Двигатели внутреннего сгорания

Классификация и принцип работы двигателей внутреннего сгорания. Теоретический цикл с подводом теплоты при постоянном объеме и давлении. Индикаторные и эффективные показатели устройства. Особенности рабочего цикла и теплового расчета двухтактных моторов.

Рубрика Транспорт
Вид курс лекций
Язык русский
Дата добавления 31.12.2015
Размер файла 405,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. ОСНОВЫ ТЕОРИИ ДВИГАТЕЛЕЙ

СОДЕРЖАНИЕ

1. КЛАССИФИКАЦИЯ И ПРИНЦИП РАБОТЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

1.1 Общие сведения и классификация

1.2 Рабочий цикл двухтактного ДВС

2. ТЕПЛОВОЙ РАСЧЕТ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

2.1 Теоретические термодинамические циклы ДВС

2.2 Действительные циклы ДВС

2.3 Индикаторные и эффективные показатели двигателя

2.4 Особенности рабочего цикла и теплового расчета двухтактных двигателей

3. ПАРАМЕТРЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

3.1 Тепловой баланс двигателей

3.2 Определение основных размеров двигателей

3.3 Основные параметры двигателей

4. ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

4.1 Регулировочные характеристики

4.2 Скоростные характеристики

4.3 Регуляторная характеристика

4.4 Нагрузочная характеристика

Список литературы

1. КЛАССИФИКАЦИЯ И ПРИНЦИП РАБОТЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

1.1 Общие сведения и классификация

Поршневым двигателем внутреннего сгорания (ДВС) называют такую тепловую машину, в которой превращение химической энергии топлива в тепловую, а затем в механическую энергию, происходит внутри рабочего цилиндра. Превращение теплоты в работу в таких двигателях связано с реализацией целого комплекса сложных физико-химических, газодинамических и термодинамических процессов, которые определяют различие рабочих циклов и конструктивного исполнения.

Классификация поршневых двигателей внутреннего сгорания приведена на рис. 1.1. Исходным признаком классификации принят род топлива, на котором работает двигатель. Газообразным топливом для ДВС служат природный, сжиженный и генераторный газы. Жидкое топливо представляет собой продукты переработки нефти: бензин, керосин, дизельное топливо и др. Газожидкостные двигатели работают на смеси газообразного и жидкого топлива, причем основным топливом является газообразное, а жидкое используется как запальное в небольшом количестве. Многотопливные двигатели способны длительно работать на разных топливах в диапазоне от сырой нефти до высокооктанового бензина.

Двигатели внутреннего сгорания классифицируют также по следующим признакам:

· по способу воспламенения рабочей смеси - с принудительным воспламенением и с воспламенением от сжатия;

· по способу осуществления рабочего цикла - двухтактные и четырехтактные, с наддувом и без наддува;

Рис. 1.1. Классификация двигателей внутреннего сгорания.

· по способу смесеобразования - с внешним смесеобразованием (карбюраторные и газовые) и с внутренним смесеобразованием (дизельные и бензиновые с впрыском топлива в цилиндр);

· по способу охлаждения - с жидкостным и воздушным охлаждением;

· по расположению цилиндров - однорядные с вертикальным, наклонным горизонтальным расположением; двухрядные с V-образным и оппозитным расположением. Преобразование химической энергии топлива, сжигаемого в цилиндре двигателя, в механическую работу совершается с помощью газообразного тела - продуктов сгорания жидкого или газообразного топлива. Под действием давления газов поршень совершает возвратно-поступательное движение, которое преобразуется во вращательное движение коленчатого вала с помощью кривошипно-шатунного механизма ДВС. Прежде чем рассматривать рабочие процессы, остановимся на основных понятиях и определениях, принятых для двигателей внутреннего сгорания. За один оборот коленчатого вала поршень дважды будет находиться в крайних положениях, где изменяется направление его движения (рис 1.2). Эти положения поршня принято называть мертвыми точками, так как усилие, приложенное к поршню в этот момент, не может вызвать вращательного движения коленчатого вала. Положение поршня в цилиндре, при котором расстояние его от оси вала двигателя достигает максимума, называется верхней мертвой точкой (ВМТ). Нижней мертвой точкой (НМТ) называют такое положение поршня в цилиндре, при котором расстояние его от оси вала двигателя достигает минимума.

Расстояние по оси цилиндра между мертвыми точками называют ходом поршня. Каждому ходу поршня соответствует поворот коленчатого вала на 180°.Перемещение поршня в цилиндре вызывает изменение объема надпоршневого пространства. Объем внутренней полости цилиндра при положении поршня в ВМТ называют объемом камеры сгорания Vc.

Объем цилиндра, образуемый поршнем при его перемещении между мертвыми точками, называется рабочим объемом цилиндра Vh.

,

где D - диаметр цилиндра, мм;

S - ход поршня, мм

Объем надпоршневого пространства при положении поршня в НМТ называют полным объемом цилиндра Va.

.

Рис 1.2. Схема поршневого двигателя внутреннего сгорания

Рабочий объем двигателя представляет собой произведение рабочего объема цилиндра на число цилиндров.

Отношение полного объема цилиндра Va к объему камеры сгорания Vc называют степенью сжатия

.

При перемещении поршня в цилиндре кроме изменения объема рабочего тела изменяются его давление, температура, теплоемкость, внутренняя энергия. Рабочим циклом называют совокупность последовательных процессов, осуществляемых с целью превращения тепловой энергии топлива в механическую.

Достижение периодичности рабочих циклов обеспечивается с помощью специальных механизмов и систем двигателя.

Рабочий цикл любого поршневого двигателя внутреннего сгорания может быть осуществлен по одной из двух схем, изображенных на рис. 1.3.

По схеме, изображенной на рис. 1.3а, рабочий цикл осуществляется следующим образом. Топливо и воздух в определенных соотношениях перемешиваются вне цилиндра двигателя и образуют горючую смесь. Полученная смесь поступает в цилиндр (впуск), после чего она подвергается сжатию. Сжатие смеси, как будет показано ниже, необходимо для увеличения работы за цикл, так как при этом расширяются температурные пределы, в которых протекает рабочий процесс. Предварительное сжатие создает также лучшие условия для сгорания смеси воздуха с топливом.

