневой группы могут влиять неисправности системы электрооборудования (аккумуляторных батарей, стартера, генератора) и разрегулировки топливной аппаратуры (увеличение угла опережения впрыска топлива, уменьшение пусковой подачи, снижение производительности подкачивающего насоса и др.). Поэтому при диагностировании деталей цилиндропоршневой группы необходимо убедиться в исправности других узлов и систем двигателя, оказывающих влияние на работоспособность рассматриваемых деталей.

Введение

Дизельные двигатели уже давно стаи неотъемлемой частью жизнедеятельности человечества. Влияние дизелестроения на экономику на протяжении 20 столетия было весьма значительным, и остается таковым в 21 веке хоть и с некоторым убыванием. Согласно статистике ООН мировой рынок дизелестроения на конец 2013 года оценивался в размере $895 млрд. Создание благоприятных условий для развития дизелестроения и рынка дизельных двигателей и технологий по прежнему в числе значимых условий экономического прогресса и повышения благосостояния населения[1].

Современное состояние дизелестроения в РФ имеет показатели, характерные для депрессивных отраслей. Во многом это является следствием структурных сдвигов в экономике страны и смена ориентации госзаказов в сторону от ВПК и тяжелой промышленности, что несомненно сказалось на инвестиционной привлекательности отрасли.

Решением экономических проблем здесь может быть расширение различных секторов дизелестроения, что, безусловно, является актуальным, как для России в целом так и для регионов страны с традиционно развитым моторостроительным потенциалом в секторе дизелестроения как, например Алтайский край, Свердловская, Нижегородская, Курганская, Челябинская (а отчасти Ярославская и Владимирская) области.

Ежегодное производство дизельных двигателей в мире достигает 12 млн. штук. Свыше 60 % - это дизельные двигатели автотракторного назначения. Этим и объясняется то большое внимание, которое уделяется совершенствованию этих двигателей.

Говоря о России в целом нельзя не упомянуть, что в стране для этого рынка формально имеются неплохие перспективы роста. Так, например, в США рынок дизелестроения составляет 21,3% от всего рынка машиностроения, в Германии 24,2%,, в Японии почти 25,1%, В Англии 19,8%, в Индии 16,9%, в Китае 18,1%, а в России на сегодня только 6,5-7,2%.

1. История дизелестроения в России

поршень диагностирование гильза двигатель

В России, как известно в советский период 1917-1991гг. рынка как такового (во всяком случае в «буржуазном» его понимании) не было. С 1928г. в в СССР существовало сугубо плановое народное хозяйство. Однако дизельные двигатели в стране производились и определенная («аппаратная») конкуренция между производителями двигателей была, хотя в целом среди них и преобладала жесткая специализация. Основной сферой применения дизельных двигателей были военная промышленность (бронетехника, авиация и флот), гражданский флот, электроэнергетика (ТЭЦ), а начиная с 50-60 годов 20 века - сельхозтехника, спецтранспорт (тяжелые грузовики, тягачи и т.п.) и ж-д транспорт (тепловозы).

Однако собственное производство было налажено только в начале 30-х годов поскольку «Русский дизель» Нобеля в Петербурге был практически разрушен в ходе «национализации» в 1918-1919гг. а другой его небольшой завод в Риге оказался за пределами СССР до 1940г. И в ноябре 1933г. первые два автомобиля ЯГАЗ-дизель с первыми автомобильными дизельными двигателями советской разработки совершили пробег по маршруту Ярославль - Москва -Ярославль[1].

В октябре 1961 г. Ярославский моторный завод (ЯМЗ) приступил к производству четырёхтактных двигателей ЯМЗ-236 и несколько позднее - двигателей ЯМЗ-238 , ЯМЗ-240 и их модификаций. Указанные двигатели V-образные; 6-, 8- и 12-цилиндровые; диаметр цилиндров D=130 мм; ход поршня S=140 мм. Они охватывают диапазон мощности 110-368 кВт (150-500 л.с.) и выпускаются в безнаддувном и наддувном вариантах. Эти двигатели составляют до настоящего времени основу производства завода. Ими оснащаются автомобили МАЗ, КрАЗ, УралАЗ, ЗИЛ, БелАЗ и тракторы ХТЗ, "Кировский завод" (г. С.-Петербург), МоАЗ и многие другие транспортные средства.

На заводе ведётся постоянная работа по совершенствованию двигателей размерности DxS=130x140 мм в направлении повышения ресурса и безотказности в работе, снижения расхода топлива и масла. Ряд двигателей этого семейства уже сегодня по выбросу вредных веществ с отработавшими газами (ОГ) соответствует нормативам Евро-2, а в перспективе предусмотрено выполнение более жёстких норм Ев-ро-3. В приложении А приведены показатели основных автотракторных моделей двигателей ЯМЗ размерности DxS=130x140 мм.

