Анализ применяемых на автомобильном транспорте эксплуатационных (конструкционных) материалов
Технология производства пластичных смазок. Основные требования, предъявляемые к эксплуатационным свойствам бензина; его фракционный состав и октановое число. Система классификации и маркировки тормозных жидкостей. Характеристика трансмиссионных масел.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 27.07.2012 |
Размер файла | 30,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
Введение
1. Технология получения пластичных смазок
2. Эксплуатационные свойства и показатели их оценивающие: бензин
3. Система классификации и маркировки тормозных жидкостей
4. Характеристика эксплуатационных материалов
Список использованной литературы
Введение
Автомобиль - непременный элемент нашей жизни, который является весьма энергоемким и одним из наиболее крупных потребителей (свыше 65%) топливно-энергетических ресурсов. Потребляемыми ресурсами в первую очередь являются моторные топлива (светлые нефтепродукты), получаемые из нефти на нефтеперерабатывающих заводах, а двигатели внутреннего сгорания - бензиновые карбюраторные и дизельные остаются наиболее массовыми силовыми установками автомобилей.
Постоянный рост численности автомобилей ведет к увеличению добычи и переработки нефти, а это - сокращение запасов нефти, введение в действие новых месторождений расположенных в отдаленных и труднодоступных местах, и как следствие - удорожание моторных топлив. Кроме того, это приводит к значительному увеличению выбросов в атмосферу загрязняющих веществ с отработавшими газами, которые негативно влияют на человека и окружающую среду.
Таким образом, расширение сырьевой базы, повышение качества моторных топлив и их удешевление за счет использования природного газа, тяжелых нефтей и природных битумов, угля, горючих сланцев, торфа, биомассы и других нетрадиционных источников позволяют снизить расход нефти и степень воздействия отработавших газов на окружающую среду. Поэтому знание состава топлив, их свойств, области применения, эксплуатационных характеристик, токсикологических особенностей необходимо тем, кто занимается проектированием и эксплуатацией автомобильной техники, транспортированием, хранением и реализацией моторных топлив.
1. Технология получения пластичных смазок
Процесс производства пластичных смазок - это процесс получения высокостабильных гелей с заданными свойствами. Поэтому технология смазок гораздо сложнее, чем топлив или масел. Даже на предприятиях с большим производственным опытом процент неудачных варок долгое время был очень высок, и это считалось в порядке вещей.
При производстве смазок для получения необходимой структуры следует тщательно выдерживать технологические режимы: порядок, температуру и продолжительность смешения компонентов, охлаждение и гомогенизацию смеси, введение присадок и наполнителей. Для получения смазок могут использоваться готовые загустители. Такие загустители, как мыла и полимочевины, могут также приготавливаться in situ, то есть в процессе приготовления самой смазки путем смешивания реагентов в дисперсионной среде. Приготовление смазок различных типов имеет свои особенности. Мы рассмотрим общие основные вопросы.
Приготовление смазок из готовых загустителей заключается в интенсивном механическом диспергировании загустителя в масле. Для углеводородных и некоторых мыльных смазок бывает достаточно простого перемешивания при нагревании. Такие загустители, как глины, аэросил, требуют более активного воздействия, к которому относятся циркуляция смеси по контуру, промежуточная гомогенизация.
Приготовление загустителя in situ происходит в процессе смешения реагентов в дисперсионной среде или ее части. Например, для приготовления мыла в реактор загружают дисперсионную среду, жиры и водный раствор (или суспензию) гидроксида металла. Смесь нагревают до +200°C и более градусов и перемешивают в течении заданного времени (10-40 мин). В реакторе происходит омыление жира с образованием мыла и глицерина. Глицерин остается в смазке, а избыток воды выпаривается. Для этого используются специальные выпарные аппараты. Полностью воду из смазки удалить нельзя, и поэтому часть ее (до нескольких процентов на смазку) остается. Иногда это оказывается полезным. Например, вода в гидратированных кальциевых смазках служит стабилизатором их структуры. Другим примером приготовления загустителя in situ может служить получение полимочевины. Для этого в дисперсионной среде последовательно смешивают амины и изоцианаты, наблюдая в процессе реакции между ними интенсивное загущение смеси с выделением тепла. Завершается стадия диспергирования загустителя образованием гомогенного расплава или тонкой суспензии.
