Блок двигателя
Двигатель внутреннего сгорания как двигатель, в котором топливо сгорает непосредственно в рабочей камере. Блок двигателя - самая большая единая металлическая часть в автомобиле. Термальные песчаные печи. Мощность и их измерение в лошадиных силах.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 05.10.2015 |
Размер файла | 201,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Блок двигателя - самая большая единая металлическая часть в автомобиле. В ней находятся все связанные компоненты двигателя, такие как цилиндры и поршни, и полости для циркуляции хладагента.
В блоке двигателя процесс возгорания превращается в механическую энергию, активизирующую коробку передач, и наставляющуюся машину ездить. Раньше блоки для автомобильных моторов делали из железа.
Теперь большинство из них делают из легкого сплава алюминия для большей работоспособности. Блок двигателя внутреннего сгорания -- единый компонент, созданный благодаря песчаной матрицы. Текстовый материал принадлежит сайту <a href='http://how-make.info'>http://how-make.info</a> двигатель мощность автомобиль
Для создания матрицы смешивают клей и лигатуру с циркониевым песком. Эта комбинация материалов выдерживает сильный жар расплавленного метала, но только для одного сплава. Каждая матрица сделана из секций, ядер, образующих единое целое. Для создания каждого ядра, машина выдувает смесь песка и клея в основную форму, сделанную из железа. Далее, выдувается газ, активизирующий лигатуру, закрепляющую смесь. Это основное ядро, к которому будут прикреплены все остальные секции.
Основное ядро передается по линии; в дальнейшему к нему будут прикрепляться все остальные секции. Следующее ядро -- для секции конусов цилиндра, где будут находится поршни двигателя. Робот вставляет железные втулки в шесть отверстий (в данном случаи) секции; они предотвратят алюминиевые стенки отверстий от абразивного стирания. Текстовый материал принадлежит сайту <a href='http://how-make.info'>http://how-make.info</a>
К основному ядру добавится семнадцать других секций. Секции блока двигателя, где будет контакт с маслом, покрываются тальковой пудрой. Это предотвращает прилипания частиц песка к алюминию и попаданию их в масло.
Машины смазывают клеемнекоторые секции, чтобы они не отваливались, когда робот будет переворачивать их «вверх ногами» и прикреплять их к остальным. Затем поверх вставляют две последнии секции. Теперь матрица наполнена и готова к литью.
Алюминиевые формы загружаются в специальный подъемник. Они поднимаются над реактивной плавильной печью, газовой плитой. Подъемник опускает формы в огонь с температурой 800 єС; алюминий плавится… Втулки в отверстиях цилиндра нагреваются под током, алюминий так лучше приварится к горячему металлу.
Матрицы наполняются со дна для предотвращения попадания в метал оксида алюминия. (Оксид образуется, когда расплавленный алюминий контактирует с воздухом. Если лить метал сверху, он будет открыт для контакта с кислородом. Да и само литье привело бы к образованию оксида.). Текстовый материал принадлежит сайту <a href='http://how-make.info'>http://how-make.info</a>
После литья матрицы 6 часов находятся в так называемой «термальной песчаной печи». В ней клей растворяется и песчинки рассыпаются. Жар также укрепляет метал. Появляются цельные литые алюминиевые блоки двигателя. Остается лишь их немного доработать.
Роботы переворачивают их «вверх ногами» чтобы очистить от песка. Затем машина обрезает выступающие элементы на блоке -- лишний метал, подаваемый в матрицу, для компенсации семи процентного сжатия, который происходит при застывании жидкого алюминия.
Наконец, технологическое оборудование , управляемое с компьютера, производит грубую шлифовку метала, и блоки двигателя принимают почти законченную форму. Завод по производству двигателей, закупающий блоки, производит финальную обработку прежде, чем установить в них части двигателя. Каждый блок двигателя. Производимый на этом заводе проходит через автоматическую систему визуального контроля, которая изучает блок на предмет наличия дефектов. Текстовый материал принадлежит сайту <a href='http://how-make.info'>Ошибка! Недопустимый объект гиперссылки.>
Двигатели внутреннего сгорания.
