Воздушный винт В-530ТА-Д35. Принцип действия и конструкция винта

Схема действия автоматических воздушных винтов и регулятора. Принудительное переключение шага лопастей винта. Детали для установки винта на носок вала двигателя. Обеспечение постоянной заданной частоты вращения воздушного винта и силовой установки.

Рубрика Транспорт
Вид доклад
Язык русский
Дата добавления 04.12.2018
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Воздушный винт В-530ТА-Д35. Принцип действия и конструкция винта

Общие сведения

Автоматический воздушный винт В-530 выпускают с двумя различными по диаметру типами лопастей:

В-530-ДИ-для установки на самолет Як-12Р с двигателем АИ-14Р;

В-530-Д35-для установки на самолет Як-18А с двигателем АИ-14Р.

В-530ТА-Д35-для установки на самолет Як-52 с двигателем М-14П.

Совместно с регулятором постоянного числа оборотов Р-2 (или Р-7Е) винт автоматически поддерживает заданное число оборотов двигателя на всех режимах полета самолета. Автоматическая работа винта основана на гидроцентробежном принципе по прямой схеме действия при одноканальной подводке масла в цилиндровую группу винта.

Перевод лопастей в сторону малого шага производится под действием момента, создаваемого давлением масла, поступающего в цилиндр винта от маслонасоса регулятора Р-2. Перевод лопастей в сторону большого шага производится под действием момента, создаваемого центробежными силами противовесов. При падении давления масла, поступающего от регулятора к винту, лопасти винта под действием центробежных сил противовесов переходят на упор большого шага, что обеспечивает продолжение полета.

При эксплуатации винта в условиях низких температур на цилиндр винта устанавливают отеплитель.

воздушный винт лопасть регулятор

Основные технические данные

Тип винта

В-530-Д11 тянущий автоматический винт изменяемого в полете шага

В-530-Д35 тянущий автоматический винт изменяемого в полете шага

2. На какой самолет устанавливается

Як-12Р, Вильга-35А

Як-18А, Як-52, Су-26

3. С каким двигателем

АИ-14Р

АИ-14Р, М-14П

4. Редукция двигателя

0,79

0,79

5. Направление вращения винта

Левое

Левое

6 Диаметр винта

2,75 м

2,4 м

7. Число лопастей

2

2

8 Форма лопасти

Веслообразная

Веслообразная

9. Относительная толщина лопасти на г = 0,9

0,065

0,08

10. Максимальная ширина лопасти

240 мм.

240 мм.

11. Профиль дужки лопасти

"Ф"

"Ф"

12. Минимальный угол установки лопасти на =1000 мм

8°30'

120

13. Максимальный угол установки на =1000 мм

250 ±10

28030' ±10

14 Диапазон поворота лопастей

16°30'±1°

16°30'±1°

15. Принцип действия винта

Гидроцентробежный

Гидроцентробежный

16. Схема действия

Прямая

Прямая

17 Регулятор постоянных оборотов

Р-2 или Р-7Е

Р-2 или Р-7Е

18 Угол установки противовеса

20°

20°

19. Вес винта с деталями, не входящими в собранный винт

41 кг. ± 2%

39 кг. ± 2%

Принципиальная схема действия

Автоматические воздушные винты изменяемого в полете шага В-530-Д11 и В-530-ДА гидравлические, работают по прямой схеме действия совместно с регулятором постоянных оборотов Р-2 или Р-7Е

На всех режимах полета винт поддерживает заданное летчиком постоянное число оборотов, обеспечивая полную мощность двигателя на заданном режиме полета.

В винтах В 530-Д11 и В-530-Д35, работающих по прямой схема действия, поворот лопастей в сторону увеличения шага происходит под действием моментов, создаваемых центробежными силами противовесов, а в сторону уменьшения шага - под действием моментов, создаваемых давлением масла на поршень цилиндровой группы винта Давление масла, подаваемое маслонасосом регулятора постоянного числа оборотов, преодолевает момент центробежных сил противовесов и поворачивает лопасти на уменьшение шага

Противовесы, установленные на переходные стаканы, создают при вращении винта момент, который на всех режимах работы двигателя стремится поворачивать лопасти на увеличение шага

Совместная работа винта и регулятора обеспечивает автоматическое изменение шага винта, поддерживая этим заданное постоянное число оборотов двигателя независимо от режимов полета и работы двигателя

Заданная величина постоянного числа оборотов, которые должны поддерживать винт совместно с регулятором, осуществляется соответствующей настройкой регулятора. Настройка регулятора производится поворотом, находящегося в кабине летчика штурвала управления винтом. Штурвал управления винтом связан с регулятором.

Схема работы винта и регулятора

Автоматическое изменение шага винта

Автоматическое изменение шага винта происходит при отклонении оборотов двигателя в ту или другую сторону от заданных равновесных оборотов. На Рис. 1 показано положение регулятора при постоянном числе оборотов, соответствующее установившемуся режиму, т.е. случаю, когда поступательная скорость самолета и мощность двигателя не меняются.

Рис. 1 Схема действия механизма винта (равновесные обороты). 1-поршень, 2-цилиндр, 3-поводок, 4-проушины поводка: 5-палец стакана, 6-оси центробежных грузиков, 7-пружина, 8-репка, 9-зубчатое колесо, 10-центробежные грузики; 11-канал выхода масла через редукционный клапан, 12-корпус регулятора; 13-канал подвода масла от двигателя; 14-маслонасос регулятора, 15-золотник: 16-канал подвода масла к цилиндру; 17-стакан, 18-лопасть, 19-противовес, 20-сухарь

Число оборотов, при которых наступает равновесие между давлением пружины и усилием от грузиков регулятора, зависит от натяжения пружины Вращающиеся грузики 10 регулятора под действием развиваемой ими центробежной силы стремятся поднять вверх золотник 15, а пружина 7 стремится опустить золотник вниз. В случае установившегося режима работы сила пружины равна центробежной силе, развиваемой грузиками, и золотник 15 находится в среднем положении, перекрывая своим буртиком канал 16, ведущий к цилиндру винта. Масло в цилиндре оказывается закрытым и шаг винта не меняется. В этом случае масло из нагнетающей системы поступает по каналу 18 в насос регулятора, который прокачивает масло в канал 11. Так как при этом масло не расходуется на поворачивание лопастей винта, то насос прокачивает масло обратно на вход в насос через редукционный клапан.