Охлаждение - ответственная стадия, на которой начинается образование структуры смазки. Оно начинается в реакторе и продолжается в специальных скребковых холодильниках. Существуют другие способы охлаждения, например в тонком слое на вращающихся барабанах. В конце процесса охлаждения в смазку вводят большинство присадок и наполнителей.
Гомогенизация смазки завершает образование ее структуры. Она заключается в интенсивном механическом воздействии на гель. Простейшим гомогенизатором являются трехвальцовые краскотерки, в которых через зазоры между вращающимися вальцами пропускается смазка. Более эффективны клапанные и роторно-щелевые гомогенизаторы, в которых смазка пропускается с большой скоростью под давлением через малые регулируемые зазоры. Существуют гомогенизаторы и других типов.
Деаэрация - стадия, которой иногда пренебрегают. Однако удаление воздуха из готовой смазки улучшает ее структуру и внешний вид.
Фильтрация исходных компонентов и готовых смазок также необходима для получения качественного продукта с хорошими антифрикционными характеристиками. Фильтрация смазок - процесс достаточно трудный. Для этого смазки пропускают через металлические сетки, патронно-щелевые фильтры или фильтры других, более сложных конструкций.
2. Эксплуатационные свойства и показатели их оценивающие: бензин
смазка бензин тормозная жидкость
Во время работы двигателя бензин подается к карбюратору, где испаряется и перемешивается с воздухом, образуя горючую смесь. Из карбюратора горючая смесь поступает в цилиндры двигателя, где и происходит быстрое сгорание рабочей смеси, длящееся десятые доли секунды.
В связи с данными процессами к бензину предъявляется ряд требований, основными из которых являются:
- быстрое образование топливно-воздушной (горючей) смеси необходимого состава;
- сгорание рабочей смеси с нормальной скоростью (без детонации);
- минимальное коррозирующее воздействие на детали системы питания двигателя;
- небольшие отложения смолистых веществ в системе питания двигателя;
- минимальное отравляющее воздействие на организм человека и окружающую среду;
- сохранность первоначальных свойств в течение длительного времени.
Соответствие бензина перечисленным требованиям зависит, прежде всего, от его физико-химических свойств, которые определяются рядом показателей, в качестве которых выступают давление насыщенных паров, фракционный состав, теплота испарения, вязкость и плотность. Основные показатели физико-химических свойств бензинов указываются в стандарте или в технических условиях на бензин данной марки.
От них зависят также быстрота и полнота сгорания бензино-воздушной смеси в цилиндрах двигателя, возможность работы двигателя на наиболее экономичных режимах.
Давление насыщенных паров характеризует испаряемость головных фракций бензинов, и в первую очередь их пусковые качества, т. е. представляет собой максимальную концентрацию паров топлива в воздухе, при которой устанавливается равновесие между паром и жидкостью. Таким образом, чем выше давление насыщенных паров бензина, тем легче он испаряется и тем быстрее происходят пуск и нагрев двигателя. Однако если бензин имеет слишком высокое давление насыщенных паров, то он может испаряться до смесительной камеры карбюратора. Это приведет к ухудшению наполнения цилиндров, возможному образованию паровых пробок в системе питания и снижению мощности, перебоям и даже остановке двигателя, в том числе увеличиваются потери от испарения при хранении в баках автомобилей и на складах.
Поэтому давление насыщенных паров бензина устанавливается таким, чтобы при хорошем его испарении не образовывались паровые пробки в системе питания двигателя.
Определение давления насыщенных паров выполняется при температуре 38 °С. Стандартом ограничивается верхний предел давления паров: летом - до 67 кПа и зимой - от 67 до 93 кПа. Температура 38 °С является показателем безопасности при заливке и перевозке топлива в баке автомобиля. Европейский стандарт EN 228 (''Топлива для двигателей внутреннего сгорания. Неэтилированный бензин. Требования и методы испытаний'') регламентирует уровень давления летом от 35 до 70 кПа и зимой от 55 до 90 кПа.