Во время впуска и сжатия смеси в цилиндре происходит дополнительное перемешивание топлива с воздухом. Подготовленная горючая смесь воспламеняется в цилиндре при помощи электрической искры. Вследствие быстрого сгорания смеси в цилиндре резко повышается температура и, следовательно, давление, под воздействием которого происходит перемещение поршня от ВМТ к НМТ. В процессе расширения нагретые до высокой температуры газы совершают полезную работу. Давление, а вместе с ним и температура газов в цилиндре при этом понижаются. После расширения следует очистка цилиндра от продуктов сгорания (выпуск), и рабочий цикл повторяется.

Рис. 1.3. Схемы рабочего цикла двигателей

В рассмотренной схеме подготовка смеси воздуха с топливом, т. е. процесс смесеобразования, происходит в основном вне цилиндра, и наполнение цилиндра производится готовой горючей смесью, поэтому двигатели, работающие по этой схеме, называются двигателями с внешним смесеобразованием. К числу таких двигателей относятся карбюраторные двигатели, работающие на бензине, газовые двигатели, а также двигатели с впрыском топлива во впускной трубопровод, т. е. двигатели, в которых применяется топливо, легко испаряющееся и хорошо перемешивающееся с воздухом при обычных условиях.

Сжатие смеси в цилиндре у двигателей с внешним смесеобразованием должно быть таким, чтобы давление и температура в конце сжатия не достигали значений, при которых могли бы произойти преждевременная вспышка или слишком быстрое (детонационное) сгорание. В зависимости от применяемого топлива, состава смеси, условий теплопередачи в стенки цилиндра и т. д. давление конца сжатия у двигателей с внешним смесеобразованием находится в пределах 1.0-2.0 МПа.

Если рабочий цикл двигателя происходит по схеме, описанной выше, то обеспечивается хорошее смесеобразование и использование рабочего объема цилиндра. Однако ограниченность степени сжатия смеси не позволяет улучшить экономичность двигателя, а необходимость в принудительном зажигании усложняет его конструкцию.

В случае осуществления рабочего цикла по схеме, показанной на рис. 1.3б, процесс смесеобразования происходит только внутри цилиндра. Рабочий цилиндр в данном случае заполняется не смесью, а воздухом (впуск), который и подвергается сжатию. В конце процесса сжатия в цилиндр через форсунку под большим давлением впрыскивается топливо. При впрыскивании оно мелко распыляется и перемешивается с воздухом в цилиндре. Частицы топлива, соприкасаясь с горячим воздухом, испаряются, образуя топливовоздушную смесь. Воспламенение смеси при работе двигателя по этой схеме происходит в результате разогрева воздуха до температур, превышающих самовоспламенение топлива вследствие сжатия. Впрыск топлива во избежание преждевременной вспышки начинается только в конце такта сжатия. К моменту воспламенения обычно впрыск топлива еще не заканчивается. Топливовоздушная смесь, образующаяся в процессе впрыска, получается неоднородной, вследствие чего полное сгорание топлива возможно лишь при значительном избытке воздуха. В результате более высокой степени сжатия, допустимой при работе двигателя по данной схеме, обеспечивается и более высокий КПД. После сгорания топлива следует процесс расширения и очистка цилиндра от продуктов сгорания (выпуск). Таким образом, в двигателях, работающих по второй схеме, весь процесс смесеобразования и подготовка горючей смеси к сгоранию происходят внутри цилиндра. Такие двигатели называются двигателями с внутренним смесеобразованием. Двигатели, в которых воспламенение топлива происходит в результате высокого сжатия, называются двигателями с воспламенением от сжатия, или дизелями.

Рабочий цикл четырехтактного ДВС

Двигатель, рабочий цикл которого осуществляется за четыре такта, или за два оборота коленчатого вала, называется четырехтактным. Рабочий цикл в таком двигателе происходит следующим образом.

Первый такт - впуск (рис. 1.4). В начале первого такта поршень находится в положении, близком к ВМТ. Впуск начинается с момента открытия впускного отверстия, за 10-30° до ВМТ.

Рис. 1.4. Впуск

Камера сгорания заполнена продуктами сгорания от предыдущего процесса, давление которых несколько больше атмосферного. На индикаторной диаграмме начальному положению поршня соответствует точка r. При вращении коленчатого вала (в направлении стрелки) шатун перемещает поршень к НМТ, а распределительный механизм полностью открывает впускной клапан и соединяет надпоршневое пространство цилиндра двигателя с впускным трубопроводом. В начальный момент впуска клапан только начинает подниматься и впускное отверстие представляет собой круглую узкую щель высотой в несколько десятых долей миллиметра. Поэтому в этот момент впуска горючая смесь (или воздух) в цилиндр почти не проходит. Однако опережение открытия впускного отверстия необходимо для того, чтобы к моменту начала опускания поршня после прохода им ВМТ оно было бы открыто возможно больше и не затрудняло бы поступления воздуха или смеси в цилиндр. В результате движения поршня к НМТ цилиндр заполняется свежим зарядом (воздухом или горючей смесью).

При этом вследствие сопротивления впускной системы и впускных клапанов давление в цилиндре становится на 0.01-0.03 МПа меньше давления во впускном трубопроводе. На индикаторной диаграмме такту впуска соответствует линия rа.

Такт впуска состоит из впуска газов, происходящего при ускорении движения опускающегося поршня, и впуска при замедлении его движения.

Впуск при ускорении движения поршня начинается в момент начала опускания поршня и заканчивается в момент достижения поршнем максимальной скорости приблизительно при 80° поворота вала после ВМТ. В начале опускания поршня вследствие малого открытия впускного отверстия в цилиндр проходит мало воздуха или смеси, а поэтому остаточные газы, оставшиеся в камере сгорания от предшествующего цикла, расширяются и давление в цилиндре падает. При опускании поршня горючая смесь или воздух, находившаяся в покое во впускном трубопроводе или двигавшаяся в нем с небольшой скоростью, начинает проходить в цилиндр с постепенно увеличивающейся скоростью, заполняя объем, освобождаемый поршнем. По мере опускания поршня его скорость постепенно увеличивается и достигает максимума при повороте коленчатого вала примерно на 80°. При этом впускное отверстие открывается все больше и больше и горючая смесь (или воздух) в цилиндр проходит в больших количествах.

Впуск при замедленном движении поршня начинается с момента достижения поршнем наибольшей скорости и оканчивается НМТ, когда скорость его равна нулю. По мере уменьшения скорости поршня скорость смеси (или воздуха), проходящей в цилиндр, несколько уменьшается, однако в НМТ она не равна нулю. При замедленном движении поршня горючая смесь (или воздух) поступает в цилиндр за счет увеличения объема цилиндра, освобождаемого поршнем, а также за счет своей силы инерции. При этом давление в цилиндре постепенно повышается и в НМТ может даже превышать давление во впускном трубо- проводе.