Рис. 2 Схема действия механизма винта (переход винта с большого шага на малый).

Пружина редукционного клапана отрегулирована на поддержание определенного давления масла. Если по какой-либо причине число оборотов двигателя уменьшится на некоторую величину, то сила, развиваемая грузиками, станет меньше силы натяжения пружины, золотник 15 под действием избыточной силы опустится вниз (Рис. 2) и откроет доступ масла в канал 16. Масло по каналу 16 начнет поступать в цилиндр винта, создавая давление на поршень 1, и под действием давления масла на поршень лопасти винта будут поворачиваться в сторону уменьшения шага, увеличивая число оборотов двигателя. Как только число оборотов двигателя достигнет заданного, золотник 15 под действием центробежных сил грузиков поднимется вверх и перекроет буртиком канал 16, т.е. займет положение, изображенное на Рис. 1.

Дальнейшее изменение угла установки лопастей винта прекратится и двигатель будет работать на постоянном числе оборотов, пока летчик не изменит режим. При увеличении числа оборотов двигателя по сравнению с числом оборотов двигателя установившегося режима центробежная сила грузиков возрастет и под действием избыточной силы сожмет пружину, вследствие чего золотник регулятора поднимется вверх (Рис. 3), полость цилиндра через канал 16 сообщится с картером двигателя и давление масла в цилиндре упадет Лопасти винта под действием момента, развиваемого центробежными силами противовесов, начнут поворачиваться в сторону большого шага Увеличение угла установки лопастей будет происходить до тех пор, пока число оборотов двигателя не упадет до заданного, тогда золотник 15 опустится вниз и закроет буртиком канал 16, слив масла из цилиндра прекратится и дальнейшее увеличение шага лопастей винта остановится

Рис. 3 Схема действия механизма винта (переход винта с малого шага на большой)

Таким образом, при нормальной работе винта и регулятора заданное летчиком число оборотов должно сохраняться При изменении режима полета или мощности двигателя число оборотов двигателя может отклониться от заданного на 150-200 об/мин, но в течение 3-4 сек. возвратится к заданному.

Принудительное переключение шага лопастей винта

Принудительное переключение лопастей винта с малого шага на большой

Летчик с помощью штурвала управления через зубчатое колесо 9, рейку 8 и пружину 7 перемещает золотник 15 в крайнее верхнее положение (см. Рис. 3). В этом случае буртик золотника перекрывает канал подачи масла из регулятора и открывает выход масла из цилиндра в картер двигателя. Давление масла в полости цилиндра прекращается.

Момент от центробежных сил противовесов поворачивает лопасти в сторону большого шага, а эксцентрично расположенные на переходных стаканах пальцы 5 через сухари, находящиеся между проушинами поводка, перемещают поводок вдоль ступицы влево. Сочлененный с поводком поршень, вытесняя масло из полости цилиндра, перемещается в том же направлении.

Движение поводка и поршня, а следовательно, и поворот лопастей прекращается в тот момент, когда регулировочное кольцо поршня упрется в верхнюю часть цилиндра.

Принудительное переключение винта с большого шага на малый

Летчик из кабины при помощи штурвала управления перемещает золотник 15 вниз (см. Рис. 2). В этом случае масло из насоса регулятора по каналу 16 поступает в цилиндр винта, создавая давление на поршень. Поршень, опираясь на поводок 3, перемещает его вдоль ступицы вправо. Поводок через сухари, расположенные между его проушинами 4, давит на эксцентрично расположенные пальцы 5 переходных стаканов и, преодолевая момент, создаваемый центробежными силами противовесов, поворачивает лопасти в сторону малого шага. Движение поршня с поводком, а следовательно, и поворот лопастей в сторону уменьшения шага прекратится, когда поводок упрется в бурт корпуса втулки.

Конструкция винта

Воздушные винты В-530-Д11 и В-530-Д35 состоят из узла втулки, узла крепления лопасти, цилиндровой группы, лопастей и деталей для установки винта на носок вала двигателя.

Лопасти 35 на резьбе ввертываются в переходной стакан 32 втулки винта и затягиваются противовесом. Переходной стакан под действием давления масла на поршень цилиндровой группы или моментов от центробежных сил противовесов имеет возможность поворачиваться в корпусе в пределах установленного диапазона. Для уменьшения трения при повороте к обеим сторонам буртика переходного стакана установлены упорные роликоподшипники 33 и текстолитовый радиальный подшипник 30, впрессованный в гайку 31 корпуса.

Действующие на лопасть центробежные и аэродинамические силы через переходной стакан, упорные подшипники и гайку корпуса передаются на корпус 19. С корпусом при помощи шести болтов и двух штифтов сочленена ступица 20, вдоль которой перемещается поводок 22. Торец поводка соприкасается с торцом поршня 4. Осевое перемещение поршня, вызванное увеличением давления масла в полости цилиндра 5, передается поводку, в проушинах которого установлены сухари 36. В отверстии сухарей установлены эксцентрично расположенные пальцы переходных стаканов. Поэтому при движении поводка от давления на него поршня переходные стаканы, а вместе с ними и лопасти поворачиваются на малый шаг.

Для увеличения угла установки лопастей (увеличение шага) необходимо перекрыть канал подачи масла от насоса регулятора оборотов в цилиндр винта, обеспечив слив в картер двигателя, тогда центробежные силы противовесов повернут лопасти на большой шаг, а эксцентрично расположенные пальцы переходных стаканов переместят поводок. Вдоль оси ступицы, поводок в свою очередь начнет давить на поршень, который, вытесняя масло из полости цилиндра, будет перемещаться в ту же сторону.

Узел втулки

Узел втулки (Рис. 4) служит для закрепления всех узлов и деталей винта, а также для установки и крепления винта на носке вала двигателя.

Корпус

Корпус втулки винта В-530 (Рис. 5) изготовлен отъемным от ступицы. Ступица с корпусом соединена шестью болтами и двумя фиксирующими штифтами; в эксплуатации разъединению не подлежат.

