Расчет участка контактной сети станции и перегона

Составление схемы питания и секционирования. Расчет нагрузок на провода цепной подвески. Порядок составления плана станции и перегона. Механический расчет рессорной полукомпенсированной подвески. Подбор поддерживающих устройств и выбор анкерных опор.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 01.08.2012
Размер файла 113,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

КУРСОВОЙ ПРОЕКТ

Тема: «Расчет участка контактной сети станции и перегона»

Технические данные

2-я цифра

н/т

к/п

род тока

5

М-120

2МФ-100

постоянный

Характеристика метеоусловий

1-я цифра

климатич. Зона

ветровой район

гол. Район

0

2

1

Пикетаж перегона

Входной сигнал заданной ст.

23; 7+05

Начало кривой R=600м ц. Слева

9+92

Конец кривой

24; 3+27

Ось кам. Трубы

3+82

Нач. кривой R=850м ц. Справа

5+16

Конец кривой

25; 3+55

Мост через реку с ездой низу

6+20

Понизу: ось моста

Длина моста

135

Ось ж.б. Трубы с отверстием

7+84

Начало кривой R=1000м ц. Слева

8+37

Конец кривой

26;3+12

Входной сигнал следующей ст.

27;0+77

Ось переезда шириной 6м.

1+54

Первая стрелка след. Ст.

2+25

Введение

Совокупность устройств, начиная от генераторов электростанций и кончая тяговой сетью, составляет систему электроснабжения электрифицированных железных дорог. От этой системы питаются электрической энергией, помимо собственной электрической тяги (электровозы и электропоезда), а также все не тяговые железнодорожные потребители и потребители прилегающих территорий. По этому электрификация ЖД решает не только транспортную проблему, но и способствует решению важнейшей народнохозяйственной проблемы-электрификации всей страны.

Главное преимущество электрической тяги перед автономной (имеющие генераторы энергии на самом локомотиве) определяется централизованным электроснабжением и сводятся к следующему:

- Производства электрической энергии на крупных электростанциях приводит, как всякое массовое производство, к уменьшению её стоимости, увеличению КПД и снижению расхода топлива.

- На электростанциях могут использоваться любые виды топлива и, в частности, малокалорийные - нетранспортабельные (затраты на транспортировку которых не оправдывается). Электростанции могут сооружаться непосредственно у места добычи топлива, в следствии чего отпадает необходимость в его транспортировки.

- Для электрической тяги может использована гидроэнергия и энергия атомных электростанций.

- При электрической тяги возможна рекуперация (возврат) энергии при электрическом торможении.

- При централизованном электроснабжении потребная для электрической тяги мощность практически не ограничена. Это даёт возможность в отдельные периоды потреблять такие мощности, которые невозможно обеспечить на автономных локомотивах, что позволяет реализовать, например, значительно большие скорости движения на тяжелых подъемах при больших весах поездов.

- Электрический локомотив (электровоз или электровагон) в отличии от автономных локомотивов не имеет собственных генераторов энергии. По этому он дешевле и надёжней автономного локомотива.

- На электрическом локомотиве нет частей, работающих при высоких температурах и с возвратно-поступательным движением (как на паровозе, тепловозе, газотурбовозе), что определяет уменьшение расходов на ремонт локомотива.

Преимущества электрической тяги, создаваемые централизованным электроснабжением, для своей реализации требуют сооружения специальной системы электроснабжения, затраты на которую, как правило, значительно превышает затраты на электроподвижной состав. Надежность работы электрифицированных дорог зависит от надежности работы системы электроснабжения. По этому вопросы надежности и экономичности работы системы электроснабжения существенно влияют на надежность и экономичность всей электрической железной дороги в целом.

Для подачи электроэнергии на подвижной состав применяются устройства контактной сети.

Проект контактной сети, является одной из основных частей проекта электрификации ЖД участка, выполняется с соблюдением требований и рекомендаций ряда руководящих документов:

-Инструкция по разработке проектов и смет для промышленного строительства;

-Временная инструкция по разработке проектов и смет для железнодорожного строительства;

-Норм технологического проектирования электрификации железных дорог и др.

Одновременно учитываются требования, приведенные в документах, регламентирующих эксплуатацию контактной сети: в правилах технической эксплуатации железных дорог, правилах содержания контактной сети электрифицированных железных дорог.

В данном курсовом проекте произведен расчет участка контактной сети однофазного постоянного тока. Составлены монтажные планы контактной сети станции и перегона.

К устройствам контактной сети относятся все провода контактных подвесок, поддерживающие и фиксирующие конструкции, опоры с деталями для крепления в грунте, к устройствам воздушных линий - провода различных линий (питающих, отсасывающих, для электроснабжения автоблокировки и прочих не тяговых потребителей и др.) и конструкции для их крепления на опорах.

