Эффективное управление дорожным движением

Категории автомобильных дорог. Методы и модели транспортного моделирования. Анализ транспортной обстановки в Москве. Использование компьютерной симуляции. Взаимосвязь между параметрами транспортного потока. Стратегические решения по проспекту Андропова.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 06.11.2015
Размер файла 8,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Рост количество автомобилей, и как следствие увеличение их числа на дорогах крупных городов становиться все более и более важной проблемой на сегодняшний день. Большое скопление центров притяжения людских масс в центре большинства мегаполисов ведет к усложнению управления УДС и удорожанию ее содержания. Многие города мира не справляются с ежедневными транспортными вызовами и стоят в многокилометровых пробках день ото дня.

При этом, потребность населения в транспортном обеспечении продолжает расти. Следовательно, без должных мер ситуация движется к тупиковому финалу. УДС спроектированные под меньшую нагрузку не справляются и требуют модернизации и оптимизации. На сегодняшний день городу требуются не только хорошие, грамотно смоделированные, а затем построенные дороги, но и их качественное управление. Так же во многом, прежние способы управления дорожным движением устаревают, и не успевают за растущим городом, а разнонаправленность потоков требует динамического управления и интеграции инновационных систем для улучшения транспортной обстановки, и в частности в Москве. Вся система строительства УДС и ее управления нуждается в изменении посредствам новых технологий, в том числе и математического моделирования, позволяющего прогнозировать поведения УДС, вносить корректировки в ее конфигурацию и многое другое. Именно поэтому резко возрастает потребность в альтернативных, а также - в любых дополнительных источниках информации о состоянии дорожного движения. Уже сейчас внедряются новейшие комплексы и системы по сбору и обработке данных.

В первой главе приводится краткий анализ сложившейся транспортной ситуации в городе Москве, анализ получения и использования метрических данных автомобилей при помощи сервиса «Яндекс.Пробки», произведен анализ полезности таких данных и возможности их использования. В конце главы приведены теоретические сведения о дорогах, их классификации, а так же о том, что такое транспортные потоки и их основные характеристики, а так же произведена постановка задачи

Во второй главе произведен выбор «подопытного» участка УДС, рассмотрены его основные проблемы при помощи тепловой карты «Яндекс.Пробки», а так же исходя из постановки задачи, предложены меры по улучшению транспортной обстановки на данном участке УДС.

В третьей главе изложено подробное обоснование предлагаемых изменений при помощи компьютерного моделирования и сравнения двух моделей УДС, и их параметров. Создана компьютерная модель на основе реально выбранного участка, проанализированы проблемы и данные, после чего создана компьютерная модель с внесенными изменениями, предложенными во второй главе. Проведен сравнительный анализ данных двух моделей, позволяющий сделать вывод о том что внесенные изменения приведут к улучшению движения на данном участке.

Объектом исследования являются транспортные потоки на улично-дорожной сети городов.

Предметом исследования является возможность использования компьютерного моделирования для решения реальных практических задач.

Научная гипотеза состоит в предположении о возможности применения реальных данных в компьютерной модели, с дальнейшей ее (модели) модернизацией, и получения результатов улучшения, с высокой вероятностью являющихся достоверными и применимыми на практике

Целью исследования является рассмотрение одной из проблемных радикальных магистралей Москвы, создание ее компьютерной модели, сравнение поведения модели с картиной на практике, внесение улучшений и изменений в структуру УДС и дальнейшее моделирование измененной УДС, с целью подтверждения улучшения обстановки на данном участке.

Достоверность результатов проведенных в работе исследований обеспечивается экспериментальным подтверждением основной гипотезы, согласованностью результатов теоретических исследований, получаемых на основании анализа разработанных математических моделей для расчета основных параметров УДС, с результатами проведенных исследований.

1 Анализ текущего положения и постановка задачи

1.1 Обоснование актуальности проблемы

Ни для кого не секрет, что многие крупные мегаполисы мира испытывают огромные проблемы в транспортной сфере. Транспорт в мегаполисе играет огромную связующую роль, именно поэтому транспортная система мегаполиса должна быть сбалансированной, легко управляемой и быстро реагирующей на все изменения в трафике движения в городской черте. Фактически, мегаполис это городская агломерация с огромной концентрацией машин и людей, в которой автомобильный транспорт (личный и общественный) играет огромную роль, как и в перемещении самого населения, так и в общей логистике. Именно поэтому грамотное управление транспортной системой мегаполиса играет огромную роль в его деятельности.

С каждым днем растет потребность населения в транспортном обеспечении, как при помощи общественного транспорта, так и личных автомобилей. Логично предположить, что с увеличением количества транспорта в мегаполисе, должно пропорционально расти количество дорог, развязок и паркингов, однако развитие улично-дорожной транспортной сети (УДС) не успевает за темпами автомобилизации.

Напомним, что по данным статистики количество автомобилей на душу населения неуклонно растет (Рисунок 1.1).

автомобильный транспортный поток компьютерный

Рисунок 1.1 Количество автомобилей на 1000 человек в Москве

При этом УДС Москвы не готова к таким темпам роста автомобилизации в городе. Помимо личного транспорта в городе, должна быть решена проблема общественного транспорта и пассажироперевозок в Москве. По данным государственной транспортной программы всего 26% пассажиропотока приходиться личный транспорт и 74% на транспорт общественный. При этом, общий годовой объём перевозок в 2011 г. cоставил 7.35 млрд. пассажиров, и по прогнозам будет расти, и в 2016 году составит до 9.8 млрд. пассажиров в год. При этом планируется, что всего 20% от этого числа пассажиров будут использовать личный транспорт. При этом суммарно на личный и надземный общественный транспорт приходиться более половины пассажироперевозок в Москве[13]. Это означает, что решение проблем автомобильного транспорта в мегаполисе играет большую роль для его нормального функционирования и комфортного проживания его жителей. Эти данные означают что без принятия адекватных мер к улучшению транспортной обстановки в Москве наш ждет транспортный коллапс, который итак медленно назревает в Москве последние годы.

Так же стоить заметить, что помимо проблем связанных с внутригородским перемещением пассажиров, четко видна проблема транспортных потоков маятниковой трудовой миграции, и потока автотранспорта (в основном грузового) идущего сквозь город. И если проблема транзитного грузового транспорта частично решается, путем запрета на въезд и перемещение в дневное время в городской черте грузовиков грузоподъёмностью свыше 12 тонн, то проблема перемещения пассажиров из области в городскую черту гораздо более глубока и тяжела в своем решении.