Фракционный состав устанавливает зависимость между количеством топлива (в процентах по объему) и температурой, при которой оно перегоняется. Для характеристики фракционного состава в стандарте указывается температура, при которой перегоняется 10, 50 и 90% бензина, а также температура конца его перегонки, иногда и начала [1, 3, 6].
Метод определения фракционного состава светлых нефтепродуктов предназначается для бензинов, лигроина, керосина и дизельного топлива.
Фракционный состав является важнейшим показателем бензина, оказывающим влияние не только на качество смесеобразования, но и на работу двигателя в целом. Так, наряду с определенным давлением насыщенных паров для надежного пуска холодного двигателя необходимо наличие низкокипящих углеводородов, содержание которых контролируется температурами начала перегонки (tнк) и разгонки первых 10% бензина (t10). Она должна быть не выше 70 °С. Для зимнего бензина предусмотрено выкипание пусковых фракций до 55 °С, что обеспечивает пуск холодного двигателя при температуре окружающего воздуха до -20…-25 °С. После пуска двигатель должен быстро прогреться, что связано с температурой разгонки 50% бензина (t50). Она находится в пределах 100…115 °С. Этот же показатель определяет и хорошую приемистость двигателя - способность обеспечить быстрый разгон автомобиля при резком открытии дроссельной заслонки. Полное испарение бензина в двигателе определяется температурами перегонки 90% (t90) и конца разгонки (tкк) соответственно 185…195 °С и 215…220 °С. При чрезмерном повышении этих температур тяжелые фракции бензина не успевают испариться и попадают в цилиндры (свыше 200 °С). В результате бензин сгорает не полностью, мощность двигателя падает, а его топливная экономичность ухудшается. Кроме того, происходит разжижение моторного масла и его смывание тяжелыми фракциями с трущихся поверхностей, следствием чего являются повышенные износы деталей двигателя.
Таким образом, облегчение фракционного состава бензина способствует улучшению работы двигателя. Однако при этом необходимо иметь в виду, что чрезмерное снижение t10 приводит к испарению легких фракций уже в трубопроводах или топливном насосе до карбюратора. Образующиеся пузырьки пара создают паровые пробки, нарушающие подачу бензина в карбюратор и ведущие к перебоям в работе, а зачастую даже к полной остановке двигателя. Кроме того, снижение t90 и tкк ограничивает количество используемых дистиллятов нефти и тем самым уменьшает выход из нее бензина, т. е. его ресурсы.
Согласно европейскому стандарту на топлива для автомобилей ЕN 228 t10 = 70 °С, t50 = 100 °С, t90 = 180 °С, tкк = 215 °С [12].
В процессе смесеобразования существенную роль играет теплота испарения (парообразования) топлива. Она представляет собой количество тепла, затрачиваемого на испарение единицы массы топлива. Это тепло отнимается от топлива и воздуха, в результате чего температура топливно-воздушной смеси снижается, испарение замедляется, качество смесеобразования ухудшается. Теплота испарения углеводородных топлив сравнительно невелика - 290...300 кДж/кг, вследствие чего снижение температуры смеси не превышает 15...20 °С.
Вязкость и плотность бензина в наибольшей степени оказывают влияние на его расход через дозирующие жиклеры карбюратора или электромагнитной форсунки.
Плотностью называется масса вещества, отнесенная к единице его объема. Плотность нефтепродуктов определяется при помощи нефтеденсиметров (ареометров) при температуре 20 °С, так как с повышением температуры плотность нефтепродуктов уменьшается, а с понижением - увеличивается.
Вязкость характеризует свойства жидкости оказывать сопротивление течению, т. е. перемещению ее слоев под действием внешней силы. Различают динамическую и кинематическую вязкость. В системе СИ динамическая вязкость имеет размерность Па · с. Кинематическая вязкость (удельный коэффициент внутреннего трения) измеряется в м2/с.
Вязкость определяют в капиллярных вискозиметрах путем замера времени истечения жидкости определенного объема через калибровочный капилляр.