В 1980 году объединение "Автодизель" приступило к производству 52-цилиндровых двигателей новой размерности 0x8=140x140 мм типа ЯМЗ-8401. В объединении были созданы и 8-цилиндровые двигатели этой размерности, но их производство было передано Тутаевскому моторному заводу (двигатели ТМЗ-8421, ТМЗ-8423 и ТМЗ-8424).Указанные двигатели охватывают диапазон мощности 256-309 кВт (360-420 л.с.)

Двигатели ЯМЗ нового семейства выпускаются в ОАО "Автодизель" мелкими сериями и только в наддувном варианте. Они охватывают диапазон мощности 305-537 кВт (415-730 л.с.). Ими оснащаются автосамосвалы БелАЗ, промышленные тракторы ЧЗПТ и тягачи МЗКТ.

Двигатели нового семейства по своим технико-экономическим показателям находятся на уровне лучших образцов моторостроительных фирм. Уже на стадии проектирования в них были заложены высокие требования к топливной экономичности, ресурсу и безотказности.

2 Предмет и система диагностирования

Техническая диагностика - это отрасль знаний, изучающая признаки неисправностей объекта, методы средства и алгоритмы определения технического состояния без разборки, а также технологию, организацию использования систем диагностирования[3].

Диагностированием называют процесс определения технического состояния объекта без его разборки, по внешним признакам, путем измерения величин, характеризующих его состояние, и сопоставления их с требованиями нормативных документов. Оно обеспечивает систему технического обслуживания и текущего ремонта автомобиля, его агрегатов индивидуальной информацией об их техническом состоянии и, следовательно, является элементом этой системы. Объект диагностирования характеризуется необходимостью и возможностью диагностирования. В свою очередь, необходимость диагностирования автомобиля определяется закономерностями изменения его технического состояния и затратами на поддержание работоспособности. Возможности диагностирования обусловлены наличием внешних признаков, позволяющих определить неисправность автомобиля без его разборки, а также доступностью измерения этих признаков. Диагностирование объекта осуществляется согласно некому алгоритму, установленному технической документацией.

Комплекс, включая объект, алгоритм и средства, образует систему диагностирования. Диагностические системы могут быть общие, когда объектом является изделие в целом, а назначением -- определение его состояния на уровне «годно-негодно» и локальные -- для диагностирования составных частей объекта (агрегатов, систем, механизмов). Кроме того, диагностические средства могут быть ручными или автоматизированными (автоматическими).

Рисунок 1 - Классификация систем диагностирования

3. Методы диагностирования двигателей

Методы диагностирования двигателей, в равной степени как и других агрегатов транспортного средства, можно подразделить на две группы: субъективные и инструментальные. Последние методы могут быть, в свою очередь, подразделены на методы с использованием встроенных приборов в системе транспортного средства и методы с использованием внешних приборов (рис. 1).

Рисунок 2 - Структурная схема методов диагностирования двигателей

Субъективные методы диагностирования основаны на анализе и систематизации внешних признаков работы двигателя. Так, по цвету отработавших газов, подтеканиям топлива, масла и охлаждающей жидкости, характеру шума и т.п. можно определить причину той или иной неисправности. Положительный фактор субъективных методов низкая трудоёмкость диагностирования без применения средств измерений (датчиков и измерительных приборов). Однако результаты диагностирования во многом зависят от квалификации обслуживающего персонала, т.е. чем опытнее водитель и механик, тем быстрее они смогут отыскать причину и устранить неисправность. К сожалению, до сих пор во многих эксплуатирующих организациях отсутствует надлежащий опыт, что порой приводит к необоснованным заменам агрегатов на двигателях или отправке их в капитальный ремонт и даже к авариям, которых можно было бы избежать. Чтобы компенсировать недостатки в опыте эксплуатации двигателей ЯМЗ, в экспериментальном цехе ОАО "Автодизель" разработана методика поиска неисправностей по их внешним проявлениям. Она создана на основе обобщения и анализа многолетнего опыта эксплуатации двигателей ЯМЗ в составе автомобилей и тракторов в базовых автохозяйствах ОАО "Автодизель".

Инструментальные методы диагностирования являются наиболее объективными методами, т.к. при диагностировании применяются измерительные приборы, позволяющие количественно измерять диагностические параметры, а по их значениям оценивать техническое состояние двигателя. Встроенными средствами диагностирования являются входящие в конструкцию автомобиля или трактора датчики, устройства измерения, микропроцессоры и устройства отображения диагностической информации (рис. 2).