Этому способствуют несколько факторов, прежде всего расположение центров притяжения людских масс в городской черте. В частности расположение огромного числа рабочих мест и офисов большого числа компаний, расположение большого числа объектов инфраструктуры, культуры и обслуживания (в частности торговых центров, однако тенденция к их строительству в городской черте неуклонно снижается в пользу их расположения за МКАДом). Все это приводит к тому, что огромные людские потоки ежедневно в утренний час пик перемещаются из области в городскую черту и в вечернее время назад, в область. Особенно остро эта проблема стоит в будние дни, когда огромное число людей в утренний час пик спешат на работу, а в вечерний домой. Все это приводит к колоссальной нагрузке для вылетных магистралей, используемых в эти часы огромным числом пассажиров, перемещающихся как общественным транспортом, так и личным. Кроме того, в летний период к ним добавляются дачники, каждые выходные создающие огромные заторы на магистралях в область, а по прошествии выходных из нее.

Все эти проблемы требуют незамедлительного решения, путем строительства новых дорог и развязок, переноса центров притяжения людских масс и оптимизации управления уже существующей структурой УДС. Все эти решения попросту не возможны без тщательного планирования и моделирования. Так как при помощи прикладных программ и средств моделирования мы можем увидеть, какого эффекта мы сможем добиться, приводя в жизнь те или иные решения, и выбирать наиболее подходящие исходя из их стоимостной оценки и положительного эффекта влияния на УДС.

1.2 Анализ текущей транспортной обстановки в Москве при помощи веб-сервиса Яндекс Пробки

Рассматривая более подробно проблемы, изложенные выше, мы должны обратиться к существующим телеметрическим системам сбора информации о транспортной обстановке в Москве, которая могла бы наглядно показать проблемные зоны нашего мегаполиса. Одной из наиболее продвинутых и полезных систем в этой области, зарекомендовавшей себя своей эффективностью является веб-сервис «Яндекс Пробки», доказавший свою эффективность и информативность.

Анализируя данные предоставляемые сервисом в открытом доступе, мы можем провести анализ данных и предоставить фактическое обоснование проблем изложенных выше. Таким образом, мы можем наглядно увидеть зоны с напряженной транспортной обстановкой, наглядно рассмотреть тенденции к образованию заторов и предложить решение проблемы путем выбора наиболее оптимальной математической модели для решения задачи моделирования конкретной проблемной области, с дальнейшим получением результатов на основании которых возможно сделать выводы о возможности улучшения транспортной обстановки в данном конкретном случае. Таким образом, мы можем совместить теоретическую модель и реальную проблему, предоставив ее решение.

1.2.1 Краткая справка о веб-сервисе «Яндекс пробки»

Яндекс пробки - веб-сервис, занимающийся сбором и обработкой информации о транспортной ситуации в Москве и других городах России и мира. Анализируя полученную информацию, сервис предоставляет информацию о транспортной обстановке (а для крупных городов еще и выставляет «балл» загруженности транспортной сети), позволяя автомобилистам правильно составить маршрут поездки и оценить предполагаемое время в пути. Так же сервис предоставляет краткосрочный прогноз о предполагаемой транспортной обстановке в конкретное время, в конкретный день недели. Таким образом, сервис частично участвует в оптимизации ТП, позволяя водителям выбирать маршруты объезда не охваченные затором.

1.2.2 Источники данных

Для наглядности представим, что мы с вами -- ДТП на Страстном бульваре перед Петровкой (небольшое и без жертв). Своим появлением мы перегородили, допустим, два ряда из существующих трех. Автомобилисты, которые двигались по нашим рядам, вынуждены объезжать нас, а водители, перемещавшиеся по третьему ряду, -- пропускать объезжающих. Некоторые из этих автомобилистов -- пользователи приложений Яндекс.Карты и Яндекс.Навигатор, и их мобильные устройства передают Яндекс.Пробкам данные о движении автомобиля. По мере приближения машин пользователей к нашему ДТП их скорость будет уменьшаться, и устройства начнут «сообщать» сервису о заторе.

Чтобы участвовать в сборе данных, автомобилисту необходим навигатор и мобильное приложение «Яндекс.Пробки». Например, если на дороге произойдет ДТП то какой-нибудь сознательный водитель, увидев наше ДТП, может предупредить о нём других автолюбителей, поставив соответствующую точку в мобильных Яндекс.Картах.

1.2.3 Технология обработки треков

GPS-приемники допускают погрешности при определении координат, что затрудняет построение трека. Погрешность может «сместить» автомобиль на несколько метров в любую сторону, например, на тротуар или крышу рядом стоящего здания. Координаты, поступающие от пользователей, попадают на электронную схему города, на которой очень точно отображены все здания, парки, улицы с дорожной разметкой и прочие городские объекты. Благодаря этой детализации программа понимает, как на самом деле двигался автомобиль. Например, в том или ином месте машина не могла выехать на встречную полосу или поворот был совершен по дорожной разметке, не «срезая» угол. (Рисунок 1.2)

Рисунок 1.2 Технология обработки треков

Следовательно, чем больше пользователей у сервиса, тем точнее информация о дорожной ситуации.

После объединения проверенных треков алгоритм анализирует их и выставляет «зеленые», «желтые» и «красные» оценки соответствующим участкам дорог.[16]

1.2.4 Объединение данных

Далее происходит агрегация -- процесс объединения информации. Каждые две минуты программа-агрегатор собирает, как мозаику, информацию, полученную от пользователей мобильных Яндекс.Карт в одну схему. Эта схема отрисовывается на слое «Пробки» (Рисунок 1.3) Яндекс.Карт -- и в мобильном приложении, и на веб-сервисе.

Рисунок 1.3 Отображение пробок в Яндекс.Картах

1.2.5 Шкала баллов

В Москве, Санкт-Петербурге и других крупных городах сервис Яндекс.Пробки оценивает ситуацию по 10-балльной шкале (где 0 баллов -- свободное движение, а 10 баллов -- город «стоит»). С помощью этой оценки водители могут быстро понять, сколько примерно времени они потеряют в пробках. Например, если средний балл по Киеву равен семи, то дорога займет приблизительно в два раза больше времени, чем при свободном движении.