При снижении температуры вязкость бензина повышается, что ведет к уменьшению расхода топлива. В то же время плотность бензина возрастает, что, напротив, приводит к росту его расхода. Однако ввиду того, что вязкость бензина при снижении температуры изменяется в большей степени, чем плотность, она оказывает преобладающее влияние на расход топлива. В результате при снижении температуры от +40 °С до -40 °С расход бензина через жиклер уменьшается на 15...20%.
При использовании бензинов, не соответствующих требованиям двигателя, на ряде режимов его работы может возникать особый вид аномального сгорания - детонационное сгорание. Это широко известное явление проявляется в звонком металлическом стуке, дымлении отработавших газов и резком перегреве двигателя.
Причиной детонационного сгорания является образование неустойчивых перекисных соединений при окислении углеводородов топлива. При повышенных температурах и давлениях в камере сгорания перекисные соединения разлагаются с выделением большого количества тепла. Процесс разложения носит взрывной характер, в результате чего в цилиндре возникают ударные волны и скорость распространения пламени возрастает до 2000...2500 м/с. Перекисные соединения образуются при сгорании топлива всегда, но детонация возникает лишь при их определенном (критическом) содержании для определенных условий (давления и температуры) в цилиндре. Чем выше давление и температура в цилиндрах, тем при меньшем содержании перекисных соединений начинается переход нормального сгорания в детонационное.
Наиболее эффективным способом борьбы с детонацией является повышение детонационной стойкости бензинов. Под детонационной стойкостью (или антидетонационными свойствами) бензинов понимается их способность противостоять возникновению детонации в двигателе. Основным показателем детонационной стойкости бензинов является октановое число, которое указывается в стандартах или технических условиях в числе важнейших физико-химических свойств бензина.
Для каждого типа карбюраторного двигателя допускается применение бензина со строго определенным октановым числом, которое обусловливается степенью сжатия двигателя: чем выше степень сжатия, тем большее октановое число должен иметь бензин. Октановое число определяют моторным и исследовательским методами, суть которых заключается в сравнении работы одноцилиндрового двигателя на испытуемом бензине и эталонном топливе. В качестве эталонного топлива используют смесь двух углеводородов - изооктана (С8Н18) и нормального гептана (С7Н16). Октановое число первого принимают равным 100 единицам, второго - нулю. Если составлять смесь из этих углеводородов в определенном процентном соотношении, то оно и будет характеризовать октановое число. Так, смесь из 92% изооктана и 8% гептана будет равноценна бензину с октановым числом 92.
Таким образом, октановое число (ОЧ) - это условный показатель детонационной стойкости бензина, численно равный процентному содержанию (по объему) изооктана в смеси с нормальным гептаном, равноценной по детонационной стойкости испытуемому топливу.
Чем выше октановое число, тем более стоек бензин перед детонацией и тем лучшими эксплуатационными качествами он обладает.
Лучше противостоят детонации бензины, в которых преобладают ароматические углеводороды, затем следуют нафтеновые, и наименьшая детонационная стойкость у бензинов, состоящих в основном из нормальных углеводородов.
Наличие в бензине сернистых соединений и смолистых веществ понижает его октановое число, поэтому содержание их в бензине строго контролируется.
3. Система классификации и маркировки тормозных жидкостей
Тормозные жидкости состоят из основы (ее доля 93-98%) и различных добавок, присадок, иногда красителей (остальные 7-2%). По своему составу они делятся на минеральные, гликолевые и силиконовые.
Минеральные, представляющие собой различные смеси в пропорции 1:1 касторового масла и спирта, например бутилового (красно-оранжевая жидкость «БСК»). Такие жидкости обладают хорошими смазывающими и защитными свойствами, негигроскопичны, не агрессивны к лакокрасочным покрытиям. Но они не соответствуют международным стандартам по основным показателям - имеют низкую температуру кипения (их нельзя применять на машинах с дисковыми тормозами) и становятся слишком вязкими уже при минус 20°С.
Минеральные жидкости нельзя смешивать с гликолевыми, иначе возможно набухание резиновых манжет узлов гидропривода и образование сгустков касторового масла.