Устройства контактной сети и воздушных линий, подвергаясь воздействиям различных климатических факторов (значительные перепады температур, сильные ветры, гололедные образования), должны успешно им противостоять, обеспечивая бесперебойное движение поездов с установленными весовыми нормами, скоростями и интервалами между поездами при требуемых размерах движения. Кроме того, в условиях эксплуатации возможны обрывы проводов, удары токоприемников и другие воздействия, которые также нужно учитывать в процессе проектирования.

Контактная сеть не имеет резерва, что обуславливает повышенные требования к качеству ее проектирования.

При проектировании контактной сети в разделе проекта электрификации железнодорожного участка устанавливают:

расчетные условия - климатические и инженерно-геологические;

тип контактной подвески ( все расчеты по определению необходимой площади сечения проводов контактной сети выполняют в разделе электроснабжения проекта);

длину пролетов между опорами контактной сети на всех участках трассы;

типы опор, способы их закрепления в грунте и типы фундаментов для тех опор, которым они необходимы;

виды поддерживающих и фиксирующих конструкций;

схемы питания и секционирования;

объемы работ по установке опор на перегонах и станциях;

основные положения по организации строительства и эксплуатации.

Схема питания и секционирования участка контактной сети

Определение нагрузок действующие на провода контактной сети.

Для станции и перегона.

Расчет вертикальных нагрузок.

Вес проводов цепной подвески определяется:

g=g+g+g даН/м,

где g- вес контактного провода, для 2МФ-100 принимается равным 0,873 даН/м;

g - вес несущего троса, для М-120 принимается равным 1,058 даН/м;

g - вес от струн и зажимов принимается равным 0,1 даН/м.

g=2*0,873+1,058+0.1=2,904 даН/м

По заданному району определяем нормативную стенку гололеда.

b=10 мм

Расчетная стенка гололеда определяется по формуле:

b=b*k*k,мм

где: k-коэффициент учитывающий диаметр провода, для М-120 d=14,0 мм k=0,99;

k- коэффициент учитывающий высоту насыпи на которой расположена подвеска, на ровном месте, k=1,15.

b= мм

Стенка гололеда на к/п принимается 50% от стенки гололеда н/т.

b=0.5b=2,846 мм

Вес гололеда на провода цепной подвески определяется:

,

где: d-диаметр к/п и н/т, мм;

- плотность гололеда ;

B-толщина стенки гололеда.

Определяем горизонтальные нагрузки.

По заданному ветровому району определяем нормативную скорость ветра.

Расчетная скорость ветра определяется по формуле:

где коэффициент учитывающий высоту насыпи, на которой расположена подвеска, для станций и перегона принимается равной 1,15.

Ветровая нагрузка в режиме max ветра определяется по формуле:

где - аэродинамический коэффициент лобового сопротивления проводов, для М-120 и МФ-100 принимается равным 1,25 и 1,55 соответственно.

Ветровая нагрузка в режиме гололеда с ветром .

Скорость ветра при гололеде принимается равной 60% от расчетной U.

где: - аэродинамический коэффициент лобового сопротивления проводов, для М-120 и МФ-100 принимается равным 1,25 и 1,55соответственно, соответственно диаметр н/т и к/п

Определяем результирующие нагрузки на н/т для двух режимов.

Режим

Режим Г+

Насыпь h=7м.

Определяем горизонтальные нагрузки.

По заданному ветровому району определяем нормативную скорость ветра.

Расчетная скорость ветра определяется по формуле:

нагрузка цепной подвеска станция перегон

где коэффициент учитывающий высоту насыпи, на которой расположена подвеска, для станций принимается равной 1,25.

Ветровая нагрузка в режиме max ветра определяется по формуле:

где - аэродинамический коэффициент лобового сопротивления проводов, для М-120 МФ-100 принимается равным 1,25 и 1,85 соответственно.

Ветровая нагрузка в режиме гололеда с ветром

Скорость ветра при гололеде принимается равной 60% от расчетной U.

где: - аэродинамический коэффициент лобового сопротивления проводов, для М-120 и МФ-100 принимается равным 1,25 и 1,85 соответственно;

соответственно диаметр н/т и к/п

Определяем результирующие нагрузки на н/т для двух режимов.

Режим

Режим Г+

Расчет длин пролетов

Расчет длин пролетов на путях станции и перегона.

Определяем длину пролета с Рэ=0

Lмах=2, м.

где: К- натяжение контактного провода, даН/м

Для контактного провода МФ-100 К=1000 даН/м

Рк- ветровая нагрузка на контактный провод для расчетного режима.

bкдоп- максимальный вынос контактного провода в середине пролета, м.

гк- прогиб опоры на уровне крепления контактного провода, м

Для расчетного режима гк=0,015 м.

а- величина зигзага, м. а=0,3м

Lмах=2*=95,915м

Определяем Рэ.

Рэ=, даН/м

где: Рк- ветровая нагрузка на контактный провод для расчетного режима, даН/м

Рт- ветровая нагрузка на несущий трос для расчетного режима, даН/м.