Шкала баллов настроена по-разному для каждого из городов: то, что в Москве -- небольшое затруднение, в другом городе -- уже серьезная пробка. Например, в Санкт-Петербурге при шести баллах водитель потеряет примерно столько же времени, сколько в Москве уже при пяти. Баллы рассчитываются следующим образом. По улицам каждого города заранее составлены маршруты, включающие в себя основные шоссе и проспекты. Для каждого маршрута есть эталонное время, за которое его можно проехать по свободной дороге, не нарушая правил. После оценки общей загруженности города программа-агрегатор рассчитывает, на сколько отличается реальное время от эталонного. На основе разницы по всем маршрутам и вычисляется загруженность в баллах.[16] (Рисунок 1.4)

Рисунок 1.4 Обобщенная схема работы портала Яндекс.Пробки

1.3 Использование информации полученной при помощи веб-сервиса ЯндексПробки для нахождения проблемных зон в УДС

Обобщая полученную информацию, мы можем прийти к выводу о том, что сервис предоставляет весьма полезную информацию (как режиме онлайн, так и в режиме прогноза) о транспортной обстановке в Москве и других регионах, которую можно использовать в научных целях, в частности для идентификации проблемных зон, улиц и магистралей, прогнозировании заторов. Таким образом, мы можем выявить первичные проблемы как во всей УДС в целом, так и на отдельных ее участках, обосновать существование тех или иных транспортных проблем в УДС путем анализа информации полученной при помощи данного веб-сервиса. Исходя из данных первичной аналитики, мы можем построить первичную картину затруднений на УДС. Затем, используя уже средства моделирования и конкретные данные подтвердить или опровергнуть наличие той или иной проблемы, а затем попытаться построить математическую модель УДС с внесенными в нее изменениями (изменить фазы светофора, смоделировать новую развязку на проблемном участке и т.д.) и предложить вариант(ы) улучшения обстановке на заданном участке. После чего выбрать наиболее подходящее с точки зрения соотношения эффективности и стоимостной оценки решение.

1.4 Поиск и классификация проблем при помощи веб-сервиса Яндекс.Пробки

Данный веб-сервис можно рассматривать как один из методов улучшения управления дорожным движением (далее УДД) в Москве. На основе информации портала мы постараемся оценить проблемные зоны в УДС Москвы и предложить системные решения по улучшению УДД, а так же выявить тенденции к образованию заторов.

Рассматривая данные портала, мы должны провести суточную аналитику изменения загруженности дорог в Москве и выявить наиболее проблемные зоны. Наиболее подходящим для этих целей являются часы пик, когда нагрузка на УДС максимальна.

Рисунок 1.5 Средняя загруженность основных радиальных магистралей Москвы по часам в рабочие дни

Для подтверждения гипотезы о перегруженности УДС и наличия проблемы трудовой маятниковой миграции мы проведем анализ данных, как общего ген. плана Москвы с нанесенным «слоем» пробок, так и отдельных проблемных участков и рассмотрим динамику их движения.

Подавляющие большинство рабoчих мест в Москве начинает трудовую деятельность в 8-00 - 10-00 по Московскому времени, в соответствии с трудовым кодексом продолжительность рабочего дня при пятидневной рабочей неделе (самый распространенный вариант) составляет 8 часов, таким образом, мы можем предположить, что основная нагрузка на УДС, в соответствии с гипотезой о маятниковой трудовой миграции (МТМ) должны приходиться на отрезки времени, в утренние часы: с 6-00 (область - МКАД) и до 10-00 ( ближе к основным местам сосредоточения рабочих мест в Москве) и с 16-00 - 18-00 (центр) до 20-00 (радиальные магистрали на вылет) в вечерние.

Рисунок 1.6 В 6-00 затруднений на УДС не наблюдается

Рисунок 1.7 Наличие затруднений при подъезде к Москве

Исходя из аналитики, в 7-00 мы имеем затруднения на подъезде к городу на основных радикальных магистралях в центр.

Рисунок 1.8 Затруднения на юге Москвы

Рисунок 1.9 Затруднения на юго-западе

Похожая картина наблюдается на абсолютно всех без исключения радиальных магистралях столицы. Максимальный балл в утренние часы был достигнут в 9:56 по московскому времени, заторы к этому времени сместили из окраин города к его центру.

Рисунок 1.10 9-00 - 9-56 утренний пик нагрузки на УДС

Рисунок 1.11 ТТК в 16-00

Улучшение транспортной обстановки в целом наблюдалось до 15-40 по МСК., обстановка « в центр» ухудшений не имела до конца дня. Общая обстановка имела тенденции к началу ухудшений с 16-00, улучшение же обстановки начались примерно с 20-00 по МСК. (Приложение А). В выходные дни проблемы на УДС практически не наблюдаются, а по градации портала Яндекс.Пробки «балл» не превысил «3» за все время суточного наблюдения. Таким образом, мы с уверенностью можем констатировать перегруженность города вследствие сосредоточения центров притяжения людских масс (рабочих мест) в его центре, и значительно лучшую картину в выходные дни, когда проблема МТМ отсутствует.

Делая промежуточные выводы, мы можем с уверенностью сказать, что основным направлением работы должно стать сокращение числа центров притяжения людских масс в центре города и ограничение проезда в данную зону, а так же увеличение пропускной способности основных радиальных магистралей. Уже сейчас правительством Москвы делаются шаги в этом направлении, путем введения платной парковки в центре Москвы и введения пропускной системы въезда в центр города транспортных средств (далее ТС) общей массой свыше 3.5 тонн.

Рисунок 1.12 Зона платной парковки в Москве

Анализируя полученные мы можем сделать вывод о том, что дорожные затруднения имеют однонаправленный формат в будни дни и одинаковую динамику начала и конца (в утренние часы с области, постепенно смещаясь в центр города, и наоборот в вечерние - из центра по направлению в область.

Таким образом, рассматривая данную тенденцию, мы можем сделать вывод о том, что введение динамического управления УДС жизненно необходимо, поскольку загруженность дорог имеет однонаправленный характер. При помощи интеллектуальных систем мы можем менять пропускную способность дороги в том или ином направлении (например, с помощью полосы реверсивного движения «включая» её в сторону, имеющую недостаточную пропускную способность), изменять и подстраивать фазы светофоров для достижения максимальной пропускной способности на участках с затруднениями. Такие системы и способы получают все большее распространение (например, реверсивная полоса на Волгоградском проспекте). Вместе с тем, «слепо» увеличивать пропускную способность проблемных участком нельзя, поскольку мы можем просто отодвинуть затор до первого места с недостаточной пропускной способностью. То есть, решение транспортных проблем должно нести комплексный характер, а моделирование проблемных участков не должно происходить в отрыве от всей системы УДС и проводиться комплексно. Таким образом, одной из целей нашей работы должно стать моделирование и оптимизация одной из проблемных радиальных магистралей Москвы.