Давление во впускном трубопроводе может быть близким к атмосферному в двигателях без наддува или выше него в зависимости от степени наддува (0.13-0.45 МПа) в двигателях с наддувом.

Впуск окончится в момент закрытия впускного отверстия (40-60°) после НМТ. Задержка закрытия впускного клапана происходит при постепенно поднимающемся поршне, т.е. уменьшающемся объеме газов в цилиндре. Следовательно, смесь (или воздух) поступает в цилиндр за счет ранее созданного разрежения или инерции потока газа, накопленной в процессе течения струи в цилиндр.

При малых числах оборотов вала, например при пуске двигателя, сила инерции газов во впускном трубопроводе почти полностью отсутствует, поэтому во время задержки впуска будет идти обратный выброс смеси (или воздуха), поступившей в цилиндр ранее во время основного впуска.

При средних числах оборотов инерция газов больше, поэтому в самом начале подъема поршня происходит дозарядка. Однако по мере подъема поршня давление газов в цилиндре увеличится и начавшаяся дозарядка может перейти в обратный выброс.

При больших числах оборотов сила инерции газов во впускном трубопроводе близка к максимуму, поэтому происходит интенсивная дозарядка цилиндра, а обратный выброс не наступает.

Второй такт - сжатие. При движении поршня от НМТ к ВМТ (рис. 1.5) производится сжатие поступившего в цилиндр заряда.

Давление и температура газов при этом повышаются, и при некотором перемещении поршня от НМТ давление в цилиндре становится одинаковым с давлением впуска (точка т на индикаторной диаграмме). После закрытия клапана при дальнейшем перемещении поршня давление и температура в цилиндре продолжают повышаться. Значение давления в конце сжатия (точка с) будет зависеть от степени сжатия, герметичности рабочей полости, теплоотдачи в стенки, а также от величины начального давления сжатия.

Рис 1.5. Сжатие

На воспламенение и процесс сгорания топлива как при внешнем, так и при внутреннем смесеобразовании требуется некоторое время, хотя и очень незначительное. Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня, возможно близком к ВМТ. Поэтому воспламенение рабочей смеси от электрической искры в двигателях с внешним смесеобразованием и впрыск топлива в цилиндр двигателей с внутренним смесеобразованием обычно производятся до прихода поршня в ВМТ.

Таким образом, во время второго такта в цилиндре в основном производится сжатие заряда. Кроме того, в начале такта продолжается зарядка цилиндра, а в конце начинается сгорание топлива. На индикаторной диаграмме второму такту соответствует линия ас.

Третий такт - сгорание и расширение.Третий такт происходит при ходе поршня от ВМТ к НМТ (рис. 1.6). В начале такта интенсивно сгорает топливо, поступившее в цилиндр и подготовленное к этому в конце второго такта.

Вследствие выделения большого количества теплоты температура и давление в цилиндре резко повышаются, несмотря на некоторое увеличение внутри цилиндрового объема (участок сz на индикаторной диаграмме).

Под действием давления происходит дальнейшее перемещение поршня к НМТ и расширение газов. Во время расширения газы совершают полезную работу, поэтому третий такт называют также рабочим ходом. На индикаторной диаграмме третьему такту соответствует линия сzb.

Рис. 1.6. Расширение

Четвертый такт - выпуск. Во время четвертого такта происходит очистка цилиндра от выпускных газов (рис. 1.7). Поршень, перемещаясь от НМТ к ВМТ, вытесняет газы из цилиндра через открытый выпускной клапан. В четырехтактных двигателях открывают выпускное отверстие на 40-80° до прихода поршня в НМТ (точка b) и закрывают его через 20-40° после прохода поршнем ВМТ. Таким образом, продолжительность очистки цилиндра от отработавших газов составляет в разных двигателях от 240 до 300° угла поворота коленчатого вала.

Процесс выпуска можно разделить на предварение выпуска, происходящее при опускающемся поршне от момента открытия выпускного отверстия (точка b) до НМТ, т. е. в течение 40-80°, и основной выпуск, происходящий при перемещении поршня от НМТ до закрытия выпускного отверстия, т. е. в течение 200-220° поворота коленчатого вала.

Во время предварения выпуска поршень опускается, и удалять из цилиндра отработавшие газы не может.

Однако в начале предварения выпуска давление в цилиндре значительно выше, чем в выпускном коллекторе.

Поэтому отработавшие газы за счет собственного избыточного давления с критическими скоростями выбрасываются из цилиндра. Истечение газов с такими большими скоростями сопровождается звуковым эффектом, для поглощения которого устанавливают глушители.

Критическая скорость истечения отработавших газов при температурах 800 -1200 К составляет 500-600 м/сек.

Рис. 1.7. Выпуск

При подходе поршня к НМТ давление и температура газа в цилиндре понижаются и скорость истечения отработавших газов падает.

Когда поршень подойдет к НМТ, давление в цилиндре понизится. При этом критическое истечение окончится и начнется основной выпуск.

Истечение газов во время основного выпуска происходит с меньшими скоростями, достигающими в конце выпуска 60-160 м/сек.

Таким образом, предварение выпуска менее продолжительно, скорости газов очень велики, а основной выпуск примерно в три раза продолжительнее, но газы в это время выводят из цилиндра с меньшими скоростями.

Поэтому количества газов, выходящих из цилиндра во время предварения выпуска и основного выпуска, примерно одинаковы.

По мере уменьшения частоты вращения двигателя уменьшаются все давления цикла, а следовательно, и давления в момент открытия выпускного отверстия. Поэтому при средних частотах вращения сокращается, а при некоторых режимах (при малых оборотах) совершенно пропадает истечение газов с критическими скоростями, характерными для предварения выпуска.

Температура газов в трубопроводе по углу поворота кривошипа меняется от максимальной в начале выпуска до минимальной в конце. Предварение открытия выпускного отверстия несколько уменьшает полезную площадь индикаторной диаграммы. Однако более позднее открытие этого отверстия вызовет задержку газов с высоким давлением в цилиндре и на их удаление при перемещении поршня придется затратить дополнительную работу.

Небольшая задержка закрытия выпускного отверстия создает возможность использования инерции выпускных газов, ранее вышедших из цилиндра, для лучшей очистки цилиндра от сгоревших газов. Несмотря на это, часть продуктов сгорания неизбежно остается в головке цилиндра, переходя от каждого данного цикла к последующему в виде остаточных газов. На индикаторной диаграмме четвертому такту соответствует линия zb.

