Исследование энерго- и ресурсосберегаемости двигателей внутреннего сгорания и электрического

Изучение и систематизация принципов действия двигателей внутреннего сгорания и электрического. Сравнение двух типов двигателей, их преимуществ и недостатков, энерго- и ресурсосберегаемости. ДВС как источник загрязнений атмосферы и окружающей среды.

Рубрика Транспорт
Вид статья
Язык русский
Дата добавления 12.04.2019
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вольский военный институт материального обеспечения

ИССЛЕДОВАНИЕ ЭНЕРГО- И РЕСУРСОСБЕРЕГАЕМОСТИ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И ЭЛЕКТРИЧЕСКОГО

Пупышев Ю.В., Кучер М.И., Френкель Е.Э.

Вольск Саратовской обл., Россия

Содержание

  • Введение
    • Раздел 1. Двигатель внутреннего сгорания
    • 1.1 История открытия двигателя внутреннего сгорания
    • 1.2 Принцип работы двигателя внутреннего сгорания
    • Раздел 2. Электрический двигатель
    • 2.1 Принцип работы электрического двигателя
    • 2.2 Принцип действия трехфазного асинхронного электродвигателя
    • Вывод
    • Список информационных источников

Введение

Современные автомобили требуют все более совершенных двигателей. Это касается мощности, экономичности, динамических характеристик и обеспечения требований норм экологии. Разработчики постоянно улучшают возможности современных Двигателей внутреннего сгорания (ДВС). Применяются и другие источники энергии (водородные и газовые двигатели), создаются новые виды автомобилей (электромобили), находятся необычные варианты их использования.

ДВС служит источником загрязнений атмосферы и окружающей среды. Многих его недостатков лишён электрический двигатель (но имеет свои). Автомобиль с обычным мотором способен проехать 500-600 км на одной заправке, электромобиль - 100-150 км на полной зарядке батарей. Одной из попыток решить это противоречие и является исследование практичности, энерго- и ресурсосберегаем двигателей внутреннего сгорания и электрического.

Цели и задачи работы. Изучение и систематизация принципов действия двигателей внутреннего сгорания и электрического. Сравнение двух типов двигателей, на основании чего сделать вывод об их практичности, энерго- и ресурсосберегаемости.

Раздел 1. Двигатель внутреннего сгорания

Двигатель внутреннего сгорания - двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует давление от сгорания топлива в механическую работу (Рисунки 1, 2).

Рисунок 1 - Двигатель внутреннего сгорания с резонаторной трубой

Рисунок 2 - Рядный четырёхцилиндровый двигатель внутреннего сгорания

По сравнению с двигателями внешнего сгорания ДВС:

- не имеет дополнительных элементов теплопередачи - топливо, сгорая, само образует рабочее тело;

- компактнее, так как не имеет целого ряда дополнительных агрегатов;

- легче;

- экономичнее;

- потребляет газообразное или жидкое топливо, обладающее весьма жестко заданными параметрами (испаряемостью, температурой вспышки паров, плотностью, теплотой сгорания, октановым или цетановым числом), так как от этих свойств зависит сама работоспособность ДВС.

1.1 История открытия двигателя внутреннего сгорания

В 1807 г. французско-швейцарский изобретатель Франсуа Исаак де Риваз (Franзois Isaac de Rivaz) построил первый поршневой двигатель, называемый часто двигателем де Риваса. Двигатель работал на газообразном водороде, имея элементы конструкции, с тех пор вошедшие в последующие прототипы ДВС: шатунно-поршневую группу и искровое зажигание. Первый практически пригодный двухтактный газовый ДВС был сконструирован французским механиком Этьеном Ленуаром (1822-1900) в 1860 году. Мощность составляла 8,8 кВт (11,97 л.с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника. КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

Познакомившись с двигателем Ленуара, выдающийся немецкий конструктор Николаус Аугуст Отто (1832-1891) создал в 1863 г. двухтактный атмосферный двигатель внутреннего сгорания. Двигатель имел вертикальное расположение цилиндра, зажигание открытым пламенем и КПД до 15 %.

В 1876 г. Николаус Аугуст Отто построил более совершенный четырёхтактный газовый двигатель внутреннего сгорания.

В 1880-х годах Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель.

Рисунок 3 - Мотоцикл Даймлера с ДВС 1885 года

В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали легкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885, а в 1886 году - на первом автомобиле.

Немецкий инженер Рудольф Дизель стремился повысить эффективность двигателя внутреннего сгорания и в 1897 г. предложил двигатель с воспламенением от сжатия. На заводе "Людвиг Нобель" Эммануила Людвиговича Нобеля в Петербурге в 1898-1899 г. Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыливание топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем.