1.5 Теоретические сведения

1.5.1 Классификация дорог в России

Постановлением Правительства Российской Федерации от 28 сентября 2009 года N 767 утверждены Правила классификации автомобильных дорог в Российской Федерации и их отнесения к категориям автомобильных дорог.

Автомобильные дороги по условиям движения и доступа к ним разделяются на следующие классы:

· автомагистраль;

· скоростная автомобильная дорога;

· обычная автомобильная дорога (не скоростная автомобильная дорога).

1.5.2 Автомобильные дороги в зависимости от расчетной интенсивности движения

Согласно СНиП 2.05.02 - 85 по состоянию на 1 июля 2013 года подразделяются на следующие категории (таблица 2):

Таблица 2

Категория автомобильной дороги

Расчетная интенсивность движения, приведенных ед./сут.

IА (автомагистраль)

Св. 14000

IБ (скоростная дорога)

Св. 14000

Обычные дороги (нескоростные дороги)

Св. 14000

II

Св. 6000

III

Св. 2000 до 6000

IV

Св. 200 до 2000

V

До 200

1.5.3 Основные параметры ТП и их взаимосвязь

Транспортный поток (ТП) - это совокупность транспортных средств, одновременно участвующих в движении на определённом участке улично-дорожной сети

Основными параметрами транспортного потока являются:

скорость потока ?, интенсивность потока л, плотность потока с.

Скорость ? транспортного потока (ТП) принято измерять в км/ч или м/с. Наиболее часто применяют единицу измерения км/ч. Скорость потока измеряют в двух направлениях, а на многополосной дороге скорость измеряют в каждой полосе. Для измерения скорости потока на дороге проводят сечения. Сечение дороги представляет собой линию, перпендикулярную оси дороги, проходящую через все ее ширину. Скорость ТП измеряют на участке или в сечении.

Участок представляет собой отрезок дороги, заключенный между двумя сечениями. Расстояние L, м между сечениями выбирают таким образом, чтобы обеспечить приемлемую точность измерения скорости. Замеряют время t, с прохождения автомобилем участка - временной интервал. Измерения проводят для заданного числа n автомобилей и вычисляют средний временной интервал ?:

Вычисляют среднюю скорость на участке:

V = L / ?.

То есть, скорость транспортного потока является средней скоростью движущихся в нем автомобилей. Для измерения скорости ТП в сечении используют дистанционные измерители скорости (радар, лампа - фара) или специальные детекторы скорости. Замеряют скорости V для n автомобилей и вычисляют среднюю скорость на участке:

Используют следующие термины:

Средняя временная скорость V - средняя скорость движения автомобилей в сечении.

Средняя пространственная скорость ? - средняя скорость проезда автомобилями значительного участка дороги. Она характеризует среднюю скорость транспортного потока на участке в некоторое время суток.

Время поездки - время, требуемое автомобилю на прохождение единицы длины дороги.

Суммарный пробег - сумма всех путей автомобилей на участке дороги за заданный интервал времени.

Так же скорость движения можно подразделить на:

Мгновенную Va - скорость, фиксируемая в отдельных типичных сечениях (точках) дороги.

Максимальную Vм - наибольшая мгновенная скорость движения, которую может развить транспортное средство.

Интенсивность движения л, равна числу автомобилей, проходящих сечение дороги за единицу времени. При высоких интенсивностях движения использует более короткие интервалы времени.

Интенсивность движения измеряется путем подсчета числа n автомобилей, проходящих через сечение дороги за заданную единицу времени T, после чего вычисляют частное л = n/T.

Дополнительно используют следующие термины:

Объем движения - число автомобилей, пересекших сечение дороги в заданную единицу времени. Объем измеряется числом автомобилей.

Часовой объем движения - число автомобилей, прошедших через сечение дороги в течение часа.

Плотность с транспортного потока равна числу автомобилей, расположенных на участке дороги заданной длины. Обычно используются участки размером 1 км, получают плотность автомобилей на километр, иногда используют более короткие участки. Плотность обычно рассчитывают по скорости и интенсивности движения транспортного потока. Однако плотность можно измерить экспериментально, используя аэрофотосъемку, башни или высокие здания. Используют дополнительные параметры, характеризующие плотность транспортного потока.

Пространственный интервал или кратко интервал lп, м - расстояние между передними бамперами двух, следующих друг за другом, автомобилей.[9]

Средний пространственный интервал lп.ср - среднее значение интервалов lп на участке. Интервал lп.ср измеряют в метрах на один автомобиль.

Пространственный интервал l п.ср, м легко рассчитать, зная плотность с, авт./км потока:

1.5.4 Взаимосвязь между параметрами транспортного потока

Соотношение между скоростью, интенсивностью и плотностью потока называется основным уравнением транспортного потока:

V ?с

Основное уравнение связывает между собой три независимые переменные, являющиеся средними значениями параметров транспортного потока. Однако в реальных дорожных условиях переменные связаны между собой. При увеличении скорости транспортного потока интенсивность движения сначала возрастает, достигает максимума, а затем снижается (Рисунок 1.13). Снижение обусловлено увеличением интервалов lп между автомобилями и снижением плотности транспортного потока. При большой скорости автомобили быстро проходят участки, но расположены далеко друг от друга. Целью же управления движением является достижение максимальной интенсивности потока, а не скорости.

Рисунок 1.13 Взаимосвязь между интенсивностью, скоростью и плотностью ТП: а) зависимость интенсивности ТП от скорости; б) зависимость плотности ТП от скорости

1.6 Методы и модели транспортного моделирования

Математические модели, используемые для анализа транспортных сетей можно классифицировать, основываясь на функциональной роли моделей, то есть на тех задачах, в решении которых они применяются. Условно среди моделей можно выделить 3 класса:

· Прогнозные модели

· Имитационные модели

· Оптимизационные модели

Прогнозные модели используются тогда, когда известна геометрия и характеристики УДС и размещение потокообразующих объектов в городе, и требуется определить, какими будут транспортные потоки в этой сети. Детально, прогноз загрузки УДС включает в себя расчет средних показателей движения, таких как объемы межрайонных перемещений, интенсивность потока, распределение пассажиропотоков и т.д. При помощи таких моделей можно прогнозировать последствия изменений в транспортной сети.