Т- натяжение несущего троса, даН. Для М - 120 Т=1800 даН

К- натяжение контактного провода, даН. Для МФ-100 К=1000 даН

hи- высота гирлянды изоляторов, м. Для неизолированной консоли hи=0,6

gт- результирующая нагрузка в режиме максимального ветра, даН/м.

гт- прогиб опоры на уровне крепления несущего троса, м. Для расчетного режима гт=0,022 м.

гк- прогиб опоры на уровне крепления контактного провода, м. Для расчетного режима гк=0,015м.

gк- вес контактного провода. Для МФ 100 gк=873 Н/м.

С- длина струны, м.

Определяем длину струны.

С=h-0,115, м

где: h- конструктивная высота подвески, м. По исходным данным h=2 м

gпр- вес проводов, даН/м.

L- длина пролета, м.

То- натяжение несущего троса в беспровесном положении, даН.

С=2 -0,115=0,988м

Рэ= =

-0,078, даН/м

Определяем длину пролета с учетом Рэ.

Lмах=2, м.

Lмах=2=90,654м

Расчет длин пролетов на путях перегона при насыпи 7м.

Определяем длину пролета с Рэ=0

Lмах=2, м.

Lмах=2*=92,129м

Определяем Рэ.

Рэ=, даН/м

Определяем длину струны.

С=h-0,115, м

С=2,2 -0,115=0,988м

Рэ= = -0,348 даН/м

Определяем длину пролета с учетом Рэ.

Lмах=2, м.

Lмах=2=77,28м

Расчет длин пролетов на кривой радиусом R1=600м

Определяем длину пролета с Рэ=0

Lмах=2, м.

а- величина зигзага, м. а=0,4м

Lмах=2*=57,28м

Определяем Рэ.

Рэ=, даН/м

С=h-0,115, м

С=2,2-0,115=1,388м

Рэ= = - 0,115 даН/м

Определяем длину пролета с учетом Рэ.

Lмах=2, м.

Lмах=2=56,493м

Расчет длин пролетов на кривой радиусом R2=850м

Определяем длину пролета с Рэ=0

Lмах=2, м.

Lмах=2*=65,676м

Определяем Рэ.

Рэ=, даН/м

С=2,2-0,115=1,133м

Рэ= =

- 0, 113даН/м

Определяем длину пролета с учетом Рэ.

Lмах=2, м.

Lмах=2=64,514м

Расчет длин пролетов на кривой радиусом R3=1000м

Определяем длину пролета с Рэ=0

Lмах=2, м.

Lмах=2*=69,744м

Определяем Рэ.

Рэ=, даН/м

С=h-0,115, м

С=2,2-0,115=0,997м

Рэ= = - 0,112 даН/м

Определяем длину пролета с учетом Рэ.

Lмах=2, м.

Lмах=2=68,367м

Расчет длин пролетов на кривой радиусом R3=1000м при насыпи

Определяем длину пролета с Рэ=0

Lмах=2, м.

Lмах=2*=66,069м

Определяем Рэ.

Рэ=, даН/м

С=h-0,115, м

С=2,2-0,115=1,12м

Рэ= = - 0,055 даН/м

Определяем длину пролета с учетом Рэ.

Lмах=2, м.

Lмах=2=61,099м

Все расчеты сводим в таблицу

Таблица

Место расчета

Длина пролета без Рэ

Длина пролета с Рэ

Окончательная длина пролета

1. прямая станции и перегона

95,915

90,654

70

2. прямая перегона на насыпе

92,129

77,28

70

3. кривая R1=600м

57,28

56,493

56

4. кривая R2=850м

65,676

64,514

64

5. кривая R3=1000м

69,744

68,367

68

6. кривая R3=1000м на насыпе

66,069

61,099

61

Порядок составления плана станции и перегона

Порядок составления плана станции

Подготовка плана станции. План станции вычерчиваем в масштабе 1 :1000 на листе миллиметровой бумаге. Необходимую длину листа определяем в соответствии с заданной схемой станции, на которой указаны расстояния всех центров стрелочных переводов, светофоров, тупиков от оси пассажирского здания в метрах. При этом условно принимаем эти отметки в левую сторону с знаком минус, а в правую со знаком плюс.

Вычерчивание плана станции начинаем с разметки тонкими вертикальными линиями через каждые 100 метров условных станционных пикетов в обе стороны от оси пассажирского здания, принимаемый за нулевой пикет. Пути на плане станции представляем их осями. На стрелках оси путей пересекаются в точке называемой центром стрелочного перевода. Пользуясь данными на заданной схеме станции наносим параллельными линиями оси путей, при этом расстояния между ними должны соответствовать в принятом масштабе заданным междупутьям.

На плане станции также показываем не электрифицированные пути. Указав на специальных выносах пикетные отметки центров стрелочных переводов, вычерчиваем стрелочные улицы и съезды. Далее на план станции наносим здания, пешеходный мост, пассажирские платформы, тяговую подстанцию, входные светофоры, переезды.