В 1899 г. на заводе "Людвиг Нобель" построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л.с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название "русский дизель" или "Тринклер-мотор". На всемирной выставке в Париже в 1900 двигатель Дизеля получил главный приз. В 1902 г. Коломенский завод купил у Эммануила Людвиговича Нобеля лицензию на производство дизелей и вскоре наладил массовое производство.

В 1908 году главный инженер Коломенского завода Р.А. Корейво строит и патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленными валами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

В 1896 году Чарльз В. Харт и Чарльз Парр разработали двухцилиндровый бензиновый двигатель. В 1903 году их фирма построила 15 тракторов.

Бензиновый двухцилиндровый двигатель имел совершенно ненадежную систему зажигания и мощность 30 л.с. на холостом ходу и 18 л.с. под нагрузкой.

Рисунок 4 - Дэн Элбон с его прототипом сельскохозяйственного трактора Ivel

Первым практически пригодным трактором с двигателем внутреннего сгорания был американский тр`хколесный трактор Ivel Дэна Элборна 1902 года. Было построено около 500 таких легких и мощных машин.

Рисунок 5 - Двигатель, использованный братьями Райт в 1910 году

В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

На первом в мире теплоходе - нефтеналивной барже "Вандал", построенной в 1903 году в России на Сормовском заводе для "Товарищества Братьев Нобель", были установлены три четырёхтактных двигателя Дизеля мощностью по 120 л.с. каждый. В 1904 году был построен теплоход "Сармат".

В 1924 по проекту Якова Модестовича Гаккеля на Балтийском судостроительном заводе в Ленинграде был создан первый магистральный тепловоз ЮЭ 002 (ЩЭЛ 1) (рис. 6).

Рис. 6 - Первый магистральный тепловоз ЮЭ 002 (ЩЭЛ 1)

Практически одновременно в Германии по заказу СССР и по проекту профессора Ю.В. Ломоносова в 1924 году на немецком заводе Эсслинген (бывш. Кесслер) близ Штутгарта построен тепловоз Ээл 2 (первоначально Юэ 001).

1.2 Принцип работы двигателя внутреннего сгорания

Рассмотрим типы двигателей внутреннего сгорания (Рисунки 7-9).

Поршневые двигатели - камера сгорания содержится в цилиндре, тепловая энергия превращается в механическую с помощью кривошипно-шатунного механизма. Газовая турбина - преобразование энергии осуществляется ротором с клиновидными лопатками. Жидкостный ракетный двигатель и воздушно-реактивный двигатель преобразуют энергию сгорающего топлива непосредственно в энергию реактивной газовой струи. Роторно-поршневые двигатели - в них преобразование энергии осуществляется за счет вращения рабочими газами ротора специального профиля (двигатель Ванкеля).

ДВС классифицируют:

а) По назначению - на транспортные, стационарные и специальные.

б) По роду применяемого топлива - легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

в) По способу образования горючей смеси - внешнее (карбюратор) и внутреннее (в цилиндре ДВС).

г) По объему рабочих полостей и весогабаритным характеристикам - легкие, средние, тяжелые, специальные.

Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, по количеству и расположению коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма.

Энергия передается на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля. Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это позволит поршень провернуть коленвал в обратном направлении - такое явление называют обратной вспышкой. Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры. Топлива с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Одним из основополагающих параметров ДВС является отношение хода поршня к диаметру цилиндра (или наоборот). Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, тем больше диаметра цилиндра, чем больше двигатель. Самым оптимальным с точки зрения газодинамики и охлаждения поршня является соотношение 1 : 1. Чем больше ход поршня, тем больший крутящий момент развивает двигатель и тем ниже его рабочий диапазон оборотов. Наоборот, чем больше диаметр цилиндра, тем выше рабочие обороты двигателя и тем ниже его крутящий момент. При большем диаметре цилиндра/поршня сложнее обеспечить должный теплоотвод от донышка поршня ввиду его больших линейных размеров.

Бензиновые карбюраторные двигатели. Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае - гомогенность. Бензиновые инжекторные двигатели. Существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного (моновпрыск), и распределённого впрыска различных механических и электронных систем.

В механических системах впрыска дозация топлива осуществляется плунжерно-рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется с помощью электронного блока управления (ЭБУ), управляющего электрическими бензиновыми форсунками.

Дизельные, с воспламенением от сжатия. Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела.

Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего процесса, благотворно сказывается на КПД данного типа двигателей, который может превышать 50 % в случае с крупными судовыми двигателями. Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера - Сабатэ со смешанным подводом теплоты. Недостатки дизельных двигателей обусловлены особенностями рабочего цикла - более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые двигатели. Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях: смеси сжиженных газов - хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.

