Строительные машины и оборудование
Классификация систем автоматики для контроля, регулирования и управления строительных машин и оборудования. Общая характеристика рабочего процесса и классификация машин для земляных работ. Характеристика и назначение системы автоматического регулирования.
Рубрика | Транспорт |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.12.2015 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Классификация систем автоматики
Автоматические системы, используемые в строительных машинах и оборудовании для контроля, регулирования и управления, можно классифицировать по ряду признаков.
По характеру алгоритма управления различают системы по разомкнутому и замкнутому (с обратной связью) циклам, а также комбинированные системы. В первом случае в системе отсутствует обратная связь и управление является жестким. В такой системе (рис. 10.2, а) задающий сигнал X поступает в управляющее устройство УУ, из которого сигнал управляющего воздействия УВ направляется к объекту управления ОУ для получения выходных координат Y с учетом возможного воздействия сторонних помех F. При управлении по замкнутому циклу (рис. 10.2, б) в случае отклонения выходного параметра от заданного значения сигнал возвращается объектом управления на управляющее устройство для корректировки. Такие системы работают с изменяемыми структурой и законом управления. Комбинированное управление (рис. 10.2, в) характеризуется наличием в системе обратной связи и резервного управляющего устройства, подключаемого параллельно первому через элемент сравнения (анализатор). Установленные на схемах знаки "плюс" и "минус" характеризуют положительные или отрицательные значения задающего воздействия.
Устройства обратной связи объединяют под понятием "регуляторы", которые различают как регуляторы прямого (использующие энергию объекта) и непрямого (требующие дополнительного электроснабжения -- усилителя) действия. В зависимости от числа каналов обратной связи различают одноконтурные и многоконтурные системы. В последних всегда более одной замкнутой цепи воздействия.
По характеру применяемых сигналов различают непрерывные и дискретные (импульсные, релейные) системы.
По характеру изменения сигналов задатчика системы делят на стабилизирующие, программного управления и следящие. В стабилизирующих системах по поступающим постоянным сигналам выходные параметры поддерживаются практически с постоянными значениями (например, стабилизация температуры двигателя). В системах программного управления сигналы из задающего устройства меняются по заранее установленным законам и выходные параметры также изменяются во времени и пространстве. В следящих системах значения заранее неизвестны и из блока задающего устройства поступают случайно изменяющиеся сигналы, измеряемые соответствующими датчиками. Эти системы, в свою очередь, делятся на автономные, копирные и комбинированные.
По количеству выходных параметров различают одномерные и многомерные системы.
По расположению измерительных и сигнальных устройств относительно управляемого объекта и по его расположению относительно пульта автоматические контроль и управление разделяют на местные и дистанционные. Местный контроль и управление наибольшее распространение получили в передвижных, в том числе в строительных машинах. Дистанционный контроль и управление используют при одновременной работе с несколькими машинами или для приближения его к месту выполнения технологических операций рабочим органом машины. При этом значительно увеличивается роль каналов связи, осуществляющих передачу сигналов на расстояние. В качестве каналов связи используются механические, гидравлические, пневматические, электрические и комбинированные (смешанные) передачи.
Для лучшего усвоения материала рассмотрим блок-схемы основных автоматических систем, используемых для контроля, управления и регулирования. Системы автоматического контроля (САК) работают по разомкнутому циклу и могут быть как прямого, так и непрямого действия.
Рис. 1. Блок-схемы САК
В блок-схеме системы автоматического контроля непрямого действия (рис. 1, а) контролируемая величина с объекта О, осуществляющего производственный процесс, подается на датчик Д, передающий сигнал а дальше на усилитель У, от которого сигнал аг поступает на измерительный преобразователь ИП. При использовании в качестве конечного элемента сигнального преобразователя (рис. 1, б) система автоматического контроля усложняется. В этом случае контролируемая величина a объекта О также подается на датчик Д. Однако в дальнейшем сигнал а1 от датчика поступает в сравнивающее устройство (анализатор) А. В анализаторе происходит сравнение сигнала а1 с сигналом а2, который должен быть равен сигналу а в соответствии с заданным значением величины а. При несовпадении сигналов а1 и а2 анализатор посылает сигнал Д а об отклонении контролируемой величины а от заданного параметра. После прохождения усилителя. У сигнал Д а1 поступает на сигнальный преобразователь СП. В отличие от рассмотренных схем автоматического контроля в системах прямого действия отсутствует усилитель.