Для закрепления узлов стаканов с лопастями в корпусе имеется два лопастных гнезда (рукава) с резьбой, в которую ввертывается гайка корпуса. Имеющаяся перед резьбой проточка 2 служит посадочным местом для гайки корпуса. К буртику 3 устанавливается кольцо упорного роликоподшипника.

На цилиндрической поверхности корпуса имеется фланец 4, к которому крепится ступица. Фланец корпуса имеет восемь отверстий, из которых два отверстия 5, расположенных на продольной оси корпуса, предназначены для установки штифтов, фиксирующих положение шпоночных пазов на ступице относительно лопастных гнезд, при сочленении ступицы с корпусом. В остальные шесть отверстий устанавливаются болты крепления ступицы к корпусу. С другой стороны корпус имеет буртик с шестью пазами 6. В эти пазы при установке цилиндровой группы на винт входят выступы цилиндра. Вошедшие в пазы выступы цилиндра должны опереться на буртик центрирующей проточки, после чего цилиндр разворачивается на ЗУ в любую сторону. В паз 7, имеющий прямые углы, устанавливается специальная шпонка, предохраняющая цилиндр от проворачивания в эксплуатации. В отверстие 8 ввертывается винт,

Рис. 4 Корпус втулки (узел). 1-корпус; 2-поводок; 3-шпонка; 4-винт шпонки; 5-винт контровочный; 6-штифт; 7-болт; 8-ступица.

Рис. 5 Корпус. 1-резьба; 2-посадочное место гайки корпуса, 3-буртик; 4- фланец; 5-отверстая для штифтов; 6-дааэы под выступы цилиндра; 7-пав для шпонки, 8-отверстие для винта, 9-скгверстам! для крепления контровочной пластины.

предохраняющий шпонку от выпадания. В четыре отверстия 9 с резьбой, расположенные на поясках лопастных гнезд, ввертываются винты, закрепляющие контровочные пластины гайки корпуса.

Поводок

Поводок (Рис. 6) - полый цилиндр, на наружной поверхности которого имеются две проушины / для сухарей и две площадки 2 с отверстиями. На каждой площадке имеются по три отверстия: в большие отверстия 4 вставляются шпонки, а в отверстия 5 меньшего размера - винты, крепящие шпонки. Отверстия 3 (на щечках проушин поводка) являются технологическими отверстиями, необходимыми только при обработке поводка.

Для уменьшения трения при перемещении поводка на ступице в его внутреннюю поверхность запрессовывается текстолитовый вкладыш 6. Для предохранения текстолитового вкладыша от выпадания при эксплуатации стенка повадка протачивается и завальцовывается.

Рис. 6 Поводок. 1-проушина; 2-площадка; 3-технологическое отверстие; 4-отверстия для шпонки; 5-отверстия для винтов крепления шпонки; 6-вкладыш.

Ступица

Ступица втулки винта (Рис. 7) имеет цилиндрическую поверхность с фланцем на одном ее конце. Фланец ступицы имеет восемь отверстий для болтов и фиксирующих штифтов, посредством которых ступица сочленяется с корпусом. Два отверстия, расположенные по вертикальной оси, предназначены для установки штифтов, фиксирующих положение шпоночных пазов ступицы относительно лопастных гнезд корпуса, в остальные шесть отверстий устанавливаются болты при сочленении ступицы с корпусом. Отверстия 7, расположенные по окружности фланца перпендикулярно отверстиям для штифтов, предназначены для контровочных винтов, предохраняющих штифты от выпадания. На цилиндрической поверхности ступицы имеются два паза 6 для шпонок, предохраняющих поводок от проворачивания. Торец цилиндрической поверхности ступицы имеет пять профрезерованных пазов 2, один из которых должен совпасть с выступом контровочной пластины при установке винта на носок вала двигателя.

Внутренняя поверхность ступицы имеет шлицы, предохраняющие винт от проворачивания на носке вала при работе двигателя. Для центровки винта на носке вала двигателя в полости ступицы сделаны конусные гнезда; гнездо 8 служит для посадки ступицы на задний конус, а гнездо 5 для переднего конуса.

В проточенную канавку 4 устанавливается кольцо-съемник, а в канавку 3-кольцо, предохраняющее контровочную пластину от выпадания.

Рис. 7 Ступица. 1-отверстия для штифтов; 2-паз; 3-канавка для установки предохранительного кольца; 4-канавка для установки кольца съемника; 5-гнездо для переднего конуса; 6-паз для шпонки; 7-отверстия для контровочного винта; 8-гнездо для заднего конуса.

Узел крепления лопасти (рис. 8)

Стакан переходной

Установка и крепление лопастей во втулке винта производится при помощи стальных стаканов.

Конструкция стаканов и способ резьбового крепления лопастей в них обеспечивают возможность в полевых аэродромных условиях быстро и с достаточной точностью изменять установочный угол лопастей или заменять поврежденные лопасти новыми. Для крепления лопастей во внутренней поверхности переходного стакана (Рис. 9) имеется специальная резьба 5, соответствующая резьбе на стакане лопасти. На наружной поверхности переходного стакана сделана проточка 3 для установки противовеса и отверстие 2 для установки штифта, фиксирующего установку противовеса под требуемый угол. Три паза, имеющиеся на стакане, дают возможность деформации и более надежному обжатию лопастного стакана при затяжке гайки болта хомута.

Рис. 8 Крепление лопасти (узел). 1-узел гайки корпуса; 2-стакан переходной, 3-сепаратор с роликами, 4-узел противовеса

На торце стакана нанесена шкала, служащая для первоначальной установки угла лопастей. Цена одного деления шкалы равна 1°. Торцовые поверхности буртика 4 цементированы, термообработаны на высокую твердость и выполняют роль колец роликоподшипников. На эксцентрично расположенный палец 6 надевается бронзовый сухарь, который входит в проушины поводка.

Узел гайки корпуса (рис. 10)

Гайка корпуса на наружной поверхности имеет резьбу б, на которой она ввертывается в корпус. Во внутреннюю поверхность гайки впрессован текстолитовый радиальный подшипник 3, в текстолитовом подшипнике проточена канавка 4 для установки манжеты, предохраняющей смазку от выбрасывания из втулки.