Наметка мест, где необходимо фиксация контактных проводов

Разбивку опор на станции начинаем с наметки мест, где необходимо предусматривать устройства для фиксации контактных проводов. Такими местами являются все стрелочные переводы, над которыми должны быть смонтированы воздушные стрелки и все места, где провод должен изменить свое направление.

На одиночных воздушных стрелках наилучшее расположение контактных проводов, образующих стрелку, получается, если фиксирующее устройство установлено на определенном расстоянии С от центра стрелочного перевода. Смещение фиксирующих опор допускается к центру стрелочного перевода на 1 - 2 метра и от центра стрелочного перевода на 3 - 4 метра. В вершине кривой фиксирующую опору намечаем по пикету этой вершины, при этом зигзаг у этой опоры всегда выполняется отрицательным.

Расстановка опор в горловинах станции

Разбивку опор на станции начинаем с горловины, где сосредоточено наибольшее количество мест фиксации контактных проводов. Из намеченных мест фиксации производим выбор тех мест, где рационально установить несущие опоры. При этом действительные длины пролетов не должны превышать расчетных длин и разница в длинах смежных пролетов должна быть не более 25% длины большего из них. Кроме того опоры на двухпутных участках следует располагать в одном пикете. Если установка только несущих опор приводит к значительному сокращению пикетов, то следует рассмотреть возможность выполнения части воздушных стрелок нефиксированными.

Нефиксированные воздушные стрелки могут быть выполнены только на боковых путях в том случае, если на опорах, расположенных в близи (до 20 м.) от стрелочного перевода.

Выбрав размеры пролетов между опорами фиксирующими воздушные стрелки главных путей, приступаем к наметке несущих опор на следующих стрелках станции, учитывая требования к длинам пролетов перечисленные выше.

У фиксирующих опор расставляем зигзаги.

Расстановка опор в средней части станции

При наличии в пределах станции искусственных сооружении выбираем способ прохода контактной подвески через эти сооружения. В соответствии с принятым способом намечаем места установки опор у пассажирского здания. После этого на оставшихся частях станции, по возможности применяя максимальные допустимые пролеты, намечаем места для опор жестких поперечин.

Порядок прохода подвески под искусственными сооружениями на станции

Искусственные сооружения встречаются на перегонах и станциях электрифицируемой линии, часто не позволяют пропускать цепную подвеску нормального типа с обычными габаритами.

Способ прохода контактного провода под искусственными сооружениями выбирают в зависимости от напряжения в контактной сети, высота искусственного сооружения над уровнем верха головки рельса (УГР), длинны его вдоль электрифицированных путей, установленной скорости движения поездов.

Размещение контактного провода под искусственными сооружениями при ограниченных габаритах связано с решением двух основных задач:

1.Обеспечение необходимых воздушных зазоров между контактными проводами и заземленными частями искусственных сооружений;

2. Выбор материала, конструкции и способа закрепления поддерживающих устройств.

Сечение контактного провода в пределах искусственного сооружения должно быть равно сечению контактного провода на прилегающих участках, для чего в необходимых случаях монтируются обводы, восполняющие сечение НТ и усиливающих проводов.

Уклоны контактного провода на подходах к искусственному сооружению устанавливают по условиям взаимодействия токоприемника и контактного провода в зависимости от максимальной скорости движения и параметров контактной подвески и токоприемника.

Минимальная величина пространства по вертикали, необходимая для размещения токонесущих элементов контактной сети при проходе подвески в стеснённых условиях существующих искусственных сооружений, составляет 100мм. при подвески без НТ и 250мм. с НТ.

В тех случаях, когда при нормальном напряжении в контактной сети, нельзя по условиям необходимых габаритных расстояний для этого напряжения контактную подвеску разместить без реконструкции искусственного сооружения, в пределах искусственного сооружения монтируют не изолированную контактную подвеску с устройством с обеих сторон нейтральных вставок. Поезда в этом случае проводят через искусственное сооружение с выключенным током, по инерции.

Во всех случаях, когда расстояние от проводов контактной подвески до расположенных над ним заземленных частей искусственных сооружений при наиболее не благоприятных условиях менее 500мм. при постоянном токе или имеется какая либо возможность поджатия проводов контактной подвески к частям искусственного сооружения, через отбойник.

нейтральный элемент

650 и менее

НТ

отбойник

КП

изоляторы

УГР

Разбивка анкерных участков

После расстановки опор по всей длине станции производим разбивку анкерных участков и окончательно выбираем места установки анкерных опор.

При разбивке анкерных участков необходимо выполнять следующие требования и условия:

число анкерных участков должно быть минимально возможным. При этом длина анкерного участка не должна превышать 1600 метров;

в отдельные анкерные участки выделяем боковые пути и съезды между главными путями;

для анкеровки желательно использовать ранее намеченные промежуточные опоры;

при анкеровки провод не должен менять свое направление на угол более 70;

если длина бокового пути более 1600 метров его следует разбить на два анкерных участка, а в середине выполнить не изолирующее сопряжение.