По числу контролируемых величин различают единичный и множественный автоматический контроль, в одном из которых осуществляется контроль только одного параметра рабочего процесса и только в одном месте, а во втором -- контроль нескольких параметров или одного параметра в нескольких местах при выполнении определенного технологического процесса. Множественный контроль, в свою очередь, делится на параллельный, последовательный и смешанный, представляющий сочетание из двух основных. При параллельном контроле используется необходимое количество каналов, обеспечивающих контроль всех измеряемых параметров во всех местах их расположения. Последовательный контроль позволяет получить информацию от нескольких датчиков к одному сигнальному преобразователю или же датчик имеет возможность перемещаться поочередно к различным местам получения информации.
Системы автоматической защиты (САЗ) также работают по разомкнутому циклу и в большинстве случаев являются си стемами непрямого действия, так как для подачи звуковых и световых предупреждающих сигналов, а также для отключения энергоснабжения машины или отдельных ее узлов мощность сигнала, получаемого от датчика, недостаточна. В отличие от блок- схемы системы автоматического контроля здесь в конце цепи обычно используют реле или контактор, отключающие управляющие цепи привода объекта, а также применяют параллельное включение различных датчиков на один сигнальный прибор или устройство релейной защиты.
Системы автоматического управления (САУ) в основном работают по разомкнутому циклу, так как не получают информацию о действительном протекании технологического процесса, и практически всегда являются непрямого действия.
Рис. 2.Блок-схема САУ
В блок-схеме этого управления (рис. 2) задающий сигнал а поступает в управляющее устройство УУ, из которого сигнал а1 о необходимости управления объектом поступает в усилитель У. Усиленный сигнал а2 поступает в исполнительный орган ИО, оказывающий требуемое воздействие аз на объект управления ОУ.
Автоматическое управление бывает непрерывным и дискретным, по количеству управляемых объектов -- единичным и множественным, а также местным и дистанционным. Примером местного единичного управления является работа однозубого рыхлителя по заданной программе. Дистанционное множественное управление широко используется в асфальто- и цементо- бетонных установках и заводах. В основном это программное управление различными технологическими процессами.
Системы автоматического регулирования (САР) являются разновидностью автоматического управления и предназначены для сопоставления действительного значения параметров выполняемого процесса с заданным и с дальнейшим управлением объектом в зависимости от результатов сопоставления (т. е. управление с использованием информации о результатах управления).
В соответствии с этим система автоматического регулирования осуществляет не только управление объектом, но и одновременный контроль за его правильной работой. Следует также отметить, что в системах автоматического регулирования рассматривается совместная работа регулируемого объекта и регулирующих устройств.
К регулирующим устройствам относятся автоматические регуляторы, позволяющие без участия человека выдерживать заданные параметры с требуемой степенью точности. Так как автоматический регулятор воздействует на регулируемый объект, а регулируемые параметры воздействуют на регулятор, вызывая в нем требуемое управляющее воздействие, цепь воздействия оказывается замкнутой и система работает с обратной связью.
В соответствии с используемой, по характеру изменения сигналов задатчика, системой (стабилизирующая, программная, следящая) изменяется и состав автоматического регулятора. Однако в общем случае блок-схема практически не изменяется. Рассмотрим состав и работу блок-схемы системы автоматического регулирования для ее различных видов.
Рис. 3. Блок-схема САР
Блок-схема системы автоматического регулирования (рис. 3) включает в себя объект регулирования ОР и автоматический регулятор АР, все элементы которого расположены внутри прямоугольника, обозначенного на схеме пунктиром. Регулируемый параметр а поступает из объекта регулирования ОР на датчик Д, откуда сигнал а1 поступает в анализатор А, где сопоставляется с заданным значением регулируемого параметра а2. При значительном расхождении параметров а1 и а2 анализатор подает о полученной разнице сигнал Д а = с в усилитель У. Усиленный сигнал с1 поступает в исполнительный орган ИО, изменяющий рассогласованный сигнал и передающий отрегулированное воздействие с2 на объект регулирования ОР.
При различных видах систем автоматического регулирования в них вводятся дополнительные устройства.
В стабилизирующей САР вводится задатчик 3, подающий постоянный сигнал а2 (соответствующий такому сигналу а1, который появляется в датчике Д при соразмерности регулируемого параметра а заданному постоянному значению) в анализатор А.
В программной САР сигнал а2, изменяющийся по заданному закону во времени, подается в анализатор А также от за- датчика 3. Однако для перемещающихся во время работы машин, регулируемые параметры которых изменяются по заданной функции пути, сигнал задатчика связан с длиной пройденного пути, измеряемого дополнительным датчиком времени или пройденного пути Д2.