Рисунок 3 - Схема диагностирования с помощью встроенных устройств

Простейшие встроенные средства диагностирования реализуются в виде традиционных приборов на панели (щитке) перед водителем, позволяющих ему контролировать работу двигателя по температуре охлаждающей жидкости, давлению масла в главной магистрали, частоте вращения коленчатого вала, давлению наддувного воздуха и т.п. Как показано на рис. 2, с помощью датчика (механического, гидравлического, пьезоэлектрического, индукционного и др.) воспринимается сигнал, отражающий диагностический параметр Б. От датчика сигнал в трансформированном виде Б' поступает в измерительное устройство, затем количественное значение диагностического параметра 8 выдаётся устройством отображения данных (стрелочный прибор, цифровая индикация и т.п.)[2].

В автоматизированных системах диагностирования, применяемых на автомобилях ведущих мировых фирм, при помощи специального логического устройства, функционирующего на базе микропроцессора, выполняется автоматическая постановка, диагноза и выдаются рекомендации в нормативной форме о возможности дальнейшей Эксплуатации или необходимости проведения ремонтно-регулировочных операций и замен неисправных элементов.

Другим методом инструментального диагностирования является диагностирование с помощью внешних приборов (датчиков и измерителей), не входящих в конструкцию автомобиля или трактора. Этот метод диагностирования применяется для определения истинных значений диагностических параметров и контроля показаний штатных приборов автомобиля или трактора. В зависимости от устройства и технологического назначения внешние приборы могут быть стационарными или переносными. Стационарные приборы устанавливаются на специализированных участках, постах ТО и ремонта. Переносные приборы используются, как правило, при проведении диагностирования двигателей в составе автомобиля или трактора непосредственно в эксплуатационных условиях. С помощью переносных приборов измеряют давление, температуру, шумность, частоту вращения и другие параметры узлов и агрегатов двигателя.

Внешние приборы обеспечивают получение и обработку информации о техническом состоянии двигателя и уровне его эксплуатационных свойств, необходимой для управления выполнением ТО и ТР.

Следует отметить, что несмотря на широкое развитие методов инструментального диагностирования за последние годы, достоверная оценка состояния основных узлов двигателя, определяющих их надёжность и безотказность, пока невозможна. Практически до сих пор нет средств для полной оценки состояния подшипников коленчатого вала и шатуна, деталей ЦПГ и механизма газораспределения (МГР).

В зависимости от назначения, периодичности, содержания и места выполнения диагностические работы делятся на следующие виды. Операции ТО-1 сопровождаются комплексом диагностирования Д-1 (общее диагностирование автомобиля, включающее оценку его топливной экономичности и дымности отработавших газов). Перед ТО-2 и ТР проводят углубленное диагностирование (д-2) агрегатов, узлов и систем автомобиля в пределах установленных периодичностей по тем воздействиям, которые предусмотрены заводскими инструкциями по эксплуатации. При устранении выявленных неисправностей при ТО и ТР используют комплексное диагностирование (проверка форсунок, ТНВД, герметичности впускного тракта и т.п.) Внедрение современных методов, средств и организации диагностирования в систему ТО и ремонта автомобилей и их агрегатов повышает ее эффективность за чет более полной реализации эксплуатационных свойств каждого отдельно взятого автомобиля, а также за счет повышения уровня организации производства[3].

4. Распределение потока отказов двигателей

Как правило, больший поток отказов отмечается у деталей двигателей, подверженных высоким тепловым или механическим нагрузкам. К ним относятся детали, ограничивающие камеру сгорания и воспринимающие воздействие газовых сил. Условия работы деталей усугубляются также воздействием агрессивных газов, высокими линейными скоростями в парах трения, невозможностью гарантированно обеспечить гидродинамическую смазку в этих парах, знакопеременными нагрузками деталей и ухудшением условий работы масла в зонах высоких температур.

По статистическим данным ОАО "Автодизель", дефекты деталей кривошипно-шатунного механизма (КШМ) составляют 65-70 % от всего количества дефектов, причём из них на дефекты деталей ЦПГ (поршня, гильзы и поршневых колец) приходится 20-25 % и остальное - на шатуны, коленчатый вал и подшипники коленчатого вала и шатуна[3].

При нарушении работоспособности одной из деталей КШМ двигателя выходят из строя и сопрягаемые детали, т.е. дефект редко бывает локальным и носит характер "цепной реакции". Например, при механическом повреждении и последующем повороте вкладыша коренного подшипника нарушается работоспособность коленчатого вала и блока цилиндров. Отсюда следует, что выход из строя деталей КШМ приводит к существенным затратам на восстановление двигателя из-за большого объёма сборочно-разборочных работ и высоких расходов на запасные части.

По трудоемкости и стоимости устранения отказы делятся на три группы сложности: 1- отказы, устраняемые заменой или ремонтом легкодоступных деталей; 2 -- отказы, устраняемые заменой или ремонтом легкодоступных агрегатов и механизмов без их разборки с возможным раскрытием внутренних полостей; 3 -- отказы, устраняемые разборкой или расчленением основных агрегатов. У большей части систем и механизмов средняя наработка на отказ превышает период наблюдения, поскольку число отказов за это время менее единицы.