Рис. 9 Стакан переходной. 1-паз; 2-отверстие для штифта; 3- проточка для установки противовеса; 4-буртик; 5-резьба; 6-палец.

Рис. 10 Гайка корпуса (узел). 1-гайка корпуса; 2-кольцо гайки; 3-радиальный подшипник (текстолитовый); 4-ианавка для манжеты; 5-отверстие для винтов крепления балансировочного груза; 6-резьба; 7-торец гайки корпуса.

Для предохранения от выпадания манжеты и впрессованного текстолитового подшипника в гайку корпуса ввертывается специальное кольцо 2. Торец 7 гайки корпуса цементирован и термообработан на высокую твердость и заменяет собой кольцо упорного роликоподшипника. Отверстия 5 с резьбой в кольце гайки предназначены для винтов крепления балансировочных пластин, которыми устраняется статическая неуравновешенность винта при его балансировке. При статической балансировке собранного винта балансировочные пластины устанавливаются на торце кольца гайки облегченной стороны втулки и закрепляются винтами. Винты контрятся проволокой попарно.

Балансировочными пластинами устраняется дисбаланс как вертикальный, так и горизонтальный, при этом количество устанавливаемых на торец кольца гайки балансировочных пластин не ограничивается при условии, чтобы длина винтов крепления балансировочных пластин обеспечивала надежное их крепление и не создавалось помех перемещению противовесов.

Узел цилиндра (рис. 11)

Цилиндр (Рис. 12) изготовляется из дуралюмина и крепится к корпусу втулки винта выступами 3, которые входят в фрезерованные пазы корпуса. Посаженный до упора в пазы корпуса цилиндр разворачивается в любую сторону вокруг своей оси на 30° при помощи воротка, вставляемого в отверстие 2.

Рис. 11 Цилиндр (узел). 1-цилиндр; 2-кольцо регулировочное; 3-манжета; 4-поршень; 5- манжета

Рис. 12 Цилиндр 1-резьба хвостовика; 2- отверстия для воротка; 3- выступ замка.

Для предохранения от проворачивания в эксплуатации цилиндр контрится специальной шпонкой, вставляемой в один из пазов корпуса. На цилиндре имеется хвостовик 1 с резьбой, предназначенный для крепления отеплителя при эксплуатации винта в зимних условиях.

Рис. 13 Поршень. 1-проточка для манжеты; 2-отверстие для шплинта; 3-проточка для манжеты; 4-отверстие для штуцера маслопровода.

Герметичность рабочей полости узла цилиндра обеспечивается манжетами, изготовленными из маслобензиностойкой резины. Поршень (Рис. 13) изготовляется так же, как и цилиндр, из дуралюмина. Поршень воспринимает давление масла в цилиндре и передает усилие давления на поводок для поворота лопастей в сторону малого шага. При переходе лопастей в сторону большого шага от центробежных сил противовесов поршень воспринимает давление от поводка и, вытесняя масло из полости цилиндра, перемещается в сторону стенки цилиндра. Поршень по наружному диаметру имеет проточку для установки манжеты, обеспечивающей герметичность между стенкой цилиндра и буртиком поршня. Отверстия 2, имеющиеся в поршне, предназначены для контровки регулировочного кольца, устанавливаемого как ограничитель большого шага лопастей винта. Регулировочные кольца изготовляют разной толщины и, следовательно, заменой колец можно изменять максимальный угол установки лопастей. Увеличение кольца по толщине на 1 мм увеличит обороты двигателя приблизительно на 100 об/мин и наоборот.

В центровое отверстие 4 поршня входит штуцер маслопровода, манжета, устанавливаемая в проточку 3, обеспечивает герметичность между стенками отверстия и штуцером маслопровода.

Узел лопасти

Воздушные винты В-530-Д11 и В-530-Д35 изготовляют с деревянными лопастями (Рис. 14), состоящими из двух частей: металлического стакана и деревянного пера. Деревянное перо лопасти выполнено из сосновых досок, а комель лопасти, входящий в металлический стакан, из досок дельта-древесины (Рис. 15), способной выдержать растягивающие и изгибающие нагрузки, возникающие при работе винта на двигателе.

Сосновые доски подбирают и склеивают из планок шириной 20- 70 мм, после чего стыкуют по длине с досками дельта-древесины длинным усовым соединением. Длина усового соединения по отношению к толщине склеиваемых досок равна 1 20 Склейка сосновых планок в доски и усовое соединение производится смоляным клеем ВИАМ БЗ

Для увеличения прочности прикомлевой части пера лопасти и площади склейки усового соединения дельта древесины с сосной часть дельта древесины выходит из металлического стакана в перо лопасти Комель лопасти имеет специальную коническую резьбу, на которой она завертывается в металлический стакан с особой затвердевающей массой, предназначенной для уплотнения резьбового со единения и устранения зазоров

Рис. 14 Лопасть 1-стакан 2- перо деревянное.

Рис. 15 Комель лопасти 1-дельта древесина, 2-сосна 3-резиновое уплотни тельное кольцо, 4-стакан 5-болт, 6-шайба торцовая, 7- штифт

Рис. 16 Покрытие лопасти.. 1-оковка, 2- лакокрасочное покрытие; 3- целлулоидное покрытие, 4- льняное полотно, 5-фанеровка; 6-сосна, 7-дельта-древесина; 8- стакан.

Лопасть ввертывают в металлический стакан после заливки в него специальной массы, излишки которой вытесняются при завертывании лопасти через канавки, прорезанные на комле лопасти. Для предохранения затвердевающей массы от выкрашивания и попадания внутрь масла, воды и пр. со стороны пера лопасти между буртом стакана и комлем лопасти прокладывают резиновое уплотнительное кольцо 3 Для предохранения уплотнительного кольца от выпадания бурт стакана лопасти завальцовывают

Стакан лопасти снаружи имеет резьбу в соответствии с резьбой переходного стакана На стакане выбита стрелка для установки лопастей под определенными углами при сборке винта

При установке лопасти в переходной стакан выбитая на лопастном стакане стрелка должна совпасть со средним делением шкалы на торце переходного стакана.