Длину нескольких пролетов расположенных примерно в середине анкерного участка снижаем на 10% относительно максимальной в данном месте, чтобы разместить среднюю анкеровку.

Расстановка опор по концам станции

Согласно установленной схемы секционирования контактной сети в местах примыкания перегонов к станциям выполняем продольное секционирование. Изолирующее четырехпролетное сопряжение монтируется между входным сигналом и ближайшим к перегону стрелочным переводом станции, по возможности на прямых участках пути. При этом каждый переходной пролет сокращаем на 25% от расчетного; переходные опоры по первому и второму пути смещаем относительно друг друга на 5 метров.

Приближение переходной опоры к входному светофору допускается на расстояние не менее 5 метров.

После расстановки опор под изолирующее сопряжение разбиваем пролет между крайней стрелкой и сопряжением затем расставляем зигзаги, направление которых должно быть согласованным

Изолирующее сопряжения должны быть расположены на перегоне за входным сигналом так, чтобы изолирующее сопряжение, по которой электроподвижной состав должен безостановочно проходить по инерции, не препятствовало остановке поезда у закрытого входного сигнала.

При наличии на станции переезда опоры располагаем так, чтобы расстояние от края проезжей части переезда по ходу поезда до опор было не менее 25 метров.

Для выполнения поперечного секционирования со схемы питания и секционирования станции переносим все секционные изоляторы и выполняем их нумерацию, а на поперечных тросах жестких поперечин показываем врезные изоляторы между секциями, которые изолированы друг от друга.

В качестве основного типа несущих конструкций контактной сети на станциях должны приниматься жесткие поперечины, перекрывающие от двух до восьми путей. Если более восьми путей допускается применение гибких поперечин.

Питание и секционирование контактной сети

Описание схемы питания и секционирования. На электрифицированных железных дорогах электроподвижной состав получает электроэнергию через контактную сеть от тяговых подстанций, расположенных на таком расстоянии друг от друга, чтобы обеспечивать надежную защиту от токов короткого замыкания.

В системе постоянного тока электроэнергия в контактную сеть поступает поочередно от фазы напряжением 3,3 кВ и возвращается также по рельсовой цепи на подстанцию.

Как правило, применяют схему двухстороннего питания, при которой каждый находящийся на линии локомотив получает энергию от двух тяговых подстанций. Исключение составляют участки контактной сети, расположенные в конце электрифицированной линии, где может быть применена схема консольного (одностороннего) питания от крайней тяговой подстанции и постов секционирования устраиваются вдоль электрифицированной линии изолирующее сопряжения и каждая секция получает электроэнергию от разных питающих линий ( продольное секционирование ).

При продольном секционировании, кроме разделения контактной сети у каждой тяговой подстанции и поста секционирования, выделяют в отдельные секции контактную сеть каждого перегона и станции с помощью изолирующих сопряжений. Секции между собой соединяются секционными разъединителями, каждая из секций может быть отключена этими разъединителями. На контактной сети участков переменного тока у тяговых подстанций монтируют два изолирующих сопряжения. В данной схеме питания и секционирования тяговая подстанция через фидера контактной сети Фл1 и Фл2 питает перегон с западной стороны станции, находящейся за изолирующим сопряжением, которое разделяет главные пути станции от перегона воздушным промежутком.

На фидерах установлены секционные разъединители с моторными приводами ТУ и ДУ, нормально замкнутые.

Через фидера Фл4 и Фл5 питается восточный перегон станции, разделенный изолирующим сопряжением. На фидерах установлены секционные разъединители с моторными приводами ТУ и ДУ, нормально замкнутые.

Главные пути станции питаются через фидера Фл31 и Фл32. Снабженные секционными разъединителями с моторными приводами ТУ и ДУ, нормально замкнутые.

Разъединители А и Б соединяют станционные пути и перегон, с моторными приводами на ТУ, нормально отключены, с западной стороны станции А. Разъединители В и Г - с восточной стороны.

При поперечном секционировании на станциях контактную сеть группы путей выделяют в отдельные секции и питают их от главных путей через секционные разъединители, которые при необходимости могут быть отключены. Секции контактной сети на соответствующих съездах между главными и боковыми путями изолируют секционными изоляторами. Этим достигается независимое питание каждого пути и каждой секции в отдельности, что облегчает устройство защиты и дает возможность при повреждении или отключении одной из секций осуществлять движение поездов по другим секциям.

Секции 3,5,4,6,8 изолированы секционными изоляторами № 3,11; 4,12;5,10; 6,9; 7,8 и запитываются поперечными секционными разъединителями ПС-3, ПС-5, ПС-4, ПС-6, ПС-8 с ручными приводами, нормально включены.

Трассировка питающих и отсасывающих линий

Трассы питающих и отсасывающих линий от тяговой подстанции к электрифицируемым путям проектируем по кротчайшему расстоянию. Для анкеровки линий у здания тяговой подстанции и путей используем железобетонные опоры.