Газодизельные двигатели. Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой двигатель. Был предложен изобретателем Ванкелем в начале ХХ века. Основа двигателя - треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 "Жигули", ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7,Mazda RX-8).

При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки. RCV - двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

Комбинированный двигатель внутреннего сгорания. Двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внес советский инженер, профессор А.Н. Шелест.

Турбонагнетание. Наиболее распространенным типом комбинированных двигателей является поршневой с турбонагнетателем. Турбонагнетатель или турбокомпрессор (ТК, ТН) - это такой нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова "турбина" (фр. turbine от лат. turbo - вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На валу, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет "закачивать" под давлением воздух в цилиндры ДВС.

Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор - это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание обеспечивает именно та часть турбокомпрессора, которая именуется компрессором. На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, потому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна. Однако существует технологическое ограничение, известное как "турбояма" ("турбозадержка") (за исключением моторов с двумя турбокомпрессорами - маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших - большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры или при использованием турбины с изменяемой геометрией, в автоспорте также применяется принудительный разгон турбины с помощью системы рекуперации энергии). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя.

Рассмотрим циклы работы поршневых ДВС.

Рис. 10 - Двухтактный цикл

Рис. 11 - Схема работы четырёхтактного двигателя, цикл Отто Условные обозначения: 1. Впуск; 2. Сжатие; 3. Рабочий ход; 4. Выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа или 720 градусов поворота коленчатого вала (ПКВ), состоящий из четырёх отдельных тактов, таких как впуск, сжатие заряда, рабочий ход и выпуск (выхлоп). Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и (или) выхлопные окна.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя - исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20-30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20-30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания - дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения.

Однако если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров.

Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Дополнительные агрегаты, требующиеся для ДВС. Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха - приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки (предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения (для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламенения топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением). Далее рассмотрим следующий тип - электродвигатель.

Раздел 2. Электрический двигатель

2.1 Принцип работы электрического двигателя

Рисунок 12 - Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка "Крона" дана для сравнения

Электрический двигатель - электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом при этом является выделение тепла.

Принцип действия. В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части - статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части - ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор может быть: короткозамкнутым, фазным (с обмоткой) - используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. Якорь - это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). Универсальный двигатель - это двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление.

2.2 Принцип действия трехфазного асинхронного электродвигателя

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует ЭДС), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов. Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора. Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные магниты или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой. Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название "асинхронный" обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока. Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

Рис. 13 - Трёхфазный двухполюсный асинхронный двигатель

На рис.13 показана принципиальная схема двухполюсной машины - по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°. Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока:

При частоте 50 Гц получаем для р = 1, 2, 3 (двух-, четырех- и шестиполюсных машин) синхронные частоты вращения поля пс= 3000, 1500 и 1000 об/мин. Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с "беличьей клеткой") или ротора с контактными кольцами (фазный ротор). В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 13). Соединение осуществляется методом пайки твёрдым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и закорачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением. У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу. При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки). После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 г. и состоял из свободно висящего провода, окунающегося в ртуть. Постоянный магнит был установлен в середине ванны со ртутью. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода [4]. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это - самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности. Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русский ученый

Б.С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу "О применении электромагнетизма для приведения в движение машины". Б.С. Якоби писал, что его двигатель несложен и "дает непосредственно круговое движение, которое гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное".

Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.

В 1839 г. Якоби построил лодку с электромагнитным двигателем, который от 69 элементов Грове развивал 1 лошадиную силу и двигал лодку с 14 пассажирами по Неве против течения. Это было первое применение электромагнетизма к передвижению в больших размерах.

Электродвигатель у бактерий. Электродвигатель из нескольких белковых молекул преобразует энергию электрического тока в виде движения протонов во вращение жгутика, используемого для передвижения некоторыми видами бактерий.

Вывод

двигатель электрический ресурсосберегаемость

Таким образом, подробно изучив данные типы двигателей, можно сделать вывод. В этой борьбе двигателей "победил" электродвигатель с рядом преимуществ. Отметим наиболее значимые преимущества электрического двигателя по сравнению с ДВС:

- ТЭД (тяговый электродвигатель) имеет КПД до 90-95 % по сравнению с 22-60 % у ДВС (двигатель внутреннего сгорания);

- нет потерь энергии на трение в трансмиссии;

- максимальный крутящий момент ТЭД развивает с начала движения, в момент пуска, поэтому ему не нужна коробка передач. Именно поэтому у электрических машин фантастическая тяга;