Четвертым тактом заканчивается рабочий цикл. При дальнейшем движении поршня в той же последовательности повторяются все процессы цикла.

Только такт сгорания и расширения является рабочим, остальные три такта осуществляются за счет кинетической энергии вращающегося коленчатого вала с маховиком и работы других цилиндров.

Чем полнее будет очищен цилиндр от выпускных газов и чем больше поступит в него свежего заряда, тем больше, следовательно, можно будет получить полезной работы за цикл.

Для улучшения очистки и наполнения цилиндра выпускной клапан закрывается не в конце такта выпуска (ВМТ), а несколько позднее (при повороте коленчатого вала на 5-30° после ВМТ), т. е. в начале первого такта. По этой же причине и впускной клапан открывается с некоторым опережением (за 10-30° до ВМТ, т. е. в конце четвертого такта). Таким образом, в конце четвертого такта в течение некоторого периода могут быть открыты оба клапана. Такое положение клапанов называется перекрытием клапанов. Оно способствует улучшению наполнения в результате эжектирующего действия потока газов в выпускном трубопроводе.

Из рассмотрения четырехтактного цикла работы следует, что четырехтактный двигатель только половину времени, затраченного на цикл, работает как тепловой двигатель (такты сжатия и расширения). Вторую половину времени (такты впуска и выпуска) двигатель работает как воздушный насос.

1.2 Рабочий цикл двухтактного ДВС

Более полно время, отводимое на рабочий цикл, используется в двухтактных двигателях, в которых рабочий цикл совершается за два такта, т. е. за один оборот коленчатого вала. В отличие от четырехтактных двигателей, в двухтактных очистка рабочего цилиндра от продуктов сгорания и наполнение его свежим зарядом, или, другими словами, процесс газообмена, происходят только при движении поршня вблизи НМТ. При этом очистка цилиндра от выпускных газов осуществляется путем вытеснения их не поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью. Предварительное сжатие воздуха или смеси производится в специальном продувочном насосе или компрессоре, исполняемом в виде отдельного агрегата. В небольших двигателях в качестве продувочного насоса иногда используются внутренняя полость картера (кривошипная камера) и поршень двигателя.

В процессе газообмена в двухтактных двигателях некоторая часть воздуха или горючей смеси неизбежно удаляется из цилиндра вместе с выпускными газами через выпускные органы. Эта утечка воздуха или горючей смеси учитывается при выборе производительности продувочного насоса или компрессора.

В двухтактных двигателях применяются различные схемы газообмена.

Прямоточная клапанно-щелевая схема газообмена (рис. 1.8). Основными особенностями устройства двигателя этого типа являются: 1) впускные окна (1), расположенные в нижней части цилиндра, высота которых составляет около 10-20 % хода поршня. Открытие и закрытие впускных окон производится поршнем (3) при его движении в цилиндре;

2) выпускные клапаны (4), размещенные в крышке цилиндра, с приводом от распределительного вала, частота вращения которого обеспечивает открытие клапанов один раз за один оборот коленчатого вала;

Рис. 1.8. Прямоточная клапанно-щелевая схема газообмена

Рис 1.9. Петлевая схема газообмена

3) продувочный насос нагнетает воздух под давлением через открытые окна (1) для очистки цилиндра от продуктов сгорания и наполнения свежим зарядом.

Петлевая схема газообмена (рис. 1.9) значительно упрощает конструкцию двигателя по сравнению с клапанно-щелевой, но при этом ухудшается качество газообмена и возникают потери воздуха или смеси при наполнении.

Петлевая схема газообмена отличается большим разнообразием конструктивного выполнения и широко применяется в двигателях различного назначения (от маломощных для мопедов до крупных, мощностью в несколько десятков тысяч киловатт для судов).

Прямоточная схема газообмена с противоположно движущимися поршнями (рис. 1.10), в которой один поршень (3) управляет впускными окнами, а другой - выпускными, обеспечивает высокое качество газообмена.

Рис 1.10. Прямоточная схема газообмена

Для предварительного сжатия горючей смеси или воздуха, как было указано выше, в двухтактных двигателях может быть использована внутренняя полость картера (кривошипная камера).

Такие двигатели называютсядвигателями с кривошипно-камерной схемой газообмена (рис. 1.11). Они имеют герметически закрытый картер, который и служит продувочным насосом.

При движении поршня от НМТ к ВМТ объем пространства под ним увеличивается и давление падает ниже атмосферного, т. е. в кривошипной камере создается разрежение.

Вследствие этого наружный воздух устремляется в картер через автоматически действующий впускной клапан. При обратном движении поршня до момента открытия впускных окон происходит сжатие свежего заряда в кривошипной камере. После открытия впускных окон сжатый свежий заряд вытесняется из камеры в цилиндр.

Рис. 1.11 Кривошипно-камерная схема газообмена

Преимущество двухтактных двигателей с кривошипно-камерной схемой газообмена - простота устройства. Однако при данном способе газообмена очистка цилиндра и наполнение его свежим зарядом по сравнению с другими способами происходят значительно хуже, в результате чего уменьшается мощность и ухудшается экономичность двигателя.

На рис. 1.12 и 1.13 показана схема работы двухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена.

Первый такт. Первый такт соответствует ходу поршня ВМТ к НМТ (рис. 1.12). В цилиндре только что прошло сгорание (линия cz на индикаторной диаграмме) и начался процесс расширения газов, т. е. осуществляется рабочий ход. Несколько раньше момента прихода поршня к впускным окнам открываются выпускной клапан в крышке цилиндра, и продукты сгорания начинают вытекать из цилиндра в выпускной патрубок; при этом давление в цилиндре резко падает (участок тk на индикаторной диаграмме).

Рис 1.12. Первый такт двухтактного ДВС

Впускные окна открываются поршнем, когда давление в цилиндре становится примерно равным давлению предварительно сжатого воздуха в ресивере или немного выше его. Воздух, поступая в цилиндр через впускные окна, вытесняет через выпускные клапаны оставшиеся в цилиндре продукты сгорания и заполняет цилиндр (продувка), т. е. осуществляется газообмен. Таким образом, в течение первого такта в цилиндре происходит сгорание топлива, расширение газов, выпуск выпускных газов, продувка и наполнение цилиндра.

Второй такт. Второй такт соответствует ходу поршня от НМТ к ВМТ (рис. 1.13). В начале хода поршня продолжаются процессы удаления выпускных газов, продувки и наполнения цилиндра свежим зарядом. Конец продувки цилиндра определяется моментом закрытия впускных окон и выпускных клапанов. Последние закрываются или одновременно с впускными окнами, или несколько ранее.