Воздушные питающие и отсасывающие линии, идущие вдоль станции подвешиваем с полевой стороны опор контактной сети. Для перевода питающих линий через пути используем жесткие поперечины, на которых смонтированы Т - образные конструкции.

Трассировка контактной сети на перегоне

Подготовка плана перегона. План перегона выполняем на листе миллиметровой бумаги в масштабе 1:2000 (ширина листа 297 мм). Необходимую длину листа определяем исходя из заданной длины перегона с учетом масштаба необходимого запаса (800 мм) в правой части чертежа на размещение общих данных в основной надписи и принимаем кратной стандартному размеру 210 мм.

В зависимости от числа путей на перегоне на плане вычерчиваем одну или две прямые линии (на расстоянии 1 см друг от друга), представляющие оси путей.

Пикеты на перегоне размечают вертикальными линиями через каждые 5 см (100 м) и нумеруют их в направлении счета километров, начиная с пикета входного сигнала, указанного в задании.

Если при трассировке контактной сети станции в правой горловине оказалось четырехпролетное изолирующее сопряжение контактных подвесок станции и перегона, расположенное до входного сигнала, то для его повторения на плане перегона нумерацию пикетов нужно начать за 2-3 пикета до заданного пикета входного сигнала.

Выше и ниже прямых линий, представляющих оси путей, вдоль всего перегона размещаем данные в виде таблиц. Под нижней таблицей вычерчиваем спрямленный план линии.

Пользуясь размеченными пикетами, в соответствии с заданием на проект на плане путей показывают искусственные сооружения, а на спрямленном плане линии показываем километровые знаки, направление, радиус и длину кривого участка пути, границы расположения высоких насыпей.

Пикеты искусственных сооружений, сигналов, кривой, насыпи, и выемки обозначают в графе «Пикетаж искусственных сооружений» нижней таблицы в виде дроби, числитель которой обозначает расстояние в метрах до одного пикета, знаменатель - до другого. В сумме эти числа должны быть равны 100, т. к. расстояние между двумя нормальными пикетами равно 100 м.

Разбивка перегона на анкерные участки. Расстановку опор начинаем с переноса на план перегона опор изолирующих сопряжений станции, к которой примыкает перегон. Расположение этих опор на плане перегона должно быть увязано с их расположением на плане станции. Увязку осуществляем по входному сигналу, который обозначен и на плане станции, и на плане перегона следующим образом: определяют расстояние между сигналом и ближайшей к нему опорой по меткам на плане станции. Это расстояние прибавляем (или отнимаем) к пикетной метке сигнала и получаем пикетную отметку опоры. Затем откладываем от этой опоры длины следующих пролетов, указанных на плане станции, и получаем пикетные отметки опор изолирующего сопряжения на плане перегона. Пикетные отметки опор заносим в графу «Пикетаж опор» нижней таблицы. После этого вычерчиваем изолирующее сопряжение ли нейтральную вставку, т. к. это показано на плане станции, и расставляют зигзаги контактного провода.

Далее намечаем анкерные участки контактной сети и примерное расположение мест их сопряжений. После этого в серединах анкерных участков намечаем примерное расположение мест средних анкеровок с тем. Чтобы при разбивке опор пролеты со средней анкеровкой сократить по сравнению с максимальной расчетной длиной на данном участке перегона.

Намечая анкерные участки подвески, необходимо исходить из следующих соображений:

количество анкерных участков на перегоне должно быть минимальным;

максимальная длина анкерного участка контактного провода на прямой принимается не более 1600 м;

на участках с кривыми длины анкерного участка уменьшают в зависимости от радиуса и расположения кривой;

сопряжения анкерных участков рекомендуется, как правило, устраивать на прямых.

Если кривая по протяженности не больше половины длины анкерного участка (800 м) и расположена в одном конце или в середине анкерного участка, то длина такого анкерного участка может быть принята равной средней длине, допустимой для прямой и кривой данного радиуса.

В конце перегона должно находиться четырехпролетное изолирующее сопряжение, разделяющее перегон и следующую станцию. Опоры такого сопряжения относятся уже к плану станции и на плане перегона не учитываются. Иногда в исходных данных задается к проектированию часть перегона, ограничиваемая очередным четырехпролетным неизолирующим сопряжением. Опоры такого сопряжения относятся к плану перегона.

Примерное расположение опор сопряжений анкерных участков отмечаем на плане вертикальными линиями, расстояние между которыми в масштабе примерно равно трем допустимым для соответствующего участка пути пролетам. Затем намечаем каким-либо условным знаком места расположения пролетов со средней анкеровкой и только после этого переходим к расстановке опор.

Расстановка опор на перегоне. Расстановка опор производится пролетами, по возможности равными допустимым для соответствующего участка пути и местности, полученным в результате расчетов длин пролетов.

Намечая места установки опор следует сразу же заносить их пикетаж в соответствующую графу, между опорами указывать длины пролетов, возле опор стрелками показывать зигзаги контактных проводов.