В лопасти винтов установлены торцовые шайбы, закрепленные четырьмя болтами, предназначенные для уменьшения качки лопасти в металлическом стакане, возникающей при низких температурах воздуха вследствие различных коэффициентов линейного расширения металла и дельта-древесины. Для предохранения от проворачивания торцовую шайбу контрят штифтами.

Для увеличения прочности и жесткости пера лопасти ее обработанную поверхность оклеивают двумя слоями березовой авиационной фанеры. Фанеру приклеивают к лопасти под углом 45° к оси лопасти при помощи специальных прессов, обеспечивающих плотное прилегание фанеры к лопасти.

Для предохранения от воздействия атмосферных условий на фанерованную лопасть наносят ряд последовательно накладываемых покрытий общей толщиной 0,8-1,5 мм.

Покрытие лопасти (Рис. 16) состоит из:

1) льняного полотна рединка марки АЛКР;

2) целлулоидной пленки толщиной 0,8-1 мм;

3) слоя нитрошпаклевки и цветной нитрокраски.

Льняное полотно приклеивают к лопасти целлулоидным клеем и притирают деревянным молотком.

Целлулоид употребляют листовой технический толщиной 0,8-1 мм, предварительно размягченный в 50% смеси ацетона с растворителем РДВ. Целлулоид накладывают на лопасть в размягченном состоянии и, чтобы он проник в поры древесины, его несколько часов обжимают в резиновых мешках под действием атмосферного давления (вакуум-процесс).

Твердое целлулоидное покрытие наносят также при помощи кисти. В этом случае целлулоидный клей наносят на оклеенную полотном лопасть кистью 6-8 раз до получения надлежащей толщины покрытия с промежуточными выдержками для сушки клея.

Для нанесения твердого целлулоидного покрытия кистью приготовляют целлулоидный клей из мелких обрезков технического целлулоида. Мелкие обрезки (отходы) целлулоида помещают в закрытый сосуд и заливают 50% ной смесью ацетона с растворителем РДВ. Эту массу выдерживают 24 часа, после чего растворенную массу размешивают и наносят кистью на лопасть.

Рис. 17 Лопасть

Переднюю кромку лопасти, более всего подвергающуюся повреждению, оковывают листовой латунью толщиной 0,6-0,8 мм, разрезанной на отдельные секции.

Оковку к лопасти крепят медными заклепками и шурупами, после чего их головки опаивают припоем ПОС-40 и зачищают напильником и наждачной шкуркой. Далее лопасти окрашивают нитрокраской в черный, а их концы в желтый или белый цвет.

С рабочей стороны лопасти наносят желтую или белую полоску для определения положения контрольного сечения. Чертеж лопасти с геометрическими размерами указан на Рис. 17.

Детали для установки винта на носок вала двигателя

При установке винта на носок вала двигателя винт центрируют на конусах 1 и 2 (Рис. 18) и затягивают гайкой 3. Затяжная гайка имеет шестигранник под ключ и два буртика. На один буртик устанавливают состоящий из двух половинок и имеющий внутреннюю протоку, соответствующую буртику затяжной гайки, передний конус.

Рис. 18 Детали для установки винта на носок вала двигателя. 1 - конус задний, 2-конус передний, 3-гайка затяжная. 4 - кольцо съемник, 5-пластиьа контровочная, 6-кольцо контровочное, 7-прокладка переходника: 8- переходник, 9-прокладка маслопровода; 10-маслопровод, 11-шайба контровочная

Второй буртик затяжной гайки при снятии винта с носка вала двигателя выполняет роль съемника. При отвертывании гайки второй ее буртик, опираясь на кольцо-съемник 4, находящееся в канавке ступицы, снимает ступицу с заднего конуса. Для предотвращения заедания в резьбе поверхности затяжной гайки омеднены. Затяжную гайку контрят контровочной пластиной 5, имеющей двенадцать внутренних граней. Шестью гранями контровочная пластина садится на шестигранник затяжной гайки, а имеющийся наружный выступ входит в один из пяти пазов ступицы. От выпадания контровочная пластина предохраняется контровочным кольцом о, находящимся в канавке ступицы. Для соединения маслопровода двигателя с рабочей полостью цилиндра винта в носок вала устанавливают штуцер маслопровода, сообщающийся через отверстие в поршне с полостью цилиндра.

Носок вала двигателя имеет два канала для 'подачи масла к винту, а винту В-530 требуется один канал, поэтому второй канал в носке вала двигателя должен быть перекрыт. Для перекрытия канала в носок вала устанавливается специальный переходник 8, имеющий одно отверстие, после чего в носок вала ввертывается штуцер маслопровода 10. Для обеспечения герметичности между штуцером маслопровода и переходником, а также переходником и торцом носка вала устанавливаются паронитовые прокладки 7 и 9.

Штуцер маслопровода контрится контровочной шайбой 11, которая шестигранным отверстием устанавливается на шестигранник штуцера, а имеющимися отверстиями в буртиках контрится двумя шплинтами с затяжной гайкой

Регулятор постоянных оборотов р-2 серии 04

Описание и работа

Общие сведения

Регулятор постоянных оборотов Р-2 сер. 04 винта (Рис. 19) представляет собой агрегат, предназначенный для автоматического управления гидравлическим воздушным винтом.

Регулятор Р-2 сер. 04 предназначен для эксплуатации на двигателе М-14П с винтом В530ТА-Д35 и обеспечивает:

- автоматическое поддержание заданной частоты вращения винта за счет изменения шага винта;

- принудительное изменение заданной частоты вращения винта в рабочем диапазоне от 900 до 1940 об/мин.