В отличие от прогнозных моделей, имитационное моделирование имеет задачу смоделировать все детали движения, включая развитие процесса во времени.

Это отличие можно сформулировать очень просто, если прогнозное моделирование отвечает на вопросы «сколько и куда» будут перемещаться ТС в сети, а имитационные модели отвечают на вопрос о том, как детально будет происходить движение, если известно «сколько и куда». Таким образом, эти два направления транспортного моделирования являются взаимодополняющими. Из выше сказанного следует, что к классу имитационных моделей по их целям и выполняемым задачам можно отнести широкий спектр моделей, известных под названием модели динамики транспортного потока.

Для динамических моделей характерна детализация описания движения Область практического применения таких моделей - улучшение организации движения, оптимизация светофорных фаз и т.д.

Модели прогноза потоков и имитационные модели ставят основной целью приближенное к реальному воспроизведение поведения транспортных потоков. Так же существует большое количество моделей предназначенных для оптимизации функционирования транспортных сетей. В этом классе моделей решаются задачи оптимизации маршрутов пассажирских перевозок, выработки оптимальной конфигурации транспортной сети и т.д.

1.6.1 Динамические модели транспортного потока

Большинство динамических моделей транспортных потоков условно можно разделить на 3 класса:

· Макроскопические (гидродинамические модели)

· Кинетические (газодинамические модели)

· Микроскопические модели

Макроскопическими моделями называют модели описывающие движение автомобилей в усредненных терминах (плотность, средняя скорость и другие). В таких моделях транспортных поток подобен движению жидкости, поэтому такие модели называют гидродинамическими.

Микроскопическими моделями являются те модели, в которых явно моделируется движение каждого автомобиля.

Промежуточное место занимает кинетический подход, при котором транспортный поток описывается как плотность распределения автомобилей в фазовом пространстве. Особое место в классе микромоделей занимают модели типа клеточных автоматов, благодаря тому, что в данных моделях принято сильно упрощенное дискретное во времени и пространстве описание движение автомобилей, из-за этого достигается высокая вычислительная эффективность данных моделей.

1.6.2 Макроскопические модели

Первая из моделей основанная на гидродинамической аналогии.

Основным уравнением данной модели является уравнение непрерывности, выражающее «закон сохранения количества автомобилей» на дороге:

Формула 1

Где - плотность, V(x,t) - средняя скорость автомобилей в точке дороги с координатой x в момент времени t.

Предполагается, что средняя скорость является детерминированной (убывающей) функцией плотности:

Поставляя в (1) получаем следующее уравнение:

Формула 2

Это уравнение описывает распространение нелинейных кинематических волн со скоростью переноса

В реальности плотность автомобилей, как правило, не меняется скачками, а является непрерывной функцией координат и времени. Для устранения скачков в уравнение (2) был добавлен член второго порядка, описывающий диффузию плотности, который приводит к сглаживанию профиля волны:

Формула 3

Однако использование данной модели не адекватно реальности при описании неравновесных ситуаций, возникающих вблизи неоднородностей дороги (съезды и выезды, сужения), а также в условиях так называемого «stop-and-go» движения.

Для описания неравновесных ситуаций вместо детерминированного соотношения (3) было предложено использовать дифференциальное уравнение для моделирования динамики средней скорости.

Где

Недостатком модели Пейна является устойчивость к малым возмущениям при всех значениях плотности.

Тогда уравнение скорости при такой замене приобретает вид :

Для предотвращения разрывов в правую часть добавляется диффузионный член,, аналог вязкости в уравнениях гидродинамики

Неустойчивость стационарного однородного решения при значениях плотности, превышающих критическое, позволяет эффективно моделировать возникновение фантомных заторов - режимов stop-and-go в однородном потоке, возникающих в результате малых возмущений.

Описанные выше макроскопические модели сформулированы в основном на основе аналогий с уравнениями классической гидродинамики. Существует еще способ вывода макроскопических моделей из описания процесса взаимодействия автомобилей на микроуровне с использованием кинетического уравнения.

1.6.3 Кинетические модели

В отличие от гидродинамических моделей, сформулированных в терминах плотности и средней скорости потока, кинетические модели основаны на описании динамики фазовой плотности потока. Зная эволюцию во времени фазовой плотности, можно рассчитать также и макроскопические характеристики потока - плотность, среднюю скорость, вариацию скоростей и другие характеристики, которые определяются моментами фазовой плотности по скоростям различного порядка.

Обозначим фазовую плотность как f (x, v, t). Обычная (гидродинамическая) плотность с(x, t), средняя скорость V (x, t) и вариация скоростей И(x, t) связаны с моментами фазовой плотности соотношениями:

1) Дифференциальное уравнение, описывающее изменение фазовой плотности со временем, называется кинетическим уравнением. Впервые кинетическое уравнение для транспортного потока было сформулировано Пригожиным и соавторами в 1961 г. в следующем виде:

Формула 4

Данное уравнение является уравнением непрерывности, выражающим закон сохранения автомобилей, но теперь уже в фазовом пространстве.

Согласно Пригожину под взаимодействием двух автомобилей на дороге понимается событие, при котором более быстрый автомобиль догоняет более медленный движущийся впереди автомобиль. Вводятся следующие упрощающие предположения:

· возможность для обгона находится с некоторой вероятностью p, в результате обгона скорость обгоняющего автомобиля не меняется;

· скорость впереди идущего автомобиля в результате взаимодействия в любом случае не меняется;

· взаимодействие происходит в точке (размерами автомобилей и расстоянием между ними можно пренебречь);

· изменение скорости в результате взаимодействия происходит мгновенно;

· Рассматриваются только парные взаимодействия, одновременные взаимодействия трех и более автомобилей исключаются.