На прямых участках пути зигзаги (0,3 м) должны быть поочередно направлены у каждой из опор то в одну, то в другую сторону от оси пути, начиная с зигзага анкерной опоры, перенесенного с плана контактной сети станции. На кривых участках пути контактным проводам дают зигзаги в направлении от центра кривой.

В местах перехода с прямого участка пути в кривую зигзаг провода у опоры, установленной на прямом участке пути, может оказаться неувязанным с зигзагом провода у опоры, установленной на кривой. В этом случае следует несколько сократить длину одного-двух пролетов на прямом участке пути, а в некоторых случаях и пролета, частично расположенного на кривой, чтобы можно было у одной из этих опор разместить контактный провод над осью пути (с нулевым зигзагом), а у смежной с ней опоры сделать зигзаг контактного провода в нужную сторону.

Зигзаги контактного провода у смежных опор, расположенных на прямом и кривом участках пути, можно считать увязанными, если большая часть пролета расположена на прямом участке пути и зигзаги контактного провода у опор сделаны в разные стороны или большая часть пролета расположена на кривом участке пути и зигзаги сделаны в одну сторону.

Длины пролетов, расположенных частично на прямых и частично на кривых участках пути, могут быть при этом приняты равными или чуть большими, чем допустимые длины пролетов для кривых участков пути. При разбивке опор разница в длине двух смежных пролетов полукомпенсированной подвески не должна превышать 25% длины большего пролета.

На участках где часто наблюдаются гололедные образования и могут возникнуть автоколебания проводов, разбивку опор следует вести чередующимися пролетами, один из которых равен максимально допустимому, а другой - на 7-8 м меньше. При этом, избегая периодичности чередования пролетов.

Пролеты со средними анкеровками должны быть сокращены: при полукомпенсированной подвеске - один пролет на 10% от максимальной расчетной длины в этом месте.

Выбор поддерживающих устройств

Выбор консолей

В данном курсовом проекте применяем изолированные наклонные консоли.

Таблица

Тип опоры

Место установки

Тип консоли при габарите опор

3,1-3,2

3,2-3,4

3,4-3,5

Промежуточная

Прямая

ИТР-I

Кривая

ИТС-IIп

Внутренняя сторона

R?600 м

R>600 м

ИТС-II

Внешняя сторона

R?600 м

ИТС-Iп

R>600 м

ИТС-II

Переходная

Прямая

ИТР-I

Рабочая

Анкеруемая

ИТС-II

Кривая R>600м

ИТС-II

Внутренняя сторона

Рабоч и Анкеруем

Внешняя сторона

Рабочая

ИТР-II

Анкеруем

ИТС-II

Маркировка консолей: ИТР-1-5- изолированная наклонная консоль с растянутой тягой, трубчатая.

ИТС-2-5- изолированная консоль со сжатой тягой, трубчатая.

Выбор фиксаторов

Выбор фиксаторов производят в зависимости от типа консолей и места их установки, а для переходных опор- с учетом расположения рабочей и анкеруемой ветвей подвески относительно опоры. Кроме того, учитывают, для какой из них предназначен фиксатор.

В обозначениях типовых фиксаторов применяют буквы Ф- фиксатор, П- прямой, О- обратный, А- контактного провода анкеруемой ветви, Г- гибкий. В маркировке имеются цифры, характеризующие длины основного стержня.

Выбор фиксаторов сведен в таблицу

Таблица

Назначение фиксаторов.

Типы фиксаторов при габарите опор, м

3,1-3,2

3,2-3,3

3,4-3,5

Промежуточные опоры

Прямая

Зигзаг к опоре

ФПИ-1

Зигзаг от опоры

ФОИ-II

Внешняя сторона кривой

R600 м

ФГИ

R=850 м

ФГИ

R=1000 м

ФГИ

Внутренняя сторона кривой

R?601м

ФОИ-III

ФОИ-III

R?600м

ФОИ2-II

ФОИ2-III

Переходные опоры

Прямая

Рабочая

ФПИ-1

Опора А

Анкеруемая

ФАИ-III

Опора Б

Рабочая

ФОИ-III

Анкеруемая

ФАИ-IV

Переходные опоры

внеш. стор. кривой

Рабочая

ФГИ

Опора А

Анкеруемая

ФАИ-IV

Опора Б

Рабочая

ФГИ

Анкеруемая

ФАИ-III

ФАИ-IV

Переходные опоры

внутр. стор. кривой

Рабочая

ФОИ-II

ФОИ-III

Опора А

Анкеруемая

ФАИ-III

ФАИ-IV

Опора Б

Рабочая

ФОИ-II

ФОИ-III

Анкеруемая

ФАИ-III

Выбор жестких поперечин

При выборе жестких поперечин прежде всего определяют требуемую длину жестких поперечин.