Рис. 19 Регулятор Р-2 сер. 04

Описание

Основные технические данные

Тип.Р-2 сер.04

Привод.От двигателя

Направление вращения.Правое, если смотреть на привод регулятора

Передаточное отношение от коленчатого вала двигателя

к приводу регулятора1,045

Частота вращения ведущего вала регулятора, при которой обеспечивается устойчивая

работа двигателя1400-3085 об/мин (при этом обороты двигателя составляют 1340-2950 об/мин)

Принцип действия.Центробежно-гидравлический

Схема работы.Односторонняя прямая

Рабочая жидкость.Масло МС-20 ГОСТ 21743-76 из нагнетающей магистрали двигателя

Давление масла на входе в насос регулятора:

- на рабочих режимах3-4,5 кгс/см"

- на режиме малого газа.Не менее 1 кгс/см-

Максимальное давление на выходе из регулятора при n = 2500 об/мин, отсутствии расхода и температуре масла 85-90 °С(15±1) кгс/см2

Температура масла на входе в регулятор:

- минимально допустимая40 °С

- рекомендуемая ................................................ 50-65 °С

- максимально допустимая 90 °С

Максимальная температура на выходе из регулятора 100 °С

Утечка масла через зазоры при п = 2500 об/мин, отсутствии расхода и температуре 85...90 °С:

- при контрольно-сдаточных испытаниях.Не более 1,5 л/мин

- к концу срока службы.Не более 2 д/мин

Подача маслонасоса регулятора при п = 2500 об/мин, давлении на выходе Р = 8 кгс/см2 и температуре 85-90 "СНе менее 7,5 д/мин

Масса сухого регулятора(1,7+0,3) кг

КОНСТРУКЦИЯ

Механизм регулятора Р-2 сер. 04 (Рис. 20) состоит из:

- корпуса (1) регулятора;

- корпуса (2) маслонасоса;

- корпуса (6) передачи.

В этих трех узлах размещены все детали регулятора.

КОРПУС РЕГУЛЯТОРА

В корпусе (1) регулятора размещены узел золотника и валик (20) управления.

- Узел золотника управляет распределением потока масла и состоит из золотника (8), перемещающегося внутри ведущего вала (7).

Золотник имеет два буртика.

Нижний буртик регулирует подачу масла в цилиндр винта, а верхний буртик является уплотнительным и препятствует поступлению масла с высоким давлением в камеру центробежного регулятора.

На верхний буртик золотника установлен шарикоподшипник (16), внутреннее кольцо которого прижато к заплечику гайкой (II). Наружное кольцо находится в соприкосновении с короткими плечами грузиков (19).

При вращении ведущего вала (7) вращается центробежный узел, который концами коротких плеч грузиков упирается в торец наружного кольца шарикоподшипника и вращает его, тогда как внутреннее кольцо подшипника и золотник удерживаются от вращения пружиной центробежного механизма, установленной между золотником и рейкой.

Рейка (22) входит в зацепление с шестерней ведущего валика (20) управления.

Валик (1) (рис. 3) управления изготовлен за одно целое с зубчатым колесом, входящим в зацепление с зубьями рейки.

Рис. 20 Конструктивный разрез регулятора Р-2 сер. 04 1. Корпус регулятора 2. Корпус маслонасоса 3. Ось грузика 4. Кронштейн 5. Стопорное кольцо 6. Корпус передачи 7. Ведущий вал 8. Золотник 9. Ось ведомой шестерни 10. Ведомая шестерня 11. Гайка 12. Пружина редукционного клапана 13. Узел центробежного регулятора 14. Редукционный клапан 15. Колокол 16. Шарикоподшипник 17. Регулировочная шайба 18. Шестерня ведущего вала 19. Грузик 20. Валик управления 21. Пружина золотника 22. Зубчатая рейка 23. Прокладка привода 24. Штифт

Рис. 21 Узел корпуса регулятора 1. Валик управления; 2. Стопорное кольцо; 3. Подпятник; 4. Пружина; 5. Шайба скольжения; 6. Уплотнительное кольцо; 7. Подшипник валика управления

Валик управления устанавливается в боковой расточке корпуса регулятора. Опорами валика служат с одной стороны подпятник (3), а с другой - подшипник скольжения (7), ввернутый в корпус и законтренный в нем стопорным кольцом (2), входящим в прорези корпуса и подшипника. Уплотнение валика в корпусе осуществляется уплотнительным кольцом (6), прижимаемым к торцу подшипника, пружиною (4) через шайбу скольжения (5). Другой конец пружины упирается в буртик валика и своим натяжением поджимает валик к подпятнику (3), вставленному в корпус.

На шестигранный конец валика, выходящий из корпуса, надевается ролик или рычаг дистанционного управления.

Корпус регулятора соединяется с корпусом маслонасоса четырьмя шпильками, ввернутыми в бобышки корпуса регулятора. Герметичность стыка этих корпусов обеспечивается паронитовой прокладкой.

Корпус маслонасоса

В корпусе маслонасоса размещены маслонасос и редукционный клапан. Маслонасос - шестеренчатого типа, состоит из двух шестерен: ведущей и ведомой.

Ведущая шестерня (18) (см. Рис. 20) изготовлена за одно целое с ведущим валом (7), . установленным в корпусе маслонасоса и в корпусе передачи.

Ведомая шестерня (10) установлена на оси (9), запрессованной в корпусе передачи.

Ось ведомой шестерни имеет осевое отверстие для перепуска масла из редукционного клапана на вход в насос регулятора.

Для смазки рабочих поверхностей ведомой шестерни и ее оси в оси имеется поперечное отверстие.

Ведущий вал (7) имеет центральное осевое отверстие, в котором с небольшим диаметральным зазором помещен золотник (8). Два верхних отверстия в ведущем валу соединяют осевое отверстие с нагнетающей полостью насоса регулятора, шесть нижних отверстий соединяют осевое отверстие ведущего вала с цилиндром винта при опущенном золотнике.

На нижнем конце ведущего вала имеются шлицы для соединения с приводной муфтой редуктора двигателя, от которой получает вращение ведущий вал. На верхнем конце вала имеются лыска для установки узла (13) центробежного регулятора и канавка для стопорного кольца (5), предохраняющего узел центробежного регулятора от продольного перемещения.

Кронштейн (4) узла центробежного регулятора имеет отверстие для посадки его на верхний конец ведущего вала, от которого приводится во вращение узел центробежного регулятора.

В прорези ушков кронштейна помещены на стальных осях (3) два грузика (19). Грузики на осях имеют возможность свободно поворачиваться, сжимая или ослабляя пружину (21).

На коническую наружную поверхность кронштейна надет тонкостенный стальной колокол (15), завальцованный в канавку кронштейна (4) и приваренный к нему точечной сваркой.