Рис 1.13. Второй такт двухтактного ДВС

Давление в цилиндре к концу газообмена в двухтактных двигателях несколько выше атмосферного и зависит от давления воздуха в ресивере. С момента окончания газообмена и полного перекрытия поршнем впускных окон начинается процесс сжатия воздуха. Когда поршень не доходит на 10-30° по углу поворота коленчатого вала до ВМТ (точка с'), в цилиндр через форсунку начинает подаваться топливо. Следовательно, в течение второго такта в цилиндре происходит окончание выпуска, продувка и наполнение цилиндра в начале хода поршня и сжатие при его дальнейшем ходе.

В отличие от четырехтактного двигателя в двухтактном двигателе отсутствуют такты впуска и выпуска как самостоятельные такты, для которых требуется один оборот коленчатого вала. В двухтактных двигателях процессы выпуска и впуска осуществляются на небольших участках хода поршня, соответствующего основным тактам расширения и сжатия.

Из рассмотрения рабочего цикла двухтактного двигателя (индикаторная диаграмма на рис. 1.12) видно, что на части хода поршня, когда происходит газообмен, полезная работа не совершается. Объем , соответствующий этой части хода поршня, называется потерянным. Тогда объем, описываемый поршнем при движении от точки m, определяющей момент начала сжатия, до ВМТ и называемый действительным рабочим объемом, равен

.

С учетом сказанного действительная степень сжатия

.

Отношение потерянного объема к геометрическому рабочему объему Vh представляет собой долю потерянного объема на процесс газообмена

В двухтактных двигателях ? ? 10…38%.

Сравнение рабочих циклов четырех- и двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частотах вращения мощность двухтактного двигателя значительно больше. Учитывая увеличение числа рабочих циклов в 2 раза, следовало бы ожидать и увеличения мощности в 2 раза. В действительности мощность двухтактного двигателя увеличивается приблизительно в 1.5-1.7 раза вследствие потери части рабочего объема, ухудшения очистки и наполнения, а также затраты мощности на приведение в действие продувочного насоса. К преимуществам двухтактных двигателей следует также отнести большую равномерность крутящего момента, так как полный рабочий цикл осуществляется при каждом обороте коленчатого вала. Существенным недостатком двухтактного процесса по сравнению с четырехтактным является малое время, отводимое на процесс газообмена. Очистка цилиндра от продуктов сгорания и наполнение его свежим зарядом более совершенно происходят в четырехтактных двигателях. Кроме того, в двухтактном двигателе температурная нагрузка на поршень, крышки цилиндра и клапана выше, чем в четырехтактном.

При внешнем смесеобразовании в результате продувки цилиндра горючей смесью она частично выбрасывается через выпускные окна, поэтому двухтактный процесс применяется чаще в дизелях. Исключение составляют мотоциклетные, лодочные и другие двигатели небольшой мощности, для которых большее значение имеет простота и компактность конструкции, чем экономичность.

2. ТЕПЛОВОЙ РАСЧЕТ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Тепловой расчет служит не только базой теории ДВС, но и эффективным методом комплексного изучения сложных процессов, происходящих в цилиндре при превращении тепловой энергии в механическую. Это обстоятельство определяет важную роль теплового расчета в формировании инженеров, будущая работа которых связана с эксплуатацией силовых установок с ДВС.

Метод теплового расчета рабочего цикла позволяет учесть изменение физических свойств рабочего тела, влияние теплообмена между рабочим телом и окружающей средой в процессе реализации рабочего цикла. В результате выполнения теплового расчета определяются основные параметры газа в характерных точках индикаторной диаграммы, что в итоге позволяет оценить степень совершенства цикла и целесообразность изготовления опытного образца двигателя. Некоторые параметры рабочего тела (давление, температура) и характер их изменения могут служить в качестве исходных данных при расчете деталей двигателя на прочность. По количеству получаемой в цикле работы и значению объема газа в конце процесса расширения можно судить не только об экономичности, но и о габарите и массе двигателя, т. е. о показателях, оказывающих влияние на общую компоновку лесных машин.

2.1 Теоретические термодинамические циклы ДВС

Экономические и мощностные показатели двигателей внутреннего сгорания, работающих по разным циклам, трудно сравнить в реальных условиях. В этих условиях особенность протекания отдельного процесса рабочего цикла или деталь конструкции двигателя могут повлиять на конечные результаты сравнения. Поэтому основные показатели разных циклов на первом этапе рассматривают в теоретических условиях, когда каждый цикл осуществляется в наивыгоднейших условиях, в воображаемой тепловой машине. На втором этапе в теоретические зависимости (т. е. в условиях воображаемой тепловой машины) вводятся коэффициенты, учитывающие действительные условия.

В теоретических циклах введены следующие допущения:

1. В цикле используется в качестве рабочего тела идеальный газ, состав которого в цикле не изменяется.

2. Циклы считаются замкнутыми, происходящими при постоянном количестве идеального газа.

3. Теплоемкость газа в течение всего цикла постоянна, т. е. не зависит от температуры.

4. Сгорание топлива в цилиндре заменяется мгновенным подводом тепла, а выпуск - мгновенным отводом теплоты в холодный источник.

5. Процесс сжатия и расширения газа происходит без теплообмена с окружающей средой, и называются адиабатическими.

В соответствии с этими допущениями теоретический цикл представляет собой замкнутый цикл, осуществляемый в воображаемой тепловой машине постоянной несменяемой порцией рабочего тела. Вследствие замкнутости процессы сгорания и выпуска рабочего тела при действительном цикле заменяют подводом и отводом теплоты. Процессы сжатия и расширения предполагаются адиабатическими, т.к. это обеспечивает максимальное теплоиспользование.

Теоретические циклы имеют минимальное количество потерь, находящихся в строгом соответствии со вторым законом термодинамики. Существующие двигатели внутреннего сгорания работают по одному из трех циклов, имеющих свои характерные особенности.

Теоретический цикл двигателей с подводом теплоты при постоянном объеме

Автомобильные карбюраторные двигатели, а также двигатели газогенераторные, газобаллонные и с впрыском легкого топлива работают по циклу, в котором горючая смесь, вошедшая в цилиндр во время впуска, сжимается, поджигается искрой и быстро сгорает в момент нахождения поршня около ВМТ, т. е. при почти неизменяемом объеме.