Гликолевые, имеющие в качестве основы полигликоли и их эфиры - группы химических соединений на основе многоатомных спиртов. У них высокая температура кипения, хорошие вязкостные и удовлетворительные смазывающие свойства. Основным недостатком гликолевых жидкостей является гигроскопичность - склонность поглощать воду из атмосферы. В эксплуатации это в основном происходит через компенсационное отверстие в крышке бачка главного тормозного цилиндра. Чем больше воды растворено в тормозной жидкости, тем ниже ее температура кипения, больше вязкость при низких температурах, хуже смазываемость деталей и сильнее коррозия металлов.
Отечественные и импортные гликолевые жидкости классов DOT 3, DOT 4 и DOT 5.1 взаимозаменяемы, но смешивать их нежелательно, так как основные свойства при этом могут ухудшаться.
На автомобилях, выпущенных более двадцати лет тому назад, резина манжет может быть несовместимой с гликолевыми жидкостями - для них необходимо использовать только минеральные тормозные жидкости (или придется менять все манжеты).
Силиконовые, изготавливаемые на основе кремнийорганических полимерных продуктов. Их вязкость мало зависит от температуры, они инертны к различным материалам, работоспособны в диапазоне температур от -100 до +350°С и не адсорбируют влагу. Их применение в частности ограничивают недостаточные смазывающие свойства. Основанные на силиконе жидкости несовместимы с другими.
Силиконовые жидкости класса DOT 5 следует отличать от полигликолевых DOT 5.1, так как сходство наименований может привести к путанице. Для этого на упаковке дополнительно обозначают:
ДОТ 5 - SBBF («silicon based brake fluids» - тормозная жидкость, основанная на силиконе).
DOT 5.1 - NSBBF («non silicon based brake fluids» - тормозная жидкость, не основанная на силиконе).
Маркировка
В области тормозных жидкостей за рубежом применяются два основных стандарта: первый - SAE J1703 и второй США - нормы DOT (Departament of Transportation).
В настоящее время изготовители тормозных жидкостей в рекламах, документах и упаковке, как правило, указывают соответствие жидкости нормам DOT.
Для легковых автомобилей в зависимости от конструкции, технической характеристики и года выпуска применяются жидкости, соответствующие требованиям DOT-3, DOT-4 и DOT-5. Нормам DOT-5 отвечают наиболее современные жидкости, предназначенные для скоростных и спортивных автомобилей.
4. Характеристика эксплуатационных материалов
ДЛ - 0,4 - 40
Для автомобильных дизельных двигателей в соответствии с ГОСТ 305-82 выпускаются следующие марки:
· Л - летнее;
· 0,4 - массовая доля серы;
· 40 - температура вспышки.
ТМ-3-12
Обозначение трансмиссионных масел в соответствии с ГОСТ 17479.2-85 включает в себя буквы ТМ, цифры, характеризующие принадлежность к группе масел по эксплуатационным свойствам, и цифры, обозначающие класс кинематической вязкости (при температуре 100 °С).
ТМ-3 - 12- с высоким содержанием присадок (противозадирные с умеренной эффективностью). Применяются предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением. Обычные трансмиссии со спирально-коническими шестернями, работающие в умеренно жестких условиях по скоростям и нагрузкам (до 2,5 ГПа и температуре масла в объеме до 150 °С).12 - класс вязкости.
Texaco SAE 85W-140, API GL-5
SAE (Society of Automotive Engineers - Американское общество автомобильных инженеров);
Данная классификация подразделяет масла по вязкости с учетом способности масла течь и одновременно ''прилипать'' к поверхности металла. Она действует в Европе, США, Японии и других странах.
Класс SAE сообщает потребителю диапазон температуры окружающей среды, в котором масло обеспечит проворачивание коленчатого вала двигателя стартером, прокачивание масла масляным насосом по смазочной системе под давлением при холодном пуске в режиме, не допускающем сухого трения в узлах трения (минимальная температура), и надежное смазывание летом при длительной работе в максимальном скоростном и нагрузочном режиме.
Международная классификация по вязкости SAE делит масла на семь классов: четыре зимних и три летних (таблица 1). Если масло всесезонное, применяется двойная маркировка, например SAE 80W-90.