Колокол ограничивает ход грузиков при увеличении частоты вращения до заданного значения и, кроме того, увлекая во вращение находящееся в нем масло, устраняет трение грузиков о неподвижное масло.

В корпусе маслонасоса в поперечной расточке устанавливается редукционный клапан плунжерного типа. Редукционный клапан состоит из направляющей втулки, запрессованной в корпус маслонасоса, клапана (14) с пружиной (12), крышки и шайбы (17).

Подбором шайбы (17) регулируется затяжка пружины на необходимое максимальное давление.

Корпус передачи

Корпус (6) передачи является нижней крышкой маслонасоса и фланцем для установки регулятора на картер редуктора двигателя.

Подача масла от двигателя к регулятору и от регулятора к винту - внутренняя, для чего на фланце корпуса передачи имеются три отверстия (1), (2), (4) (Рис. 22).

Рис. 22 Посадочный фланец регулятора 1. Отверстие для подачи масла от двигателя к регулятору; 2. Отверстие для подачи масла от регулятора к винту; 3. Стяжной винт; 4. Отверстие для слива масла из * регулятора в картер двигателя; 5. Стяжной винт

Корпус передачи и корпус маслонасоса соединены между собой двумя стяжными винтами (3), (5). Герметичность стыка корпуса маслонасоса и корпуса передачи обеспечивается шелковой ниткой, уложенной между корпусами на герметике.

РАБОТА

Регулятор Р-2 сер. 04 работает с винтом только прямого действия по односторонней схеме регулирования.

Перевод лопастей винта на меньший шаг происходит под действием давления масла, подаваемого регулятором в полость цилиндра винта.

Перевод лопастей винта на больший шаг происходит под действием противовесов, установленных на лопастях винта, при этом регулятор обеспечивает слив масла из цилиндра винта в картер редуктора двигателя.

Обеспечение постоянной заданной частоты вращения воздушного винта и силовой установки

При работе регулятора масло из магистрали двигателя поступает к посадочному фланцу регулятора, откуда направляется по каналу (8) (Рис. 23) на вход в маслонасос (7).

Насос повышает давление масла до величины, необходимой для нормальной работы винта, и направляет масло в пространство между двумя буртиками золотника (6), откуда это масло поступает в винт для изменения его шага.

Рис. 23 Принципиальная схема работы регулятора на равновесной частоте вращения (установившийся режим) 1. Канал, соединяющий регулятор с винтом; 2. Грузик; 3. Пружина; 4. Зубчатая рейка; 5. Валик управления; 6. Золотник; 7. Маслонасос; 8. Канал для подачи масла от двигателя в регулятор; 9. Редукционный клапан; 10. Буртик золотника; 11. Ведущий вал

На Рис. 23 приведена принципиальная схема работы регулятора на установившемся режиме работы, когда мощность двигателя и поступательная скорость самолета не меняются и регулятор поддерживает заданную частоту вращения двигателя постоянной.

На установившемся режиме работы вращающиеся грузики (2) под действием центробежных сил стремятся повернуться на своих осях и поднять золотник (6) вверх, в это же время пружина (3) регулятора стремится опустить золотник вниз. Следовательно, положение золотника (6) определяется соотношением центробежных сил грузиков (2) и силой упругости пружины (3).

В рассматриваемом случае сила натяжения пружины равна центробежной силе, развиваемой грузиками.

В этом случае буртик (10) золотника (6) перекрывает канал (1), соединяющий регулятор с винтом. Масло, находящееся в полости винта, оказывается закрытым.

Допасти винта под действием моментов от центробежных сил противовесов, установленных на стаканах лопастей, стремятся повернуться в сторону большого шага, а закрытое масло в цилиндре винта удерживает их от поворота, вследствие чего шаг винта остается неизменным.

В связи с отсутствием расхода масла на изменение шага винта масло от насоса регулятора в этом случае прокачивается через редукционный клапан (9) обратно на вход в насос регулятора.

Если при изменении режима полета или режима работы двигателя произойдет уменьшение частоты вращения винта, то одновременно уменьшается частота вращения центробежного регулятора и центробежная сила грузиков.

Вследствие этого золотник (6) под действием избыточной силы пружины (3) опустится вниз (Рис. 24).

При перемещении золотника (6) вниз канал (1) соединится с полостью высокого давления от маслонасоса регулятора. Масло по каналу (1) постудит в винт на уменьшение шага винта.

С уменьшением шага винта частота вращения двигателя начнет возрастать, центробежная сила грузиков (2) увеличится и грузики, преодолевая усилие пружины (3), поднимут золотник (6) в первоначальное равновесное положение (см. Рис. 23).

В зависимости от скорости отклонения частоты вращения воздушного винта от равновесной частоты вращения при восстановлении ее может произойти переход золотника регулятора через равновесное его положение вверх, а затем вниз, но через одно или два таких отклонения вся система придет в равновесие.

Если по каким-либо причинам частота вращения двигателя увеличится, то увеличится и частота вращения ведущего вала (II) (Рис. 25) регулятора и укрепленных на нем грузиков (2) центробежного регулятора.

Рис. 24 Принципиальная схема работы регулятора при уменьшении частоты вращения двигателя 1. Канал, соединяющий регулятор с винтом; 2. Грузик; 3. Пружина; 4. Зубчатая рейка; 5. Валик управления; 6. Золотник; 7. Маслонасос; 8. Канал для подачи масла от двигателя в регулятор; 9. Редукционный клапан; 10. Буртик золотника; 11. Ведущий вал

Рис. 25 Принципиальная схема работы регулятора при увеличении частоты вращения двигателя 1. Канал, соединяющий регулятор с винтом; 2. Грузик; 3. Пружина; 4. Зубчатая рейка; 5. Валик управления; 6. Золотник; 7. Маслонасос; 8. Канал для подачи масла от двигателя в регулятор; 9. Редукционный клапан; 10. Буртик золотника; 11. Ведущий вал

При увеличении частоты вращения грузиков увеличится центробежная сила грузиков, которая станет больше силы затяжки пружины (3). Под действием избыточной силы грузики разойдутся в стороны и своими короткими плечами, сжимая пружину, поднимут золотник (6). При перемещении золотника (6) вверх канал (1) соединится со сливом в картер редуктора двигателя. Масло из цилиндра винта будет перетекать на слив.