В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т.д.
Тепловые двигатели могут быть разделены на две основные группы:
1). Двигатели с внешним сгоранием - паровые машины, паровые турбины, двигатели Стирлинга и т.д.
2). Двигатели внутреннего сгорания. В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. На большинстве современных автомобилей установлены двигатели внутреннего сгорания.
Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу.
Основным недостатком этих двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием кривошипно-шатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.
А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания (ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта машина была еще весьма несовершенной.
В 1862 г. французский изобретатель Бо де Роша предложил использовать в двигателе внутреннего сгорания четырехтактный цикл:
1. всасывание;
2. сжатие;
3. горение и расширение;
4. выхлоп.
Эта идея была использована немецким изобретателем Н.Отто, построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания. КПД такого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов.
Быстрое распространение ДВС в промышленности, на транспорте, в сельском хозяйстве и стационарной энергетике была обусловлена рядом их положительных особенностей.
Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями и значительным перепадом температур между источником теплоты и холодильником обеспечивает высокую экономичность этих двигателей. Высокая экономичность - одно из положительных качеств ДВС.
Среди ДВС дизель в настоящее время является таким двигателем, который преобразует химическую энергию топлива в механическую работу с наиболее высоким КПД в широком диапазоне изменения мощности. Это качество дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.
К положительным особенностям ДВС стоит отнести также то, что они могут быть соединены практически с любым потребителем энергии. Это объясняется широкими возможностями получения соответствующих характеристик изменения мощности и крутящего момента этих двигателей.
Рассматриваемые двигатели успешно используются на автомобилях, тракторах, сельскохозяйственных машинах, тепловозах, судах, электростанциях и т.д., т.е. ДВС отличаются хорошей приспособляемостью к потребителю.
Сравнительно невысокая начальная стоимость, компактность и малая масса ДВС позволили широко использовать их на силовых установках, находящих широкое применение и имеющих небольшие размеров моторного отделения.
Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС могут летать десятки часов без пополнения горючего.
Важным положительным качеством ДВС является возможность их быстрого пуска в обычных условиях. Двигатели, работающие при низких температурах, снабжаются специальными устройствами для облегчения и ускорения пуска. После пуска двигатели сравнительно быстро могут принимать полную нагрузку. ДВС обладают значительным тормозным моментом, что очень важно при использовании их на транспортных установках.
Положительным качеством дизелей является способность одного двигателя работать на многих топливах. Так известны конструкции автомобильных многотопливных двигателей, а также судовых двигателей большой мощности, которые работают на различных топливах - от дизельного до котельного мазута.
Но наряду с положительными качествами ДВС обладают рядом недостатков. Среди них ограниченное по сравнению, например с паровыми и газовыми турбинами агрегатная мощность, высокий уровень шума, относительно большая частота вращения коленчатого вала при пуске и невозможность непосредственного соединения его с ведущими колесами потребителя, токсичность выхлопных газов, возвратно-поступательное движение поршня, ограничивающие частоту вращения и являющиеся причиной появления неуравновешенных сил инерции и моментов от них.
Но невозможно было бы создание двигателей внутреннего сгорания, их развития и применения, если бы не эффект теплового расширения. Ведь в процессе теплового расширения нагретые до высокой температуры газы совершают полезную работу. Вследствие быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко повышается давление, под воздействием которого происходит перемещение поршня в цилиндре. А это-то и есть та самая нужная технологическая функция, т.е. силовое воздействие, создание больших давлений, которую выполняет тепловое расширение, и ради которой это явление применяют в различных технологиях и в частности в ДВС.