Следует отметить, что в данном разделе рассматриваются дефекты не только новых двигателей ЯМЗ, изготовленных в условиях ОАО "Автодизель", но и двигателей ЯМЗ, которые подвергались текущему и капитальному ремонту, т.е. учитываются факторы воздействия на качество двигателей со стороны работников эксплуатирующих и ремонтных организаций.

5. Комплектация цилиндропоршневой группы

Наиболее крупными и сложными деталями кривошипно-шатунного механизма являются блок цилиндров и его головка (или головки). Как показано на рисунке блок цилиндров 5 и головка цилиндров 1 имеют сложную форму, поэтому их изготовляют литьем. Между ними для герметизации стыка установлена прокладка. Спереди (а иногда и сзади) также через прокладку к блоку крепится крышка распределительных шестерен. Все остальные детали кривошипно-шатунного механизма расположены в блоке цилиндров, их обычно объединяют в несколько групп.

Блок цилиндров. Его отливают из чугуна (СЧ 21, СЧ 15) или из алюминиевых (например, АЛ4) сплавов. Соотношение масс чугунных и алюминиевых блок-картеров составляет примерно 4:1. За одно целое с блоком отлита верхняя часть картера.

В отливке блока цилиндров выполнены рубашка охлаждения, окружающая цилиндры, постели для коренных подшипников коленчатого вала и подшипников распределительного вала, а также места для установки других узлов и приборов. Чугунные блок-картеры изготовляют или вместе с цилиндрами или со вставными цилиндрами - гильзами, а алюминиевые только со вставными гильзами. Уплотнение гильз в блоке осуществляется с помощью резиновых колец или прокладок 3. Тщательно обработанная внутренняя поверхность гильз (или цилиндров) называется зеркалом.

Головка цилиндров. Головка закрывает цилиндры сверху; в ней размещены клапаны, камеры сгорания, свечи, форсунки. В головку цилиндров запрессованы направляющие втулки и седла клапанов. Плоскость разъема между головками и блоком цилиндров уплотнена сталеасбестовыми прокладками. Между головкой цилиндров и крышкой клапанов установлены пробковые или резиновые прокладки.

Головки отлиты из алюминиевого сплава или чугуна. Двигатели с рядным расположением цилиндров имеют одну головку цилиндров, двигатели с V-образным расположением - две головки на каждый ряд (двигатель ЗИЛ-130), четыре - на каждые три цилиндра (двигатель ЯМЗ-240), восемь -- на каждый цилиндр (двигатель КамАЗ-740).

Поршневая группа

В поршневую группу входят поршни, поршневые кольца и поршневые пальцы. Поршень представляет собой металлический стакан, днищем обращенный вверх. Он воспринимает давление газов и передает его через поршневой палец и шатун на коленчатый вал. Отлиты поршни из алюминиевого сплава.

Поршень имеет днище, уплотняющую и направляющую (юбку) части. Днище и уплотняющая часть составляют головку поршня. Днище поршня вместе с головкой цилиндра ограничивают объем камеры сгорания. В головке поршня проточены канавки для колец. При работе двигателя на поршень действуют большие механические и тепловые нагрузки от давления горячих газов.

Конструкция поршня должна обеспечивать такой зазор между поршнем и цилиндром, который исключал бы стуки поршня после запуска двигателя и заклинивание его в результате теплового расширения при работе двигателя под нагрузкой.

На юбке поршня делают разрезы, придают ему овальную форму в поперечном сечении и коническую - по высоте, производят заделку в поршень специальных компенсационных пластин из металла с малым коэффициентом теплового расширения. Например, в поршнях некоторых двигателей с зажиганием от искры юбку выполняют с косым разрезом, что делает ее более упругой и позволяет устанавливать поршень с минимальным зазором, не опасаясь заклинивания.

При шлифовании поршню придают овальную форму (большая ось овала должна быть перпендикулярна оси поршневого пальца), чтобы под действием боковых усилий и нагрева юбка поршня в рабочем состоянии принимала цилиндрическую форму.

Так как температура головки поршня примерно на 100-150°С выше, чем нижней части юбки, то наружный диаметр юбки делают больше, чем диаметр головки.

Большую опасность представляет собой перегрев поршня из-за недостаточного его охлаждения. При перегреве прогорает днище поршня, происходит задир рабочей поверхности цилиндра, залегание колец и даже заклинивание поршня. Иногда для улучшения охлаждения поршня на его внутреннюю поверхность направляют струю масла.

На поршне выполнены канавки для двух компрессионных 4, 5 и одного маслосъемного 6 кольца. Компрессионные кольца уплотняют поршень в гильзе цилиндров и предотвращают прорыв газов через зазор между юбкой поршня и стенкой гильзы. Маслосъемные кольца снимают излишки масла со стенок гильз и не допускают попадания его в камеры сгорания.