Индикаторная диаграмма теоретического цикла показана на рис. 2.1.

Рис. 2.1. Индикаторная диаграмма теоретического цикла с подводом теплоты при постоянном объеме

Теоретический цикл с сообщением тепла при постоянном объеме осуществляется следующим образом. При движении поршня от НМТ (точка а диаграммы теоретического цикла) газ, заполняющий цилиндр, начинает сжиматься. Чтобы довести потери тепла до минимума, стенки цилиндра должны быть абсолютно нетеплопроводными, т. е. покрытыми идеальной тепловой изоляцией. В этом случае процесс сжатия (линия ас индикаторной диаграммы) будет адиабатическим, а внешняя механическая работа, затрачиваемая на сжатие, полностью пойдет на увеличение внутренней энергии сжимаемого газа.

Давление газа в цилиндре в конце процесса сжатия (точка с) равно:

,

где k - показатель адиабаты идеального газа.

Температура газа в цилиндре в конце процесса сжатия (точка с) равна:

.

В конце сжатия, с приходом поршня в ВМТ, происходит не процесс сгорания, как в действительном цикле, а простое мгновенное сообщение теплоты Q1 рабочему телу; результатом этого будет повышение его температуры и давления при постоянном объеме (изохоры сz). При положении поршня в ВМТ (точка z диаграммы) сообщение теплоты прекращается.

Степень повышения давления газа в цилиндре в конце процесса подвода теплоты

,

где Pz - давление газа в цилиндре в конце процесса подвода теплоты.

Температура газа в цилиндре в конце процесса подвода теплоты (точка z)

.

Затем газ адиабатически расширяется, его внутренняя энергия частично превращается во внешнюю механическую работу. В НМТ (точка b диаграмм) процесс расширения, графически изображенный адиабатой zb, заканчивается.

Давление газа в цилиндре в конце процесса расширения

.

Температура газа в цилиндре в конце процесса расширения

.

Для повторения цикла надо вернуть газ в начальное состояние, характеризуемое точкой a индикаторной диаграммы. Для этого необходимо охладить газ, заключенный в цилиндре, т. е. отнять теплоту, представляющую собой долю Q2 от ранее введенной теплоты Q1. Таким образом, даже при осуществлении теоретического цикла часть вводимой теплоты теряется и, следовательно, не может быть полного превращения теплоты в работу.

Степень преобразования теплоты в работу любого теоретического цикла оценивается термическим КПД, который представляет собой отношение теплоты, превращенной в полезную работу газов, к подведенной теплоте Q1.

В теоретическом цикле какие-либо дополнительные тепловые потери, за исключением количества теплоты Q2, отсутствуют.

Поэтому в полезную работу превращается разность количеств теплоты Q1 - Q2, тогда термический КПД можно выразить формулой:

В цикле с сообщением теплоты при постоянном объеме вводимое количество Q1 теплоты и отводимое Q2 пропорциональны его изохорной теплоемкости Сн и соответствующим разностям температур:

Термический КПД можно определять, подставив найденные значения температур:

Согласно уравнению термического КПД, экономичность цикла с подводом теплоты при постоянном объеме возрастает при увеличении степени сжатия и показателя адиабаты идеального газа.

Теоретический цикл двигателей с подводом теплоты при постоянном давлении

По этому циклу работают стационарные и судовые компрессорные двигатели с воспламенением от сжатия или компрессорные дизели.

В дизели в процессе впуска поступает воздух, давление и температура которого повышаются в процессе сжатия. Вследствие применения в дизелях высоких степеней сжатия (от 14 до 20) давление конца сжатия приближается к 3-4 МПа и соответствующая температура значительно превышает температуру самовоспламенения топлива. Топливо впрыскивается в конце сжатия через форсунку, мелко распыляется и, приходя в соприкосновение с сильно нагретым воздухом, начинает гореть.

В этих двигателях для обеспечения хорошего распыливания топлива используют сжатый воздух с давлением около 6 МПа, получаемый в специальных компрессорах, включенных в конструктивную схему двигателя. Насос подает топливо в форсунку, в которую из компрессора подводится сжатый воздух, и в нужный момент внутренняя полость форсунки сообщается с цилиндром, куда поступает смесь распыляющего воздуха и топлива.

Ввиду постепенной подачи топлива через форсунку нельзя получить резкого повышения давления при сгорании, как в цикле с сообщением теплоты при V = const, где все топливо перед сгоранием находится в цилиндре. В двигателях, работающих по циклу с подводом теплоты при P = const, топливо горит постепенно по мере его поступления в цилиндр, в результате чего процесс сгорания происходит при перемещающемся поршне, при почти постоянном давлении.

Диаграмма теоретического цикла с подводом тепла при постоянном давлении показана на рис. 2.2.

При движении поршня от НМТ (точка a диаграммы теоретического цикла) газ, заполняющий цилиндр, начинает сжиматься. В этом случае процесс сжатия (линия асиндикаторной диаграммы) будет адиабатическим. Давление и температура в конце этого процесса определяется так же, как и при термодинамическом цикле с подводом теплоты при постоянном давлении.

В конце сжатия, с приходом поршня в ВМТ, происходит, как в ранее рассмотренном теоретическом цикле, мгновенное сообщение теплоты Q1 рабочему телу; результатом этого будет повышение его температуры при постоянном давлении (изобара сz).

Рис. 2.2. Индикаторная диаграмма теоретического цикла с подводом теплоты при постоянном давлении

При положении поршня, когда объем надпоршневого пространства равен VZ (точка z диаграммы), сообщение теплоты прекращается.

Степень предварительного расширения газа в цилиндре в конце процесса подвода теплоты:

.

Тогда температура газа в цилиндре в конце процесса подвода теплоты (точка z)

.

Затем газ адиабатически расширяется (линия zb диаграммы).

Давление газа в цилиндре в конце процесса расширения

.

Температура газа в цилиндре в конце процесса расширения

.

Для повторения цикла необходимо охладить газ, заключенный в цилиндре, т. е. отнять теплоту Q2 от введенной теплоты Q1 при постоянном объеме Va.

Термический КПД выражается формулой:

.

В цикле с сообщением теплоты при постоянном объеме вводимое количество Q1 теплоты пропорционально его изобарной теплоемкости СP, а отводимое Q2пропорционально его изохорной теплоемкости Сн и соответствующим разностям температур:

Термический КПД можно определять подставив значения температур с учетом того, что:

Двигатели этого типа в качестве транспортных не использовались вследствие громоздкости установки, снабженной компрессором, имевшим две или три ступени давления. Поэтому данный цикл в дальнейшем рассматриваться не будет.