1.7 Постановка задачи

В ходе текущего исследования в качестве основной информации мы используем статические данные о заторах с помощью сервиса «Яндекс.Пробки». Анализируя полученную информацию, мы приходим к выводу о том, что УДС города Москвы не справляется с транспортным трафиком. Затруднения, выявляемые на стадии анализа полученных данных, позволяют, сделают вывод о том, что большинство затруднений на УДС имеют место быть исключительно в будни дни, и напрямую связаны с феноменом «МТМ» (маятниковой трудовой миграции), поскольку в ходе анализа затруднений в выходные и праздничные дни выявлено не было. Затруднения же в будни дни несут вид лавины, растекающейся из окраин города к его центру, и наличие обратного эффекта во второй половине дня, когда «лавина» идет от центра в область. В утренние часы затруднения начинают наблюдаться на окраинах Москвы, постепенно растекаясь в город. Так же стоит заметить, что «развязка» радиальных магистралей не приведет к желаемому эффекту, поскольку, как видно из анализа, «вход» в город сдерживает заторы на определенном временном интервале, благодаря чему центральная часть города еще какое-то время едет в оптимальном режиме. Затем, при наличии все тех же затруднений, заторы образуются в зоне «МКАД-ТТК», при этом заторы на входах продолжают увеличиваться. Такая тенденция имеет место быть все утреннее время. В тоже время противоположное направление движения полностью свободно. Из этого следует вывод о том, что система управления светофорным хозяйством и направлением движения должна быть динамической, изменяя свои параметры под текущую ситуацию на дороге.

Встает вопрос о рациональном использовании дорожного ресурса и реализации таких возможностей (изменение светофорных фаз, реверсивные полосы и др.).

При этом этим невозможно ограничиться, поскольку данный «глобальный затор» не имеет конечной точки. Данные действия должны быть притворены в жизнь только вкупе с ограничением въезда в Москву и центр, в частности для жителей Подмосковья. Поскольку, фактически исходя из анализа, все проблемы сводятся в МТМ потокам, они должны быть грамотно перераспределены с личного транспорта на транспорт общественный, делая его более привлекательным. Такие меры уже вводятся в центре Москвы (платная парковка и т.д.). Это позволит разгрузить дороги города в часы пик. Таким образом, все мои теоретические предположения строятся с «заделом на будущее», и тем условием, что затор станет конечным (уменьшиться количество пассажиропотоков в центр), пассажиропоток станет более мобильным (один автобус с 110 пассажирами занимает 10-14метров дорожного полотна, против 80-90 единиц личного транспорта, с аналогичным количеством пассажиров занимающих 400-450 метров). В ситуации, когда количество въезжающих будет оптимизировано (или хотя бы уменьшено максимально исходя из экономических и социальных возможностей) мы сможем применить два предположения о том, как улучшить управлением УДС в Москве без вложения больших средств и вычислительных мощностей, а именно:

· Использовать аналитические и модельные данные для выявления проблемных зон

· Разработка способов улучшения УДС и ее управления в проблемных зонах

· Создание математических моделей с предложенными изменениями и их дальнейших анализ на предмет эффективности и экономической целесообразности, с дальнейшим введением в практическое использование

Исходя из вышесказанного, при помощи математических моделей мы можем оперативно реагировать на изменения в УДС, прогнозировать ее поведение и подстраивать ее структуру под них.

Таким образом, на радиальной магистрали, мы сможем понять причину того, почему она работает в ненормальном режиме и имеет на своей протяженности пробки и заторы.

Таким образом, постановка задачи исходя из проблемы состоит из:

1. Анализа одной из радиальных магистралей на предмет наличия затруднений, в том числе и часы пик.

2. Создание модели части данной радиальной магистрали в месте наибольших затруднений.

3. Введение в данную модель улучшений на основе аналитики УДС при помощи реальных данных и данных моделирования, и создание модели с внесенными изменениями.

2 Создание улучшенного варианта УДС

Исходя из постановки задачи и анализа транспортных затруднений в Москве, для создания практической модели я выбрал участок ответвления одной из радиальных магистралей (Каширского Шоссе), на участке от пересечения Проспекта Андропова и Коломенского проезда до остановки «Торговый центр». Причиной выбора является множество факторов и в частности:

· Тенденция к образованию заторов в одних и тех же местах с одинаковой тенденцией

· Яркая картина «МТМ» проблем

· Наличие разрешимых точек и возможности моделирования светофорного регулирования на данном участке.

Рисунок 1.14 Выбранный участок

Выбранный участок имеет характерные проблемы, поддающиеся моделированию, а именно:

· Наличие двух проблемных точек и их перекрестного влияния

· Наличие проблемных точек, при изменении которых ситуация не улучшится (возможность применения синхронизации).

· Четкая картина влияния проблемы МТМ.

Рисунок 1.15 11-00 проблемы в центр

Рисунок 1.16 Проблемы из центра. 18-00

Таким образом, на данном участке мы имеем следующие проблемные точки:

· Два пешеходных перехода оборудованных светофорной сигнализацией в нагатинской пойме

· Светофор на пересечении проспекта Андропова и улицы Нагатинская

· Нагатинский метромост

2. Создание улучшенного варианта УДС

2.1 Аналитика участка

Длина заторов на проспекте Андропова - 4-4,5 км в каждом из 2-х направлений (утром в центр - от Каширского шоссе до второго пешеходного перехода в Нагатинской пойме, вечером в область - от Новоостаповской улицы до Нагатинской улицы). Второй показатель, скорость движения в часы пик, здесь не превышает 7-10 км/ч: на проезд участка 4,5 км в часы пик надо около 30 минут. Что касается длительности, пробки в центр на проспекте Андропова начинаются в 7 утра и длятся до 13-14 часов, а пробки в область обычно начинаются в 15 и длятся до 21-22 часов. То есть длительность каждого из «часов пик» на Андропова составляет 6-7 часов в каждом из 2-х направлений - запредельный уровень даже для привычной к пробкам Москвы.

2.2 Две основные причины образования пробок на проспекте Андропова

Причина первая: проспект перегружен лишним «перепробеговым» трафиком. От метро «Нахимовский проспект» до центра жилой части Печатников по прямой 7,5 километров. А по дорогам 3 маршрута от 16 до 18 километров. Причем два из трех маршрутов проходят через проспект Андропова.

Рисунок 2.1

Все эти проблемы вызваны тем, что между Нагатинским и Братеевским мостами по прямой 7 км, а по Москве-реке - 14 км. Никаких других мостов и тоннелей в этом промежутке просто нет.

Причина вторая: малая пропускная способность самого проспекта. Прежде всего, движение замедляет выделенная полоса, созданная несколько лет назад, после чего для движения в каждом направлении осталось лишь по 2 полосы. Очень способствуют заторам и 3 светофора (транспортный перед Нагатинской улицей и два пешеходных в Нагатинской пойме).