L'=Г1+Г2+?м+dоп+2*0,15, м

Где: Г1, Г2- габариты опор поперечины, м

?м- суммарная ширина междупутий, перекрываемых поперечиной, м

dоп=0,44 м - диаметр опоры в уроне головок рельсов

2*0,15 м - строительный допуск на установку опор поперечины.

Выбор жестких поперечин свожу в таблицу

Таблица

Номера опор на которой установлена жесткая поперечина

Тип жесткой поперечины

Расчетная длина жесткой поперечины

(21-22);(49-50)

П130-22,5

23,54

(35-36)

ОП-320-30,3

29,8

(37-38);(47-48)

П-320-36,6

35,8

(39-40)-(45-46)

ОП-420-41,665

41,24

(23-24)-(33-34)

П-220-30,3

29,64

(18-19)

П-130-22,5

17,54

Выбор опор

Важнейшей характеристикой опор является их несущая способность- допустимый изгибающий момент М0 в уровне условного обреза фундамента. По несущей способности и подбирают типы опор для применения в конкретных условиях установки.

Выбор опор сводим в таблицу

Таблица

Место установки

Тип опоры

Марка стойки

Прямая

Промежуточная

С-136,6-1

Переходная

С-136,6-2

Анкерная

С-136,6-3

Под жесткой поперечиной (от 3-5 путей)

Промежуточная

С-136,6-2

Под жесткой поперечиной (от 5-7 путей)

Промежуточная

С-136,6-3

Анкерная

С-136,7-4

Кривая

R<800 м

С-136,6-3

Список используемой литературы

Марквардт К. Г., Власов И. И. Контактная сеть. - М.: Транспорт, 1997.- 271с.

Фрайфельд А. В. Проектирование контактной сети.- М.: Транспорт, 1984,-397с.

Справочник по электроснабжению железных дорог. /Под редакцией К.Г. Марквардта - М.: Транспорт, 1981. - Т. 2- 392с.

Нормы проектирования контактной сети (ВСН 141 - 90). - М.: Минтранстрой, 1992. - 118с.

Размещено на Allbest.ru


Подобные документы

  • Расчет нагрузок на провода цепной подвески и длин пролетов. Расчет станционного анкерного участка полукомпенсированной рессорной подвески. Определение нормативных нагрузок, действующих на опору, порядок составления и подготовка плана станции и перегона.

    курсовая работа [272,3 K], добавлен 22.09.2009

  • Определение нагрузок, действующих на провода контактной сети для станции. Определение максимальных допустимых длин пролетов. Расчет станционного анкерного участка полукомпенсированной рессорной подвески. Порядок составления плана станции и перегона.

    курсовая работа [279,8 K], добавлен 18.05.2010

  • Определение нагрузок, действующих на провода контактной сети на главных и боковых путях станции, на перегоне, насыпи. Расчет длин пролетов и станционного анкерного участка полукомпенсированной цепной подвески. Порядок составления плана станции и перегона.

    курсовая работа [1,3 M], добавлен 01.08.2012

  • Определение проводов контактной сети и выбор типа подвески, проектирование трассировки контактной сети перегона. Выбор опор контактной сети, поддерживающих и фиксирующих устройств. Механический расчет анкерного участка и построение монтажных кривых.

    дипломная работа [1,2 M], добавлен 23.06.2010

  • Составление монтажных планов контактной сети станции и перегона, проект электрификации железнодорожного участка. Расчет длин пролетов и натяжения проводов, питание контактной сети, трассировка контактной сети на перегоне и поддерживающие устройства.

    курсовая работа [267,5 K], добавлен 23.06.2010

  • Определение допускаемых длин пролётов на главных и второстепенных путях станции и на прямом участке пути перегона. План контактной сети станции. Расчёт анкерного участка подвески на главном пути. Подбор промежуточной консольной железобетонной опоры.

    курсовая работа [448,2 K], добавлен 21.02.2013

  • Определение нагрузок, действующих на провода контактной сети. Определение максимально-допустимых длин пролетов. Трассировка контактной сети станции и перегона. Проход контактной подвески под пешеходным мостом и по металлическому мосту (с ездой по низу).

    курсовая работа [356,2 K], добавлен 13.03.2013

  • Определение максимально допустимых длин пролетов подстанции контактной сети. Монтажная схема питания и секционирования, монтажный план станции. Характеристика секционных разъединителей и приводов к ним. Расчет нагрузки на провода контактной подвески.

    курсовая работа [751,4 K], добавлен 24.04.2014

  • Основные данные проводов подвески. Расчетные нагрузки на несущий трос. Определение длины эквивалентного и критического пролетов и установление исходного расчетного режима. Составление итоговой монтажной таблицы, а также монтажных кривых стрел подвеса.

    контрольная работа [1,6 M], добавлен 30.09.2013

  • Проектирование двухпутного перегона. Расстановка светофоров. Путевой план перегона. Рельсовая цепь - основной элемент автоблокировки. Работа схемы при движении поезда. Автоматическая переездная сигнализация. Порядок производства работ на переездах.

    курсовая работа [32,2 K], добавлен 27.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.