Теоретический цикл двигателей с подводом тепла при постоянном объеме и постоянном давлении (смешанный цикл)

Тракторные и автомобильные двигатели работают по смешанному циклу на дизельном топливе. Для самовоспламенения впрыскиваемого топлива степень сжатия должна быть не ниже 14.

Индикаторная диаграмма теоретического цикла представлена на рис. 2.3.

В теоретическом цикле кривая ас диаграммы изображает адиабатическое сжатие рабочего тела, заключенного в цилиндре, сz и zz' - сообщение теплоты, z'b - адиабатическое расширение и ba - отдачу части сообщенной теплоты холодному источнику в соответствии со вторым законом термодинамики.

Рис. 2.3. Индикаторная диаграмма смешанного теоретического цикла

Значения температуры и давления в конце процесса сжатия аналогичны предшествующим формулам:

; .

Максимальное давление смешанного цикла:

.

Температура в ВМТ равна:

.

Температура в конце процесса подвода теплоты равна:

.

Давление в конце адиабатного расширения равно:

.

Температура в конце адиабатного расширения определяется формулой:

Термический КПД теоретического цикла можно определить по разности количества теплоты: Q1' + Q1'', введенных соответственно при V = const (по изохоре сz) и при р = const (по изобаре zz') и Q2, отданного холодному источнику при V = const (по изохоре ba):

.

Теплота, сообщаемая соответственно по изохоре и изобаре, и отводимая теплота равны

Подставляя Q1', Q1'' и Q2 в уравнение, определяющее термический КПД смешанного цикла, заменяя все температуры через температуру начала сжатия , аналогично предшествующим выводам и учитывая, что

,

получаем

Это уравнение позволяет утверждать, что использование тепла в смешанном цикле зависит от степени сжатия, предварительного расширения и повышения давления, а также показателя адиабаты.

В смешанном цикле повышение степени сжатия улучшает экономические и мощностные показатели. Однако по мере увеличения степени сжатия прирост использования теплоты постепенно замедляется и после значений степени сжатия 10-12 становится малоощутимым. В дизельных двигателях значении степени сжатия больше 15 объясняются желанием облегчить пуск холодных двигателей. При повышении степени сжатия растет температура конца сжатия, что обеспечивает самовоспламенение топлива даже при низких температурах стенок цилиндра и засасываемого воздуха.

2.2 Действительные циклы ДВС

Действительный (рабочий) цикл, осуществляемый в реальном двигателе внутреннего сгорания, представляет собой разомкнутый цикл. Для изучения действительного (рабочего) цикла нужно рассмотреть весь комплекс сложных процессов, связанных с превращением термохимической энергии топлива в механическую работу в реальном двигателе. Исходными для изучения действительного (рабочего) цикла являются материалы, полученные в основном путем лабораторных испытаний двигателей внутреннего сгорания.

Рабочие тела и их свойства

В поршневых двигателях внутреннего сгорания рабочее тело состоит из окислителя, топлива и продуктов его сгорания. Окислителем для большинства двигателей служит атмосферный воздух, содержащий 21 % (по объему) кислорода и 79 % инертных газов, в основном азота. При реализации цикла рабочее тело претерпевает физические и химические изменения. В зависимости от типа двигателя, в период впуска в цилиндр поступает либо воздух, либо горючая смесь, состоящая из газообразного или жидкого топлива и воздуха. Воздух или горючую смесь, поступающие в цилиндр и остающиеся в нем к моменту начала сжатия, называют свежим зарядом. В процессе сжатия в цилиндре находится смесь свежего заряда с остаточными газами, которая называется рабочей. В процессе расширения и выпуска рабочим телом являются продукты сгорания топлива.

При расчете рабочего цикла двигателя необходимо знать низшую теплоту сгорания топлива, которая зависит от композиционного состава топлива и количественного соотношения элементов, составляющих его горючую часть. Подвод теплоты к рабочему телу в действительном цикле осуществляется в результате сгорания топлива непосредственно в цилиндре двигателя, что предъявляет определенные требования к физическим и химическим свойствам топлива, которые приведены в таблице 2.1.

Таблица 2.1 Характеристики жидких топлив для двигателей внутреннего сгорания

Топливо

Элементарный состав (средний) 1 кг топлива, кг

Молекулярная масса, mT,

Кг/кмоль

Низшая теплота сгорания, hu,

MДж/кг

С

Н

Автомобильные бензины

Дизельное

0.855

0.870

0.145

0.126

-

0.004

110-120

180-200

44

42.5

Сгорание топлива в цилиндрах двигателя протекает согласно следующим реакциям:

; .

Количество кислорода, необходимое для полного сгорания топлива, можно подсчитать следующим образом:

Для топлива, имеющего состав по весу:

весовое количество кислорода, необходимое для полного сгорания 1 кг топлива, составит:

, или

или, исчисляя в кмоль,

.

При расчете состав сухого атмосферного воздуха принимают равным: в % по весу О - 23, N - 77, а в % по объему О - 21, N - 79.

Тогда теоретически необходимое количество сухого атмосферного воздуха для полного сгорания 1 кг жидкого топлива может быть определено по следующим формулам:

В весовом выражении

В молярном выражении

.

Связь между l0 и L0 имеет вид:

.

Сгорание топлива в двигателе обычно происходит при некотором недостатке или некотором избытке воздуха по сравнению с теоретически необходимым количеством.

Отношение количества воздуха L (l) в горючей смеси к количеству воздуха L0 (l0), которое необходимо для полного сгорания топлива, называется коэффициентом избытка воздуха:

При работе двигателя состав горючей смееи изменяется. Горючую смесь принято называть нормальной, если б = 1, бедной, если б > 1 и богатой, если б < 1.

Коэффициент избытка воздуха находится в следующих пределах: для карбюраторных двигателей б = 0.8-1.3, для дизельных - б = 1.2 - 5.

Количество свежего заряда, приходящегося на 1 кг топлива, составляет:

для карбюраторного двигателя

[кг воздуха / кг топл.]

или

[кмоль воздуха / кг топл.],

где тТ - молекулярная масса топлива.

Для дизельного двигателя

[кг воздуха / кг топл.]

или

[кмоль воздуха / кг топл.].

Молекулярная масса автомобильного бензина тТ =114. Поэтому величиной обычно пренебрегают.

В конце сжатия перед сгоранием цилиндр двигателя заполнен рабочей смесью, количество которой равно:

,

где Мr - количество кмолей остаточных газов.