2.3 Стратегические решения по проспекту Андропова

Чтобы решить проблему перепробегов, надо построить 2-3 новые связки между Нагатинским и Братеевским мостами. Эти транспортные связи устранят перепробеги и позволят управлять трафиком, стимулируя не поток «центр - периферия», а поток «периферия - периферия».

Проблема в том, что строить такие объекты очень долго и дорого. И обойдется каждый из них в миллиарды рублей. Таким образом, если мы хотим что-то улучшить здесь не через 5 лет, а уже через год-два, единственный способ - работать с пропускной способностью проспекта Андропова. В отличие от строительства новых мостов и тоннелей, это в разы быстрее (0,5-2 года) и на 2 порядка дешевле (50-100 миллионов рублей). Потому что увеличить пропускную способность проспекта можно недорогими локальными "тактическими" мероприятиями в самых проблемных местах. Это позволит обеспечить существующий спрос, улучшить все показатели движения: снизить длину пробок, сократить длительность часов пик, повысить скорость.

2.4 Тактические меры на проспекте Андропова: 4 группы

2.4.1 Этап 1. Светофорное регулирование

На проблемном участке 3 светофора: два пешеходных в Нагатинской пойме и один транспортный на перекрестке Андропова с ул. Новинки и Нагатинской.

Два пешеходных светофора в Нагатинской пойме уже работают в максимально «протянутом» режиме (150 секунд транспорту, 25 пешеходам). Дополнительное удлинение цикла едва ли будет эффективно для транспорта, но увеличит и без того немалое ожидание пешеходами. Единственное, что можно и нужно сделать светофорным регулированием - синхронизировать оба пешеходных светофора, чтобы транспорт тратил меньше времени на разгон-торможение. Это окажет небольшой эффект в сторону центра в утренний час пик. На трафик в обе стороны в остальное время и в сторону области вечером пешеходные светофоры не оказывает большого влияния. А вот со светофором на перекрестке Андропова с ул. Новинки и Нагатинской ситуация интереснее. Он явно держит поток в сторону области в вечерние часы пик. Дальше транспорт разъезжается по массе альтернативных улиц (Нагатинской набережной, улице Новинки, Нагатинской улице, Коломенскому проезду, Каширскому шоссе и Пролетарскому проспекту).

Рассмотрим текущий режим работы светофора и подумаем, что можно сделать.

Рисунок 2.2 Светофорные фазы

Рисунок 2.3 Текущий временной режим работы светофора

Во-первых, уж очень короткий цикл для перекрестка с магистральной улицей - всего 110-120 секунд. На большинстве магистралей время цикла в часы пик 140-180 секунд, на Ленинском и вовсе за 200.

Во-вторых, режим работы светофора от времени суток меняется крайне несущественно. Между тем, вечерний поток принципиально отличается от утреннего: прямоходный поток по Андропова из области гораздо меньше, а левоповоротный поток с Андропова из центра гораздо больше (народ возвращается домой в Нагатинский затон).

В-третьих, зачем-то сокращено время прямоходной фазы днем. Какой в этом смысл, если прямоходный поток по Новинки и Нагатинской и в часы пик не испытывает серьезных проблем, а уж днем и подавно?

Решение напрашивается само собой: дневной режим приравнять к утреннему, а в вечерний - немного «протянуть» фазу 3 (Андропова в обе стороны), и сильно протянуть «веерную» фазу 4 (Андропова из центра прямо, направо и налево). Это позволит эффективно освобождать и прямой ход Андропова, и «карман» для ожидающих поворота.

Рисунок 2.4 Предлагаемый повременный режим работы светофора

Что до утреннего часа пик, «протягивать» Андропова на этом перекрестке утром в центр сейчас бессмысленно. Поток не использует всю длину «зеленой фазы», поскольку не может быстро проехать перекресток из-за пробки перед сужением на мосту из 4-х полос в 2.

2.4.2 Переразметка

С разметкой на Андропова две проблемы:

- выделенная полоса на 3-х полосных участках проспекта Андропова

- неправильная разметка на перекрестке с Нагатинской улицей и улицей Новинки

Ни для кого не секрет, что выделенная полоса резко уменьшила пропускную способность проспекта Андропова. Это касается движения и в центр, и в область. Причем пассажиропоток по выделенной полосе минимален и не превышает нескольких сот человек даже в часы пик. Это неудивительно: выделенная полоса идет вдоль «зеленой» ветки метро, а точек притяжения на удалении от метро вдоль самого проспекта почти нет. Провозная же способность каждой из полос общего пользования около 1200 человек в час. Это значит, что выделенная полоса, вопреки своей задаче, не повысила, а снизила провозную способность проспекта Андропова.

Добавлю: пассажиропоток наземного транспорта на проспекте Андропова имеет шансы снижаться и дальше. Ведь уже в 2014 году в Нагатинской пойме планируют открыть станцию метро «Технопарк». Это позволит большей части посетителей ТЦ «Мегаполис» и работающим в Технопарке пользоваться метро без пересадки на наземный транспорт.

Казалось бы, отменить всю выделенку на Андропова, и дело с концом. Но анализ и многолетние наблюдения показали: выделенная полоса на проспекте Андропова мешает не везде, а только на тех участках, где в одну сторону 3 полосы (2+А) и где это создает «бутылочное горлышко». Там же, где 4 полосы в одну сторону (3+А), выделенная полоса не мешает, а даже позволяет повысить равномерность транспортных потоков и выполняет функцию полосы для правого поворота, разгона-торможения.

Поэтому в первоочередном порядке я предлагаю отменить выделенную полосу на узких участках, где она создает наибольшие проблемы:

· в сторону области на Сайкинском путепроводе и Нагатинском мосту, улице Сайкина

· в сторону центра на всем участке от въезда на Нагатинский мост до Сайкинского путепровода включительно.

Рисунок 2.5 Места, где требуется отмена выделенной полосы

Рисунок 2.6 Переразметка проспекта Андропова

Еще потребуется отменить выделенную полосу в сторону области на участке от Нагатинской улицы до Коломенского проезда: увеличившийся поток в сторону области не сможет вместиться в существующие 2 полосы. Кстати, въезд на выделенную полосу в этом месте разрешен и сейчас, но только для парковки.

Помимо выделенной полосы, проблемы создает бездарная разметка проспекта Андропова в зоне перекрестка с Нагатинской улицей и улицей Новинки.