Поршневые кольца изготовлены из чугуна. Иногда маслосъемные кольца делают из стали. Для установки на поршень кольца имеют разрез, называемый замком.

После установки в цилиндр зазор в замке должен быть в пределах 0,3-0,5 мм, чтобы кольцо не заклинивало при нагревании. Замки на поршне должны располагаться на равных расстояниях друг от друга по окружности, что уменьшает прорыв газов из цилиндра.

Компрессионные кольца и особенно первое (верхнее) из них работают в тяжелых условиях. Из-за соприкосновения с горячими газами и большой работы трения, производимой первым кольцом, оно сильно нагревается (до 225-275°С), что осложняет его смазку и вызывает увеличенный износ как самого кольца, так и верхнего пояса цилиндра.

Для повышения износостойкости поверхность верхнего компрессионного кольца подвергают пористому хромированию. Остальные кольца для ускорения приработки покрывают тонким слоем олова или молибдена (двигатель КамАЗ-740).

Поршневые кольца разрезные, в свободном состоянии их диаметр несколько больше диаметра цилиндра. Поэтому в цилиндре кольцо плотно прижимается к его стенкам. В канавках поршня кольца образуют лабиринт с малыми зазорами, в котором газы, прорывающиеся из надпоршневого пространства, с одной стороны, теряют давление и скорость, а с другой -- прижимают кольца к стенке цилиндра.

Шатун соединяет поршень с коленчатым валом. Он состоит из верхней головки 5, стержня 6 двутаврового сечения и разъемной нижней головки, закрепляемой на шатунной шейке коленчатого вала. Шатун и его крышка изготовлены из легированной или углеродистой стали. В верхнюю головку шатуна запрессованы одна или две втулки из оловянистой бронзы, а в нижнюю вставлены тонкостенные стальные вкладыши, залитые слоем антифрикционного сплава.

Крышка обрабатывается в сборе с шатуном, их нумеруют порядковым номером цилиндра. Ширина нижней головки такова, что позволяет вынимать поршень с шатуном вверх через цилиндр. Нижняя головка шатуна и крышка соединяются двумя болтами или шпильками. Под головки болтов кладут специальные стопорные шайбы с усиками, а гайки имеют резьбу, несколько отличающуюся от резьбы на шпильках или болтах, в результате чего гайки само-стопорятся, На двигателях старых конструкций они иногда шплинтовались.

Вкладыши двигателя КамАЗ-740 изготовлены из стальной ленты, покрытой слоем свинцовистой бронзы и тонким слоем свинцовистого сплава. Вкладыши шатунных подшипников двигателей. ЗМЗ-24,. ЗМЗ-53 и ЗИЛ-130 выполнены из стале-алюминиевой ленты антифрикционный слой которой представляет собой алюминиевый сплав АМО-1-20.

Коленчатый вал штампуют из стали или отливают из магниевого чугуна. Стальные валы при одинаковых с литыми чугунными валами размерах шеек и щек имеют большую прочность, а к преимуществам литых валов следует отнести их меньшую стоимость, меньший расход металла при изготовлении, сокращение числа операций механической обработки, а также возможность придания оптимальных форм отдельным элементам кривошипа, например внутренним полостям шатунных и коренных шеек.

Литье позволяет выполнить все шейки вала полыми. Шейки стальных коленчатых валов закаливают токами высокой частоты. Все шейки коленчатых валов тщательно шлифуют и полируют. Переходы (галтели) от шеек к щекам выполняют плавными.

Количество шатунных шеек в двигателе, имеющем однорядное расположение цилиндров, равно числу цилиндров, а в V-образном двигателе - их в два раза меньше числа цилиндров, так как на каждую шатунную шейку устанавливают по два шатуна.

Маховик представляет собой массивный диск, отливаемый из чугуна. Он повышает равномерность вращения коленчатого вала, что особенно важно при малой частоте вращения, и передает крутящий момент трансмиссии автомобиля. Изготовлен маховик из чугуна. На обод маховика напрессован стальной зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя.

На некоторых двигателях на маховик наносят метки или запрессовывают в него стальной шарик, по которому устанавливают поршень первого цилиндра в ВМТ и проверяют установку зажигания.

Поддон, или нижняя часть картера, предохраняет от попадания в него пыли и грязи и служит резервуаром для масла. Его штампуют из листовой стали или отливают из легкого сплава. Поддон крепится болтами или шпильками, плоскость разъема уплотняется пробковой прокладкой и располагается ниже оси коленчатого вала, что повышает жесткость картера.

Подвеску двигателя к раме делают в трех или четырех точках. В качестве опор к блоку двигателя приворачивают специальные кронштейны (лапы). Задними опорами иногда служат лапы картера сцепления или удлинитель коробки передач. Под опоры устанавливают резиновые подушки или пружины. Это уменьшает вибрации двигателя из-за неравномерности крутящего момента и неполной уравновешенности вращающихся масс, смягчает удары, передаваемые от рамы к двигателю при движении автомобиля по неровной дороге.