Отношение количества остаточных газов к действительному количеству свежего заряда называется коэффициентом остаточных газов:

.

Подставив выражение в выражение для Ма, получим:

.

Процесс сгорания сопровождается тепловыми потерями. Часть тепла в процессе сгорания передается в охлаждающую среду через стенки цилиндра. Часть топлива проникает в картер через неплотности поршневых колец. Из-за недостатка времени и несовершенства смесеобразования часть топлива не успевает сгореть и догорает во время расширения. В то же время под влиянием высоких температур происходит расщепление молекул Н2О и CO2 продуктов сгорания, расщеплению сопутствует поглощение тепла.

Коэффициентом использования тепла называется часть теплотворной способности топлива, которая действительно используется для повышения энергии газов при сгорании:

,

где: hu - низшая теплотворная способность топлива;

Д Q - потери тепла в процессе сгорания.

Коэффициент использования тепла всегда меньше единицы. Он тем выше, чем совершеннее смесеобразование, выше скорость распространения пламени, короче промежуток времени, затрачиваемый на сгорание.

Коэффициент использования тепла, в зависимости от режима работы двигателя, изменяется в карбюраторных двигателях в пределах 0.85-0.95, в дизельных от 0.7 до 0.9.

При полном сгорании жидкого топлива, когда б? 1, образуются следующие основные продукты сгорания: CO2 и Н2О - продукты полного сгорания углерода и водорода, содержащихся в топливе, N2 - азот воздуха и O2 - свободный кислород воздуха.

Суммарное количество продуктов сгорания 1 кг топлива равно:

.

Подставив в правую часть уравнения значения слагаемых:

получим:

В процессе сгорания происходит увеличение количества кмоль газов.

.

Это увеличение зависит от состава топлива и коэффициента избытка воздуха.

Для карбюраторных ДВС

Для дизельных ДВС

Отношение количества кмоль продуктов сгорания М2 к количеству кмоль смеси до сгорания М1 называется коэффициентом молекулярного изменения.

В зависимости от того, учитывается ли при вычислении коэффициента молекулярного изменения количество остаточных газов или нет, различают коэффициент молекулярного изменения горючей смеси

и коэффициент молекулярного изменения рабочей смеси.

или .

Следовательно, у карбюраторных и дизельных двигателей коэффициент молекулярного изменения всегда больше единицы.

Увеличение количества кмолей газов при сгорании, оцениваемое коэффициентом молекулярного изменения, вызывает увеличение полезной работы при расширении продуктов сгорания в цилиндре, что повышает мощность двигателя. Следовательно, чем выше коэффициент молекулярного изменения, тем больше мощность, развиваемая двигателем.

Средняя мольная изохорная теплоемкость заряда в конце сжатия для карбюраторных и дизельных двигателях может быть определена по следующей формуле:

кДж/кмоль ·К.

Средняя молекулярная теплоемкость продуктов сгорания определяется по формуле (кДж/кмоль К):

процесс сгорания при V = const

;

процесс сгорания при p = const

.

Процесс впуска

Давление и температура остаточных газов в начале впуска зависит главным образом от проходного сечения и коэффициента сопротивления выпускной системы, а также от числа оборотов двигателя. С увеличением числа оборотов давление остаточных газов возрастает. Это объясняется тем, что с увеличением оборотов продолжительность процесса выпуска сокращается, а скорость газов в выпускной системе увеличивается. С увеличением сопротивления выпускной системы давление остаточных газов возрастает, наполнение цилиндров ухудшается и мощность двигателя понижается.


Подобные документы

  • Двигатели внутреннего сгорания (ДВС) широко применяются во всех областях народного хозяйства и являются практически единственным источником энергии в автомобилях. Расчет рабочего цикла, динамики, деталей и систем двигателей внутреннего сгорания.

    курсовая работа [2,5 M], добавлен 07.03.2008

  • Классификация судовых двигателей внутреннего сгорания, их маркировка. Обобщённый идеальный цикл поршневых двигателей и термодинамический коэффициент различных циклов. Термохимия процесса сгорания. Кинематика и динамика кривошипно-шатунного механизма.

    учебное пособие [2,3 M], добавлен 21.11.2012

  • Техническая характеристика двигателя внутреннего сгорания. Тепловой расчет рабочего цикла и свойства рабочего тела. Процессы выпуска, сжатия, сгорания, расширения и проверка точности выбора температуры остаточных газов, построение индикаторной диаграммы.

    курсовая работа [874,5 K], добавлен 09.09.2011

  • История создания универсального парового двигателя. Понятие коэффициента полезного действия. Паровая машина Уатта. Принцип работы двухтактного двигателя внутреннего сгорания. Такт сжатия и такт рабочего хода. Рабочие циклы двухтактных двигателей.

    презентация [985,6 K], добавлен 15.12.2014

  • Классификация, особенности конструкции и эксплуатационные свойства двигателей внутреннего сгорания, их обслуживание и ремонт. Принцип работы четырехцилиндровых и одноцилиндровых бензиновых двигателей в современных автомобилях малого и среднего класса.

    курсовая работа [39,9 K], добавлен 28.11.2014

  • Принципы работы двигателей внутреннего сгорания. Классификация видов авиационных двигателей. Строение винтомоторных двигателей. Звездообразные четырехтактные двигатели. Классификация поршневых двигателей. Конструкция ракетно-прямоточного двигателя.

    реферат [2,6 M], добавлен 30.12.2011

  • Двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. История создания и развитие ДВС, строение и разновидности, принцип работы двигателей.

    творческая работа [925,7 K], добавлен 06.03.2008

  • Принцип действия двигателей внутреннего сгорания. Мощность механических потерь. Удельный индикаторный расход топлива. Подача воздушной смеси с помощью дросселя. Перспективы развития двигателестроения. Механические потери в современных двигателях.

    реферат [2,4 M], добавлен 29.01.2012

  • Особенности принципа действия (рабочего цикла) и устройства газотурбинного двигателя, его преимущества и недостатки по сравнению с поршневым двигателем внутреннего сгорания. Перспективы применения газотурбинных двигателей на автомобильном транспорте.

    курсовая работа [680,0 K], добавлен 03.03.2016

  • Общая характеристика судовых двигателей внутреннего сгорания, описание конструкции и технические данные двигателя L21/31. Расчет рабочего цикла и процесса газообмена, особенности системы наддува. Детальное изучение топливной аппаратуры судовых двигателей.

    курсовая работа [2,9 M], добавлен 26.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.