Во-первых, ширина полос большая, а их количество - недостаточное. При такой ширине проезжей части с каждой стороны легко добавить по полосе.

Во-вторых, разметка, несмотря на уширение створа перекрёстка, зачем-то уводит весь трафик в левоповоротные ряды, откуда едущим прямо приходится «продираться» правее.

Впрочем, неумелость проектировщиков извинительна: узел сложный, ширина проезжей части «гуляет». Это решение для этого перекрестка тоже появилось не сразу. Оно позволяет число рядов в зоне перекрестков увеличить, а едущих прямо - оставить в своих полосах, «уводя» прямой ход немного правее. Как результат, количество перестроений снизится, скорость проезда перекрестка повысится в обоих направлениях.

Рисунок 2.7 Предлагаемая схема организации движения на перекрестке Андропова - Нагатинская - Новинки

Рисунок 2.8 Предлагаемая схема движения на перекрестке

Локальные уширения

Следующим этапом предлагается выполнить самое нужное сейчас уширение в сторону центра на участке от Нагатинского метромоста до съезда на улицу Трофимова. Это позволило бы вернуть личному транспорту 3 полосы, отдав 4-ю транспорту общественному - точно так же, как сделано в сторону области на этом участке.

Рисунок 2.9 Локальные уширения

2.4.3 Строительство 2-х внеуличных переходов в Нагатинской пойме

Недавно начато строительство надземного перехода в районе остановки ОТ «Южный речной вокзал» у самого Нагатинского метромоста. После его строительства пешеходный светофор демонтируют.

Рисунок 2.10 План строительства надземного перехода

Это могло бы стать прекрасной новостью, но радоваться нечему: в 450 метрах севернее есть еще один переход напротив ТЦ «Мегаполис». Одновременное строительство 2-х переходов со снятием обоих пешеходных светофоров дало бы отличный эффект для направления в центр: пропускная способность при той же ширине выросла бы на 30-35% за счет отмены разгона-торможения перед светофорами. Но напротив ТЦ «Мегаполис» внеуличный переход строить не собираются, а значит, второй светофор никак не снять. А эффект от одного надземного перехода будет незначительным - не больше, чем от простой синхронизации двух светофоров. Потому что в обоих случаях разгон-торможение сохраняется.

3 Обоснование предложенных решений

На основе аналитики мы вычисляем проблемные точки в той или зоне УДС и, отталкиваясь от фактически возможных решений, применяем их. Поскольку программа позволяет нам не делать громоздких вычислений вручную, мы можем с ее помощь определить оптимальные параметры тех или иных проблемных мест в УДС, и после их оптимизации получить результат компьютерного моделирования, которое может ответить на вопрос, улучшат ли пропускную способность предлагаемые изменения. Таким образом, применяя компьютерное моделирование, мы можем проверить, соответствуют ли предлагаемые изменения на основе аналитики реальной ситуации, и окажут ли изменения ожидаемый эффект.

3.1 Использование компьютерной симуляции

Используя компьютерную симуляцию, мы можем с большой долей вероятности спрогнозировать происходящие процессы на УДС. Таким образом, мы можем провести сравнительный анализ моделей. Смоделировать текущую структуру УДС с ее особенностями, модернизировать и улучшить ее и создать новую модель, в основу которой ляжет УДС с внесенными в нее корректировками. Используя полученные данные, мы на стадии компьютерного моделирования можем получить ответ, имеет ли смысл вносить те или иные изменения в УДС, а так же использовать моделирование для выявления проблемных зон.


Подобные документы

  • Характеристика основных категорий автомобильных дорог. Определение пропускной способности дороги и коэффициента загрузки движением. Расчет средней скорости движения транспортного потока. Выявление опасных мест дороги методом коэффициентов аварийности.

    курсовая работа [1,8 M], добавлен 15.01.2012

  • Определение необходимости корректировки существующей модели управления и внедрения новых управляющих воздействий и установки дополнительных технических средств организации дорожного движения. Разработка оптимальной модели управления дорожным движением.

    дипломная работа [4,2 M], добавлен 16.05.2013

  • Анализ транспортных систем с помощью математического моделирования. Локальные характеристики автотранспортных потоков. Моделирование транспортного потока в окрестности сужения улично-дорожной сети. Стохастическое перемешивание при подходе к узкому месту.

    практическая работа [1010,5 K], добавлен 08.12.2012

  • Классификация методов управления дорожным движением. Автоматизированная система управления дорожным движением "Зеленая волна" в г. Барнауле. Принципы ее построения, структура, сравнительная характеристика. Кольцевая автодорога в г. Санкт-Петербурге.

    контрольная работа [888,8 K], добавлен 06.02.2015

  • Оценка обеспеченности расчетной скорости, безопасности дороги, уровня загрузки дороги движением, ровности покрытия дорог. Определение фактического модуля упругости нежёсткой дорожной одежды. Сущность содержания автомобильных дорог и дорожных сооружений.

    курсовая работа [142,5 K], добавлен 08.12.2008

  • Переход к инновационной модели развития транспортной инфраструктуры. Основные пункты транспортной стратегии Правительства до 2030 года. Анализ и поиск наиболее оптимального решения транспортной проблемы. Рост транспортного сектора в российской экономике.

    статья [17,5 K], добавлен 18.08.2017

  • Особенности транспортной отрасли. Сущность и задачи транспортной логистики. Организация транспортного хозяйства на ОАО "НефАЗ". Планирование деятельности транспортного хозяйства предприятия. Анализ и оценка эффективности деятельности данной организации.

    курсовая работа [50,2 K], добавлен 14.01.2011

  • Определение интенсивности движения - количества транспортных средств, прошедших контрольное сечение дорожного объекта во всех направлениях за единицу времени (час, сутки). Анализ плотности транспортного потока, его распределения и коэффициента загрузки.

    лабораторная работа [132,0 K], добавлен 18.02.2010

  • Организация движения городского пассажирского транспорта при работе адаптивной системы управления дорожным движением. Сравнение временно-зависимой и транспортно-зависимой стратегии. Разработка базы нечетких правил. Построение функции принадлежности.

    курсовая работа [828,0 K], добавлен 19.09.2014

  • Анализ мероприятий, направленных на организацию транспортного рынка. Государственное регулирование транспортной деятельности как сложный комплекс мероприятий, направленный на обеспечение необходимого уровня транспортного обслуживания во всех регионах.

    реферат [26,3 K], добавлен 21.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.