Подвеска двигателя на эластичных опорах имеет ограничители продольного перемещения, их выполняют в виде тяги или скобы. Часто для фиксации двигателя относительно рамы используют реактивные тяги.

6. Диагностирование деталей цилиндропоршневой группы

Внешние проявления неисправностей деталей ЦПГ (поршни, гильзы и поршневые кольца) можно разделить на следующие:

- увеличение расхода масла на долив;

- ухудшение пусковых качеств двигателя;

- снижение мощностных и экономических показателей;

- увеличение расхода картерных газов;

- существенное ухудшение состояния картерного масла.

Диагностирование состояния деталей ЦПГ по указанным проявлениям достаточно затруднено, т.к. на них могут влиять неисправности других узлов и систем двигателя. Например, на пусковые качества двигателя наряду с износом и дефектами деталей ЦПГ могут влиять неисправности системы электрооборудования (аккумуляторных батарей, стартера, генератора) и разрегулировки топливной аппаратуры (увеличение угла опережения впрыска топлива, уменьшение пусковой подачи, снижение производительности подкачивающего насоса и др.). Поэтому при диагностировании деталей ЦПГ необходимо убедиться в исправности других узлов и систем двигателя, оказывающих влияние на работоспособность рассматриваемых деталей. Так, в случаях повышенного расхода масла на долив (выше 1,5 %) необходимо убедиться в отсутствии течи масла из двигателя и разгерметизации впускного тракта.

Расход масла на долив определяется по формуле, %:

где ДGм и ДGт соответственно расход масла на долив и топлива в литрах за определённый пробег двигателя.

На рис. 4 приведена зависимость расхода масла на долив от пробега для безнаддувных двигателей ЯМЗ-236 и ЯМЗ-238 при их работе в составе автомобилей МАЗ на междугородних перевозках грузов.

Диагностирование состояния деталей ЦПГ необходимо вести в три этапа: 1 - диагностирование до разборки двигателя; 2 - диагностирование после съёма головки цилиндров; 3 - диагностирование и оценка состояния деталей для выяснения причин дефекта и методов восстановления двигателя.

Диагностирование до разборки двигателя необходимо начинать с выяснения условий работы двигателя, качества и объёма проведённых ТО и ТР. В условиях работы необходимо оценить нагруженность двигателя по эксплуатационному расходу топлива в л/100 км, тепловой режим и наличие шума или стука при работе. Необходимо также определить возможные остановки двигателя по неустановленным причинам, расход масла на долив и характер его изменения за общее время работы двигателя в эксплуатации. После выполнения указанных работ при возможности следует запустить двигатель и прослушать его работу на режимах холостого хода от минимальной до максимальной частоты вращения коленчатого вала. Необходимо осмотреть отложения на шторах бумажного элемента полнопоточного масляного фильтра, а также в фильтре центробежной очистки масла. Следует обратить особое внимание на количество отложений и наличие металлической стружки. Необходимо отобрать пробу масла из картера двигателя в количестве 250 -500 мл и отправить её в химическую лабораторию на предмет определения физико-химических показателей масла (вязкость, щелочное число, количество нерастворимых осадков, наличие воды в масле, диспергирующие свойства и др.).

Рисунок 4 - Зависимость расхода масла на долив См от пробега в (для двигателей ЯМЗ-236 и ЯМЗ-238): 1 - при удовлетворительной фильтрации воздуха; 2 - при разгерметизации впускного тракта; Gм = 1,5% - предельное значение расхода масла; S - неиспользованный ресурс двигателя при разгерметизации впускного тракта (при пылевом износе)

Все рассмотренные выше методы исследования относятся к методам субъективного диагностирования, наряду с которыми могут быть использованы также методы инструментального (приборного) диагностирования. Так, может быть замерено давление в конце такта Сжатия в цилиндрах двигателя. Оно определяется в абсолютных единицах с помощью компрессометра или в относительных единицах с помощью специальной аппаратуры, фиксирующей изменение силы тока в цепи стартера при прокрутке коленчатого вала в процессе последовательного отключения цилиндров двигателя.

Рисунок 5 - Устройство компрессометра

Компрессометром замеряется давление сжатия при прокрутке коленчатого вала стартером или в режиме работы двигателя при минимальной частоте холостого хода. Последний вариант испытаний является более предпочтительным, т.к. точность измерения возрастает за счет поддержания определенного скоростного режима двигателя. Величина давления сжатия при nхх= 800 мин для двигателей ЯМЗ должна составлять рс = 3,0-3,5 МПа (30-35 кг/см2).

Особое внимание следует обращать на разность давлений рс по цилиндрам. Это сравнение позволит определить цилиндр с дефектными детапями ЦПГ.