Корпус двигателя
Поршневой двигатель внутреннего сгорания классической (традиционной) конструкции имеет корпус, состоящий из блока цилиндров (блок-картера) и головки блока цилиндров, закрытых, сверху - клапанной крышкой, снизу - масляным поддоном, спереди и сзади - передней и задней крышками коленчатого вала с самоподжимными сальниками. Корпус может иметь и иную конструкцию. Например, нижняя часть картера может быть разъёмной, и в этом случае корпус будет состоять из трёх составных частей: блока цилиндров (средней части корпуса), головки блока цилиндров (верхней части корпуса) и фундаментной рамы (нижней части корпуса) и соответствующих крышек. Встречаются двигатели с моноблочной конструкцией корпуса, в котором блок цилиндров и головка блока цилиндров выполняются в виде единой, неразъёмной отливки. Многообразие конструкций двигателей различных моторостроительных предприятий, предполагает различные подходы к их ремонту.
Корпусные детали двигателя являются основанием для крепления деталей кривошипно-шатунного и газораспределительного механизмов, а так же узлов и деталей систем смазки, охлаждения, зажигания, питания и др.
Корпусные детали двигателя: 1 - блок-картер (блок цилиндров); 2 - прокладка головки блока; 3 - головка блока; 4 - прокладка клапанной крышки; 5 - клапанная крышка.
Блоки цилиндров отливаются из серого легированного чугуна или высококремнистых алюминиевых сплавов (силуминов). Некоторыми фирмами практикуется изготовление блоков из металлокерамики. Блоки цилиндров двигателя с жидкостным охлаждением имеют двойные стенки, образующие «рубашку охлаждения». Рубашка охлаждения заполняется охлаждающей жидкостью. Блоки цилиндров двигателей с воздушным охлаждением цилиндров имеют оребрение. Цилиндры, как правило, заключены в кожух, через который вентилятором системы охлаждения прокачивается воздух. Головки блоков цилиндров бензиновых и дизельных двигателей легковых автомобилей отливаются из алюминиевых сплавов и реже из чугуна и, за редким исключением, имеют моноблочную конструкцию, т.е. на один ряд цилиндров двигателя устанавливается одна, единая для всех цилиндров, головка. На части дизельных двигателях каждый цилиндр (или пара цилиндров) может иметь собственную головку. Головка через термостойкую прокладку крепится к привалочной плоскости блока цилиндров болтами, если блок чугунный, или гайками через шпильки, если блок алюминиевый. Болты крепления головки изготавливаются из высокопрочных сталей и при небольших диаметрах должны обеспечивать значительные усилия (моменты) затяжки. Усилия затяжки болтов (гаек) крепления головки блока регламентируется производителем и, для большинства автомобилей, в среднем составляют 9,0 - 10,0 кгс м. Стенки головки блока двойные. Рубашка охлаждения, образованная двойными стенками головки блока соединяется с рубашкой охлаждения блока цилиндров. В головке блока выполняются камеры сгорания. На головке размещают детали газораспределительного механизма, включая распределительный вал (валы), впускные и выпускные клапаны и детали привода клапанов.
Классификация ДВС
В качестве энергетических установок автомобилей наибольшее распространение поучили ДВС, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. Но в большинстве современных автомобилей установлены двигатели внутреннего сгорания, которые классифицируются по различным признакам:
По способу смесеобразования - двигатели с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые), и двигатели с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров) - дизели;
По способу осуществления рабочего цикла - четырехтактные и двухтактные;
По числу цилиндров - одноцилиндровые, двухцилиндровые и многоцилиндровые;
По расположению цилиндров - двигатели с вертикальным или наклонным расположением цилиндров в один ряд, V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным);
По способу охлаждения - на двигатели с жидкостным или воздушным охлаждением;
По виду применяемого топлива - бензиновые, дизельные, газовые и многотопливные;
По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12...18) и низкого (E=4...9) сжатия;
По способу наполнения цилиндра свежим зарядом:
а) двигатели без наддува, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня;
б) двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым компрессором, с целью увеличения заряда и получения повышенной мощности двигателя;
По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
Мощность двигателя
Мощность - это физическая величина, равная отношению работы, совершенной за определенное время, к этому времени. В системе единиц СИ мощность измеряется в Ваттах (Вт). Поднимая груз массой 1 килограмм на высоту 1 метр за 1 секунду, мы развиваем мощность 1 кг x 9,8 м/с2 x 1 м/с = 9,8 Вт.