Лопасти винта под действием центробежных сил противовесов будут переходить в сторону большого винта.

С увеличением шага винта частота вращения двигателя и центробежная сила грузиков (2) уменьшатся и под действием пружины (3) золотник (6) опустится в первоначальное положение, при котором слив масла из цилиндра винта прекратится, и воздушный винт снова будет продолжать работать на заданной равновесной частоте вращения (см. Рис. 23).

При восстановлении частоты вращения до заданной может иметь место также перерегулирование, т.е. переход золотника через равновесное положение один или два раза.

Принудительное изменение заданной частоты вращения воздушного винта и двигателя

Изменение частоты вращения двигателя

Воздушные винты позволяют на земле и в полете по желанию летчика изменять частоту вращения двигателя, не трогая сектора газа. Изменение частоты вращения двигателя производится изменением затяжки пружины. Для этого в регуляторе имеется зубчатая рейка (4) (см. Рис. 23), находящаяся в зацеплении с валиком управления (5), на котором установлен ролик или рычаг.

Ролик или рычаг, в свою очередь, соединен с помощью тяги или троса с ручкой управления.

При движении ручки управления регулятором на себя валик (5) повернется по ходу часовой стрелки. Рейка (4) поднимется и уменьшит затяжку пружины, вследствие чего равновесная частота вращения двигателя уменьшится, так как равновесие между силой затяжки пружины и центробежной силой грузиков наступит при меньшей частоте вращения ведущего вала регулятора.

При движении ручки управления от себя валик (5) повернется против хода часовой стрелки. Рейка (4) опустится и увеличит затяжку пружины, в результате чего равновесная частота вращения возрастет, так как равновесие между силой затяжки пружины и центробежной силой грузиков наступит при большей частоте вращения ведущего вала регулятора.

Перевод лопастей винта полностью на малый шаг

Для того чтобы перевести лопасти винта полностью на малый шаг, ручку управления регулятором необходимо передвинуть до отказа от себя. При этом валик (5) (Рис. 24) повернется против хода часовой стрелки до упора малого шага. Под действием пружины золотник (6) регулятора переместится в крайнее нижнее положение, при котором масло высокого давления от насоса регулятора будет поступать в винт по каналу (1) для перевода лопастей полностью на малый шаг, что соответствует максимальной частоте вращения двигателя.

Перевод лопастей винта полностью на большой шаг

Для того чтобы полностью перевести лопасти на большой шаг (уменьшить частоту вращения двигателя), не трогая сектора газа, ручку управления регулятором необходимо передвинуть до отказа на себя.

При этом шестерня валика управления повернется по ходу часовой стрелки до упора большого шага. Рейка (4) (см. Рис. 25) поднимается, и грузики поднимут в крайнее верхнее положение золотник (6) регулятора, при котором полость цилиндра винта через канал (1) соединится со сливом, и лопасти под действием центробежных сил противовесов перейдут полностью на большой шаг, что соответствует минимальной частоте вращения.

Размещено на Allbest.ru


Подобные документы

  • Расчет сопротивления воды движению судна. Расчет контура лопасти гребного винта. Распределение толщин лопасти по ее длине. Профилирование лопасти винта. Построение проекций лопасти винта, параметры ступицы. Определение массы гребного винта судна.

    курсовая работа [444,4 K], добавлен 08.03.2015

  • Критерии работоспособности передачи винт-гайка. Определение размеров винта и гайки. Проверка соблюдения условия самоторможения. Определение КПД винтовой пары передачи винт-гайка. Проверка винта на устойчивость. Расчет элементов винта и гайки на прочность.

    курсовая работа [117,8 K], добавлен 16.05.2010

  • Площадь смоченной поверхности судна. Расчет сопротивления трения судна для трех осадок. Расчет сопротивления движению судна с помощью графиков серийных испытаний моделей судов. Определение параметров гребного винта. Профилировка лопасти гребного винта.

    курсовая работа [785,6 K], добавлен 19.01.2012

  • Краткая характеристика несущего винта вертолета. Определение дальности и продолжительности полета. Подбор оптимальной конструкции лонжерона лопасти несущего винта легкого вертолета, с применением программы виртуального моделирования Solid Works.

    дипломная работа [3,4 M], добавлен 01.07.2012

  • Расчёт буксировочных сопротивления и мощности. Выбор главного судового движителя для создания полезной тяги. Расчёт и выбор гребного винта посредством определения его оптимальных параметров и использования высокого коэффициента полезного действия.

    курсовая работа [1,0 M], добавлен 26.01.2015

  • Необходимость применения редуктора. Оптимальная частота вращения турбокомпрессора и воздушного винта. Подбор чисел зубьев. Эквивалентные числа циклов перемены напряжений. Проверка на контактную выносливость. Потребная динамическая грузоподъемность.

    курсовая работа [358,6 K], добавлен 04.06.2011

  • Преобразование вращательного движения в поступательное. Условие прочности при продольном изгибе. Допускаемая гибкость для винтов. Нахождение диаметра винта по критериям, определяющим работоспособность передачи. Износостойкость рабочих поверхностей.

    контрольная работа [546,2 K], добавлен 17.10.2013

  • Расчет винта и пяты скольжения. Момент трения в стандартном радиально-упорном шарикоподшипнике. Расчетная схема витка гайки на изгиб. Расчет штифта, определение коэффициента полезного действия механизма. Расчет корпуса подъемника и болтов на прочность.

    курсовая работа [100,2 K], добавлен 13.02.2012

  • Анализ показателей судна и его энергетической установки. Определение параметров согласованного гребного винта. Расчет вспомогательной котельной установки. Система сжатого воздуха. Расчет нагрузки на судовую электростанцию и выбор дизель-генератора.

    курсовая работа [602,2 K], добавлен 19.12.2011

  • Определение энергетических, кинематических и геометрических параметров двигателя, газодинамические расчеты его основных узлов. Профилирование ступени компрессора, коэффициенты полезного действия винта и редуктора. Расчёт и формирование облика двигателя.

    курсовая работа [7,3 M], добавлен 22.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.