По замерам значений рс можно определить следующие дефекты деталей ЦПГ: прогар поршня, поломку компрессионного кольца, изношенность деталей, закоксовку колец, задиры поршней и негерметичность клапанов МГР. При указанных дефектах обычно значение рс в цилиндре бывает меньше 2,0-2,1 МПа (20-21 кг/см2)[3].

Следующим этапом инструментальной диагностики является осмотр состояния неисправного цилиндра с помощью мотоскопа через отверстие в головке под форсунку. С помощью этого прибора можно определить состояние поршня (наличие разрушений), наличие задиров на поверхности гильзы, уровень износа гильзы по наличию ступеньки на поверхности в зоне останова первого компрессионного кольца в ВМТ и наличие закоксовки колец по следам прорыва газов на гильзе. Здесь же можно оценить состояние клапанов, т.е. определить наличие трещин и прогаров, величину отложений на них.

По значению Qкг невозможно (так же как и по значению рс) однозначно оценить состояние деталей ЦПГ, т.к. значения изменяются в достаточно широком диапазоне как на новых, так и на изношенных двигателях. Однако установлено, что на двигателях ЯМЗ при значениях Qкг > 1.4 м3 /цил-ч имеют место дефекты деталей ЦПГ, указанные выше.

Дополнительную информацию о состоянии деталей ЦПГ можно получить с помощью физико-химического и спектрального анализов картерного масла.

После съёма головки необходимо провернуть коленчатый вал для проверки утопания поршней в положении ВМТ относительно верхнего бурта гильз (поверхность А на рис. 6). Чрезмерное утопание одного или нескольких поршней свидетельствует об изгибе шатуна в цилиндрах из-за дефектов, приведших к попаданию постороннего предмета или охлаждающей жидкости в камеру сгорания. Необходимо осмотреть днища поршней для того, чтобы определить, происходит ли контактирование поршней с клапанами (по отпечатку клапанов на днищах поршней), попадание постороннего предмета в камеру сгорания, есть ли обгорания и трещины на кромках камеры сгорания. На рабочих поверхностях гильз необходимо отметить возможные надиры, задиры и тёмные пятна, свидетельствующие о прорыве газов в камеру сгорания из-за зависания или поломки поршневых колец. Коррозия на зеркале гильз свидетельствует о попадании охлаждающей жидкости в цилиндры или о длительной стоянке неработающего двигателя, приведшей к конденсации паров жидкости на рабочих поверхностях гильз.

По величине "ступеньки" в зоне останова первого компрессионного кольца в ВМТ необходимо определить величину максимального износа гильзы Imax по диаметру D относительно верхней неработающей поверхности гильзы (поверхность В на рис. 6).

Рисунок 6 - Эпюра износа гильзы двигателя ЯМЗ

Допустимый износ гильзы по диаметру для двигателей ЯМЗ равен 0,20-0,25 мм. Замер износа гильзы в составе двигателя и после её извлечения из блока производится нутрометром.

Значительные твёрдые углеродистые отложения на днище поршня и огневой поверхности головки в отдельных цилиндрах являются признаком большого расхода масла в этих цилиндрах, вызванного чрезмерным износом деталей или закоксовыванием колец.

Далее необходимо внимательно осмотреть состояние прокладки головки цилиндров с целью определения мест возможных прогаров, прорывов газов из цилиндров или течи охлаждающей жидкости.

Рисунок 7- Определение размеров нутрометром

Наибольший объём информации о причинах выхода из строя деталей ЦПГ можно получить после разборки двигателя и анализа состояния деталей. Состояние деталей ЦПГ и возможные причины их дефектов приведены в приложении Б .

Особое внимание при эксплуатации двигателей необходимо обращать на состояние воздухоочистки, при нарушении которой преждевременно вырабатывается ресурс деталей ЦПГ. Особенно это актуально для нашей страны, т.к. запылённость воздуха на дорогах с бетонным и асфальтовым покрытием достигает 0,003г/м3 , что в 5раз выше, чем на дорогах Западной Европы. Запылённость воздуха на грунтовых дорогах России в десятки раз выше указанного значения. Кроме того, на многих моделях двигателей ЯМЗ до сих пор используются воздухоочистители устаревшей конструкции (инерционно-масляные), которые пропускают в двигатель пыль в 10-15 раз больше, чем воздухоочистители с картонными фильтрующими элементами (воздухоочистители сухого типа).

В заключение следует отметить, что детали ЦПГ будут работать безотказно на протяжении заявленного заводом-изготовителем ресурса, если будут обеспечены условия их работы, а именно: оптимальный тепловой режим (отсутствие перегрева деталей); удовлетворительная фильтрация воздуха; соответствие применяемых масел инструкции по эксплуатации двигателя; отсутствие возможности выхода из строя деталей узлов двигателя, обеспечивающих процессы наполнения цилиндров свежим зарядом и выпуска ОГ; обеспечение герметичности системы охлаждения, исключающее возможность попадания жидкости в цилиндры двигателя и др.