Мощность автомобильных двигателей обычно измеряют в лошадиных силах.
Термин «лошадиная сила» был введен в конце XVIII в. английским изобретателем Дж. Уаттом. Наблюдая за работой лошадей, вытягивающих из угольных шахт при помощи блоков корзины с углем, ученый измерил общий вес извлеченной ими породы и высоту, на которую он был поднят за определенное время. Уатт рассчитал, что 1 лошадь за 1 минуту с глубины 30 м вытягивает в среднем 150 кг угля. Эта единица мощности и получила название лошадиной силы (horsepower).
После принятия в 1960 г. системы единиц СИ лошадиная сила стала вспомогательной единицей мощности, равной 736 Вт. Средняя мощность человека равна 70-90 Вт, что составляет 0,1 лошадиной силы.
Размещено на Allbest.ru
Подобные документы
Двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. История создания и развитие ДВС, строение и разновидности, принцип работы двигателей.
творческая работа [925,7 K], добавлен 06.03.2008Топливо, состав горючей смеси и продуктов сгорания. Параметры окружающей среды. Процесс сжатия, сгорания и расширения. Кинематика и динамический расчет кривошипно-шатунного механизма. Четырёхцилиндровый двигатель для легкового автомобиля ЯМЗ-236.
курсовая работа [605,6 K], добавлен 23.08.2012Изучение конструкции и принципа действия двигателя внутреннего сгорания и его основных систем. Расчёт рабочего цикла с учётом особенностей потребителя для ряда режимов работы. Разработка рекомендаций для повышения основных характеристик двигателя.
курсовая работа [7,6 M], добавлен 16.01.2012Применение на автомобилях и тракторах в качестве источника механической энергии двигателей внутреннего сгорания. Тепловой расчёт двигателя как ступень в процессе проектирования и создания двигателя. Выполнение расчета для прототипа двигателя марки MAN.
курсовая работа [169,7 K], добавлен 10.01.2011Тепловой расчёт двигателя. Определение основных размеров и удельных параметров двигателя. Выбор отношения радиуса кривошипа к длине шатуна. Расчет индикаторных параметров четырехтактного дизеля. Динамика и уравновешивание двигателя внутреннего сгорания.
курсовая работа [396,0 K], добавлен 18.12.2015Расчет параметров рабочего процесса карбюраторного двигателя, индикаторных и эффективных показателей. Тепловой баланс двигателя внутреннего сгорания. Расчет и построение внешних скоростных характеристик. Перемещение, скорость и ускорение поршня.
курсовая работа [115,6 K], добавлен 23.08.2012Модернизация двигателя внутреннего сгорания автомобиля ВАЗ-2103. Особенности конструкции двигателя: тип, степень сжатия, вид и марка топлива. Тепловой расчет, коэффициент теплоиспользования. Расчет механических потерь и эффективных показателей двигателя.
курсовая работа [452,2 K], добавлен 30.09.2015Расчет необходимой номинальной мощности и рабочего цикла двигателя внутреннего сгорания автомобиля. Определение среднего индикаторного давления и теплового баланса двигателя. Вычисление сил и моментов, воздействующих на кривошипно-шатунный механизм.
курсовая работа [159,9 K], добавлен 12.11.2011Изучение истории создания двигателя, оснащенного четырехступенчатой коробкой передач и карбюратором. Использование карбюраторных двигателей в современной автомобильной промышленности. Принципы работы паровой турбины, двигателя внутреннего сгорания.
презентация [25,6 M], добавлен 11.11.2014Техническое описание двигателя КамАЗ. Рабочий процесс и динамика двигателя внутреннего сгорания, его скоростные, нагрузочные и многопараметровые характеристики. Определение показателей процесса наполнения, сжатия и сгорания, расширения в двигателе.
курсовая работа [303,6 K], добавлен 26.08.2015