В следящей САР вместо задатчика используется дополнительный датчик Д1, измеряющий значение внешней переменной величины а2, в соответствии с которой регулируется параметр а.
Различают САР прямого и непрямого действия, непрерывные и дискретные, одно- и многоконтурные и т.д. Наряду с вышерассмотренными, в системе автоматического регулирования используется и самонастраивающая (адаптивная) система, определяющая путем автоматического поиска такое значение регулируемого параметра, которое обеспечивает наивыгоднейший режим работы регулируемого объекта при изменяющихся условиях его работы.
В качестве рабочих элементов в автоматических системах управления, регулирования, контроля и защиты используются датчики и устройства контроля и регулирования, усилители, микропроцессоры и исполнительные механизмы. [1].
2. Общая характеристика рабочего процесса. Классификация машин для земляных работ
Земляные работы являются составной частью строительства большинства инженерных сооружений. Они включают в себя: отрывку котлованов, траншей и мелиоративных каналов возведение насыпей, плотин; устройство закрытых проходок и грунте в виде шахт и тоннелей под различные подземные сооружения; бурение горизонтальных, наклонных и вертикальных скважин при бестраншейной прокладке трубопроводов под насыпями железных и шоссейных дорог, для установки свайных опор в плотных грунтах, для закладки зарядов взрывчатых веществ при разработке грунтов взрывом и т. п.
По характеру рабочего процесса, составу операций и последовательности их выполнения земляные сооружения делят на выемки и насыпи. Выемка образуется в результате удаления излишков грунта за ее пределы, а насыпь -- путем отсыпки грунта, внесенного извне, с его послойным уплотнением. Последняя операция обусловлена необходимостью восстановления плотного состояния грунта, в часы пик, которое было им утрачено при отделении от массива вследствие разрыхления. Удаленный из выемок грунт укладывают в отвалы, а для отсыпки насыпей его доставляют из карьеров или резервов, расположенных вблизи сооружаемой насыпи. Если выемки чередуются с насыпями как, например, в дорожном строительстве, то извлекаемый из выемок грунт обычно используют для отсыпки насыпей.
Для каждой из перечисленных технологических схем производства земляных работ -- выемка-отвал, резерв насыпь -- характерны отделения грунта от пассива, его перемещения и отсыпки. При возведении насыпей добавляется операция уплотнения грунта, а обшей для насыпей и выемок является планировочная операция, которой эти инженерные сооружения доводятся до проектных размеров При планировке срезаются выступы и засыпаются впадины подобно разработке резервов и отсыпке насыпей, но только в размерах микрорельефа планируемой поверхности. Туже структуру рабочего процесса имеет разработка карьеров строительных материалов (песка, гравия и т.п.), а также добыча полезных ископаемых открытым способом. Отличие заключается в том, что ни выемка (забой), ни отвал не являются инженерными сооружениями, а планировку дна карьера (подошвы забоя) выполняют лишь для удобства передвижения по нему машин и подготовки устойчивого основания для их работы.
Отделение грунта от массива (разрушение) является основной операцией процесса его разработки. Наибольшее распространение в строительстве (около 85% от общего объема земляных работ) получил механический способ разрушения грунтов, при котором грунт отделяется от массива вследствие контактного силового воздействия на него землеройного рабочего органа. Энергоемкость этого способа составляет 0,05-0,6 кВт х ч/м Прочные грунты и горные породы разрушают взрывом с использованием взрывчатых веществ, которые закладывают в специально пробуренные скважины. Этот способ наиболее дорогой, но позволяет существенно сократить сроки производства работ. Около 12% грунтов разрабатывают гидромеханическим способом путем отделения грунта от массива струей воды под высоким давлением или в сочетании с механическим способом. Энергоемкость процесса составляет 0,15-2 кВт х ч/м3.
Рабочие органы машин, предназначенные только для отделения грунта от массива механическим способом, используют лишь в случае разработки весьма прочных грунтов на стадии их предварительно от разрыхления. Большей частью рабочие органы также перемешают и отсыпают грунт в отвалы, насыпи или транспортные средства, выполняя эти операции после отделения грунта от массива и его захвата или совмещая полностью или частично перечисленные операции во времени. Грунт может перемещаться к месту отсыпки только за счет движений рабочего органа или за счет перемещения всей машины. В конструкциях землеройных машин непрерывного действия завершающую стадию транспортирования грунта выполняет специальный транспортирующий орган, например, типа ленточного конвейера. Отсыпают грунт путем освобождения от него рабочего или транспортирующего органа в конце транспортной операции. В случае гидромеханический разработки грунт переносится к месту намыва в потоке воды, а при взрывном способе он отбрасывается в стороны расширяющимися газами, образующимися вследствие взрыва.