- меньшая стоимость эксплуатации и обслуживания;

- отсутствие вредных выхлопов;

- высокая экологичность ввиду отсутствия применения нефтяных топлив, антифризов, трансмиссионных и моторных масел;

- низкая пожаро- и взрывоопасность при аварии;

- простота конструкции (простота электродвигателя и трансмиссии, отсутствие необходимости в переключении передач) и управления, высокая надёжность и долговечность экипажной части (до 20-25 лет) в сравнении с обычным автомобилем;

- возможность подзарядки от бытовой электрической сети (розетки);

- меньший шум за счёт меньшего количества движимых частей и механических передач;

- высокая плавность хода с широким интервалом изменения частоты вращения вала двигателя;

- возможность подзарядки источников энергии во время рекуперативного торможения.

- возможность торможения самим электродвигателем без использования механических тормозов - отсутствие трения и соответственно износа тормозов.

Суммируя всё выше перечисленное, можно посчитать что транспортное средство (ТС) использующее электрический двигатель в 3-4 раза эффективнее аналогичного ТС с двигателем внутреннего сгорания. Кроме этого отметим следующие недостатки электрического двигателя:

- меньший пробег на одной заправке.

- более высокая стоимость (уменьшается с началом серийного производства)

Список информационных источников

1. Белов М.П., Новиков В.А., Рассудов Л.Н. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов. - 3-е изд. - М.: Издательский центр "Академия", 2007. - 575 с.

2. Войнаровский П.Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). - СПб., 1890 - 1907.

Размещено на Allbest.ru


Подобные документы

  • Двигатели внутреннего сгорания (ДВС) широко применяются во всех областях народного хозяйства и являются практически единственным источником энергии в автомобилях. Расчет рабочего цикла, динамики, деталей и систем двигателей внутреннего сгорания.

    курсовая работа [2,5 M], добавлен 07.03.2008

  • Классификация судовых двигателей внутреннего сгорания, их маркировка. Обобщённый идеальный цикл поршневых двигателей и термодинамический коэффициент различных циклов. Термохимия процесса сгорания. Кинематика и динамика кривошипно-шатунного механизма.

    учебное пособие [2,3 M], добавлен 21.11.2012

  • Анализ хозяйственной деятельности предприятия. Организация и технология проведения обкатки и испытания двигателей внутреннего сгорания. Расчет производственной программы технического обслуживания. Конструкторская разработка стенда для обкатки двигателей.

    дипломная работа [80,2 K], добавлен 28.04.2010

  • Классификация, особенности конструкции и эксплуатационные свойства двигателей внутреннего сгорания, их обслуживание и ремонт. Принцип работы четырехцилиндровых и одноцилиндровых бензиновых двигателей в современных автомобилях малого и среднего класса.

    курсовая работа [39,9 K], добавлен 28.11.2014

  • Организация и технология обкатки двигателей внутреннего сгорания. Виды расчетов производственной программы. Анализ существующих конструкций и приспособлений для обкатки и испытания двигателей внутреннего сгорания. Охрана труда и техника безопасности.

    курсовая работа [43,1 K], добавлен 14.03.2011

  • Общая характеристика судовых двигателей внутреннего сгорания, описание конструкции и технические данные двигателя L21/31. Расчет рабочего цикла и процесса газообмена, особенности системы наддува. Детальное изучение топливной аппаратуры судовых двигателей.

    курсовая работа [2,9 M], добавлен 26.03.2011

  • Принципы работы двигателей внутреннего сгорания. Классификация видов авиационных двигателей. Строение винтомоторных двигателей. Звездообразные четырехтактные двигатели. Классификация поршневых двигателей. Конструкция ракетно-прямоточного двигателя.

    реферат [2,6 M], добавлен 30.12.2011

  • Годовая программа производственного участка по ремонту двигателей внутреннего сгорания. Режим работы участка. Годовые фонды времени рабочих и оборудования. Расчет количества технологического производственного оборудования. Потребность в энергоресурсах.

    курсовая работа [52,9 K], добавлен 27.04.2010

  • Расчет годового объема работ по обслуживанию и ремонту автомобилей. Определение потребности в электроэнергии, теплоносителях и воде. Разработка приспособления для обработки шеек коленчатых валов двигателей внутреннего сгорания после их шлифования.

    дипломная работа [1,4 M], добавлен 18.06.2015

  • Классификация топлив. Принцип работы тепловых двигателей, поршневых двигателей внутреннего сгорания, двигателей с принудительным воспламенением, самовоспламенением и с непрерывным сгоранием топлива. Турбокомпрессорные воздушно-реактивные двигатели.

    презентация [4,8 M], добавлен 16.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.