Заключение

В данном реферате были изучены методы диагностирования двигателей: субъективные и инструментальные. Инструментальные методы диагностирования являются наиболее объективными методами, т.к. при диагностировании применяются измерительные приборы, позволяющие количественно измерять диагностические параметры, а по их значениям оценивать техническое состояние двигателя. Так же изучены внешние проявления неисправностей деталей ЦПГ и сделан вывод, что диагностирование состояния деталей ЦПГ по указанным проявлениям достаточно затруднено, т.к. на них могут влиять неисправности других узлов и систем двигателя. Например, на пусковые качества двигателя наряду с износом и дефектами деталей ЦПГ могут влиять неисправности системы электрооборудования (аккумуляторных батарей, стартера, генератора) и разрегулировки топливной аппаратуры (увеличение угла опережения впрыска топлива, уменьшение пусковой подачи, снижение производительности подкачивающего насоса и др.). Поэтому при диагностировании деталей ЦПГ необходимо убедиться в исправности других узлов и систем двигателя, оказывающих влияние на работоспособность рассматриваемых деталей.

Список используемой литературы

1. Анализ подотрасли дизелестроения и рынка дизельных двигателей в РФ».

2. Б.С Антропов "Поиск неиправностей двигателей КамАЗ".-Яр.:ЯПИ, 1994. - 150 с.

3. Б.С. Антропов "Обеспечение работоспособности автотракторных дизельных двигателей".-Яр.:ЯГТУ,2005. - 186 с.

4. Антропов Б.С. Повышение степени реализации заявленного уровня надежности двигателей путем совершенствования методов диагностирования. Автореферат на соискание ученой степени доктора технических наук. 1996 г.

Размещено на Allbest.ru


Подобные документы

  • Субъективные и инструментальные методы диагностирования двигателей. Описание внешних проявлений неисправностей деталей цилиндропоршневой группы. Выявление скрытых дефектов путем применения физико-химического и спектрального анализов картерного масла.

    курсовая работа [813,0 K], добавлен 17.03.2011

  • Разработка технологического процесса ремонта цилиндропоршневой группы двигателя и приспособления для выпрессовки поршневых пальцев. Диагностика неисправностей двигателя по состоянию выхлопа. Расчет прочностных характеристик проектируемого приспособления.

    дипломная работа [2,1 M], добавлен 08.07.2013

  • Назначение контрольно-измерительного инструмента, диагностического и технологического оборудования. Внешние проявления неисправностей деталей цилиндропоршневой группы. Диагностирование основных дефектов кривошипно-шатунного механизма и его ремонт.

    курсовая работа [342,6 K], добавлен 12.09.2015

  • Назначение системы питания дизельного двигателя. Методы, средства и оборудование для диагностирования системы питания дизельного двигателя грузовых автомобилей. Принцип работы турбокомпрессора. Техническое обслуживание и ремонт грузовых автомобилей.

    курсовая работа [812,2 K], добавлен 11.04.2015

  • Основой двигателя - это кривошипно-шатунный механизм. Современные двигатели (ГАЗ-53, ЗИЛ-130, ЯМЗ-236). Цилиндровая группа, поршни, поршневые кольца и пальцы, шатунная группа, коленчатый вал и порядок работы двигателя. Основание всего двигателя картер.

    реферат [1,3 M], добавлен 02.08.2010

  • Понятие о диагностике двигателя. Параметры технического состояния механизмов двигателя (структурные параметры). Диагностические признаки и диагностические параметры. Процесс диагностирования двигателей. Охрана труда при ТО и ремонте автомобиля.

    дипломная работа [58,2 K], добавлен 10.04.2005

  • Общие положения неразрушающего контроля, система технического диагностирования вагонов и локомотивов, оценка технического состояния сборочных единиц и деталей. Магнитный вид неразрушающего контроля. Функциональные и тестовые средства диагностирования.

    контрольная работа [466,5 K], добавлен 09.02.2010

  • Технологический расчёт реконструкции предприятия. Современные методы диагностирования дизельных двигателей. Технология производства двухрядной звездочки, привода газораспределительного механизма. Расчёт сроков окупаемости и эффективности данного проекта.

    дипломная работа [11,4 M], добавлен 19.06.2011

  • Техническое обслуживание и ремонт подвижного состава автомобильного транспорта. Диагностирование и применение современного технологического оборудования, определение неисправностей механизмов и агрегатов автомобиля. Порядок диагностирования анализатором.

    реферат [6,2 M], добавлен 24.05.2009

  • Область применения систем диагностирования электрических цепей электропоездов. Оценка систем диагностирования электрических цепей электропоездов в депо. Проверка исправности, работоспособности, правильного функционирования и поиск дефектов.

    дипломная работа [1,4 M], добавлен 11.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.