Грубую планировку земляных поверхностей выполняют теми же землеройными рабочими органами путем более четкой координации их движения, а для точной планировки применяют специальные рабочие органы или машины. Уплотнение грунта заключается в компактной укладке его частиц, вследствие чего уменьшается объем грунта и увеличивается его плотность. Для этого применяют специальные машины и оборудование. Частично грунт может уплотняться также перемещающимися по его поверхности транспортными устройствами.
В общем комплексе работ на строительном объекте земляные работы чаще всего выполняют раньше других. В этой случае им предшествует подготовка строительной площадки -- удаление камней, срезка кустарника, корчевка пней, планировка и засыпка ям и т.п. Большую часть этих работ выполняют землеройными машинами, оборудованными специальными рабочими органами. В связи с этим машины для подготовительных работ осматривают вместе с машинами для земляных работ. К подготовительным работам также относят предшествующее разработке рыхление прочных и мерзлых грунтов
Машины для земляных работ классифицируют по назначению, режиму работы, степени подвижности и другим признакам.
Классификация по назначению условна, поскольку приводы, ходовые устройства и другие структурные элементы современных машин позволяют использовать одну и ту же их базовую часть для работы с различными видами сменного рабочего оборудования, нередко различного по назначению. Универсальность машин существенно расширяет область их применения, способствует их лучшему использованию по времени, особенно в условиях небольших объемов однотипных работ, выполняемых строительной организацией, более эффективной организации технического обслуживания. Универсальные машины классифицируют по основным видам выполняемых ими работ, определяемым по технико-эксплуатационным, экономическим и другим соображениям. Различают землеройные машины для отрывки и перемещения грунта в пределах зоны досягаемости рабочего оборудования (одно- и многоковшовые экскаваторы, землеройно- транспортные машины для послойной разработки грунта и перемещения его на большие расстояния (бульдозеры, скреперы, грейдеры, грейдер-элеваторы), машины для подготовительных работ, машины и оборудование для уплотнения грунтов, для бурения скважин, в том числе в прочных и мерзлых грунтах при их разрушении взрывом, оборудование для гидромеханической разработки, а также машины и оборудование для разработки грунтов в особых условиях. Машины для планировочных работ относятся к группе землеройно-транспортных машин и частично к экскаваторам (экскаваторы-планировщики),
По режиму работы рассматриваемые машины бывают цикличного и непрерывного действия. К последним относятся многоковшовые экскаваторы, некоторые виды землеройно- транспортных машин, оборудование для гидромеханической разработки грунтов, а также некоторые виды машин для работы в особых условиях. Остальные машины работают в цикличном режиме, выполняя операции рабочего цикла последовательно или с их частичным совмещением во времени.
По степени подвижности машины для земляных работ относятся большей частью к передвижным самоходным или прицепным, за исключением некоторых видов оборудования для уплотнения грунтов, бурения скважин под взрыв, оборудования гидромеханизации, а также некоторых машин и оборудования для работы в особых условиях. Эти машины длительное время работают на одной строительной площадке, они не имеют собственных ходовых устройств и по этим признакам относятся к полустационарным.
По другим признакам на машины для земляных работ распространяются положения, приведенные ранее в общей классификации строительных машин. [1].
3. Подбор типа молота для забивки свай подходящий по следующим параметрам
№ |
Размер сечения сваи, мм |
Длина сваи, м |
Масса сваи, т |
Нагрузка, кН |
Несущая способность, кН |
Масса наголовника, т |
Длительность погружения, мин |
|
6 |
250*250 |
5,0 |
0,80 |
165 |
200 |
0,2 |
7 |
1. Необходимую минимальную энергию удара молота Eh, кДж
где N -- расчетная нагрузка, передаваемая на сваю, кН.
Выбираю молот марки С268 с неподвижными штангами.
Принятый тип молота с расчетной энергией удара Ed Eh, кДж, удовлетворяет условию.
где К -- коэффициент применимости молота, значения которого приведены в табл. 1;
m1 -- масса молота, т;
т2 -- масса сваи с наголовником, т;
К=0,5 - для ж/б свай (по табл.1).
Таблица 1
Тип молота |
Коэффициент К, т/кДж, при материале свай |
|||
железобетон |
сталь |
дерево |
||
Трубчатые дизель-молоты и молоты двойного действия |
0,6 |
0,55 |
0,5 |
|
Молоты одиночного действия и штанговые дизель-молоты |
0,5 |
0,4 |
0,35 |
|
Подвесные молоты |
0,3 |
0,25 |
0,2 |
Значение необходимой энергии удара молота Eh, кДж, обеспечивающей погружение свай до проектной отметки без дополнительных мероприятий, следует определять по формуле
строительный земляной рабочий автоматический
где Fi -- несущая способность сваи в пределах i-го слоя грунта, кН (Fi=200кН);
Hi -- толщина i-го слоя грунта, м (Hi =5-0,4=4,6м);
B -- число ударов молота в единицу времени, ударов в 1 мин (В=55);
t -- время, затраченное на погружение сваи (без учета времени подъемно-транспортных операций) (t=7м);
Bt -- число ударов молота, необходимое для погружения сваи, принимаемое обычно равным не более 500 ударов (Bt =55*7=385);
n -- параметр, принимаемый равным п = 4,5 -- при штанговых дизель-молотах
т2 -- масса сваи, т (т2 =0,8т);
m4 -- масса ударной части молота, т (т4 =1,8т).
Условие Ed Eh выполняется, следовательно делаем вывод, что марка молота подходит.
Литература
1. Глаголев С. Н. Строительные машины, механизмы и оборудование: учебное пособие М.: Директ-Медиа, 2014 . - 396 с. [http://biblioclub.ru/index.php?page=book_view&book_id=235423]
2. О.А. Залипаева. Методические указания для самостоятельной работы студентов. Строительные машины и оборудование. Череповец: 2015.
Размещено на Allbest.ru
Подобные документы
Устройство, назначение и эксплуатационная производительность лебедок, подъемников, башенных, стреловых и мачтовых кранов. Общая характеристика класса машин для отделочных работ. Конструкция машин для устройства полов, штукатурных и окрасочных агрегатов.
реферат [1,8 M], добавлен 24.04.2014Расчет количества обслуживания и ремонта дорожно-строительных машин, трудоемкости работ, годовой производственной программы, рабочих мест и постов. Классификация парка машин по мобильности. Формы и методы технического обслуживания. Подбор оборудования.
курсовая работа [231,0 K], добавлен 12.03.2011Принципы устройства и технико-экономические показатели работы строительных машин, физическая сущность явлений, происходящих при их эксплуатации. Характеристика тракторов, кранов, экскаваторов, машин и оборудования для бурения и гидромеханизации.
учебное пособие [2,0 M], добавлен 06.11.2009Классификация и технические характеристики строительного транспорта: машин для подготовительных работ, землеройных и грузоподъемных механизмов, автогрейдеров. Результаты хронометража рабочего цикла экскаватора и бульдозера, их обслуживание и ремонт.
курсовая работа [2,1 M], добавлен 04.06.2011Машины, оборудование и транспортные средства в составе имущества предприятия. Учет основных средств. Особенности оценки отдельных видов машин, оборудования и автомобильных транспортных средств. Классификация автотранспортных средств для целей оценки.
реферат [37,6 K], добавлен 14.08.2010Изучение строения крана с поворотной башней. Назначение и виды установок пневматического транспорта. Описание цепных траншейных экскаваторов. Классификация машин и оборудования для приготовления бетонных и растворимых смесей. Расчет параметров лебедки.
контрольная работа [1,4 M], добавлен 25.01.2015Классификация строительных машин, их маневренность, скорость передвижения, проходимость, масса, надежность и долговечность. Основные элементы машин: силовая установка, трансмиссия, ходовая часть, система управления и двигатели внутреннего сгорания.
реферат [1,6 M], добавлен 21.03.2013Назначение и описание конструкции бульдозера. Расчет тягового баланса, элементов металлоконструкции рабочего оборудования и объемного гидропривода рабочего оборудования бульдозера. Техника безопасности и охрана труда при производстве земляных работ.
курсовая работа [1,5 M], добавлен 15.07.2013Классификация бульдозеров по назначение, тяговым показателям, этапы рабочего процесса. Устройство бульдозеров с поворотным и неповоротным отвалом. Особенности производства работ бульдозерами, скреперами, грейдерами, одноковшовыми экскаваторами.
методичка [2,6 M], добавлен 22.11.2009Особенности эксплуатации и организация технического облуживания и ремонта дорожно-строительных машин, оборудования и автотранспортных средств. Расчет производственной программы и численности рабочих. Подбор оборудования на участке диагностирования.
курсовая работа [118,7 K], добавлен 27.01.2011