Таблица 1. - Классификация в соответствии с SAE
Класс вязкости |
Минимальная температура достижения динамической вязкости 150 мПа*с, °С |
Кинематическая вязкость при 99°С, мм2/с |
||
не менее |
не более |
|||
85W |
-12 |
11,0 |
- |
|
140 |
- |
24,0 |
41,0 |
Классификация API по эксплуатационным свойствам предусматривает деление масел на шесть групп в зависимости от области применения, которая определяется типом зубчатой передачи, удельными контактными нагрузками в зонах зацепления и рабочей температурой.
Р Ка 4/10-3у
Пластичные смазки представляют собой смесь масляной основы с загустителем до мазеобразного состояния. В качестве масляной основы смазок применяют масла нефтяного и синтетического происхождения, составляющие 80-90% всех масел. Загустителями могут быть мыла жирных кислот, парафин, сажа, органические пигменты и т.д. В зависимости от класса смазки загустители составляют от 5 до 80% ее массы.
-Резьбовые (Р) - резьбовые соединения ;
- тип загустителя Ка - кальциевое;
- рекомендуемый температурный диапазон применения (указывается через дробь: в числителе - уменьшенная в 10 раз без знака минус минимальная температура применения, в знаменателе - уменьшенная в 10 раз максимальная температура применения);
-дисперсионная среда- г - добавка графита
-консистенцию (густоту) смазки (обозначают условным числом: 3 класс - Почти твердая).
Список использованной литературы
1. Манусаджянц О. И., Смаль Ф. В. Автомобильные эксплуатационные материалы: Учебник для техникумов. - М.: Транспорт, 1989. - 271 с.
2. Трофименко И. Л., Коваленко Н. А., Лобах В. П. Автомобильные эксплуатационные материалы: Лабораторный практикум. - Мн.: Дизайн ПРО, 2000. - 96 с.
3. Бойкачев М. А., Чижонок В. Д. Эксплуатационные материалы. Ч. 1: Моторные топлива - 66 с.
4. Бойкачев М. А. Эксплуатационные материалы. Ч. 2: Смазочные материалы и технические жидкости - 83 с.
Размещено на Allbest.ru
Подобные документы
Подбор дисперсионных сред, дисперсных фаз и введение добавок при изготовлении пластичных смазок. Общие требования, свойства, классификация и система обозначения гидравлических масел. Физико-химические и эксплуатационные свойства тормозных жидкостей.
контрольная работа [48,1 K], добавлен 24.02.2014Процесс производства и технология получения пластичных смазок. Эксплуатационные свойства бензина и показатели их оценивающие. Система классификации и маркировка тормозных жидкостей. Характеристика эксплуатационных материалов, их классификация по SAE.
контрольная работа [30,6 K], добавлен 13.08.2012Производственные технологии получения бензина. Стабильность дизельного топлива и показатели его раскрывающие. Система классификации, маркировки тормозных жидкостей. Характеристика эксплуатационных материалов. Проблема экономии горюче-смазочных материалов.
реферат [26,5 K], добавлен 20.11.2012Характеристика паспортных данных дизельного топлива, моторных, трансмиссионных масел, а также низкозамерзающих охлаждающих жидкостей. Выбор сорта и марки смазочных материалов. Выбор смазок для узлов трения органов управления, трансмиссии и ходовой части.
курсовая работа [45,4 K], добавлен 07.08.2013Древесные материалы, которые применяются на автотранспортных предприятиях, краткая характеристика. Основные марки топлив, моторных и трансмиссионных масел, пластичных смазок и специальных жидкостей, применяемых для автомобилей ГАЗ-31029 при эксплуатации.
контрольная работа [33,9 K], добавлен 23.09.2011Показатели качества, классификация и ассортимент эксплуатационных материалов: бензинов, моторных и трансмиссионных масел, пластичных смазок. Процессы, происходящие при воспламенении и сгорании в цилиндре двигателя. Технологии окраски автомобилей.
курсовая работа [7,0 M], добавлен 16.05.2011Установка сорта и марки масел, низкозамерзающих и охлаждающих жидкостей для применения на автомобиле Москвич 214122. Оценка эксплуатационных свойств трансмиссионных масел и тормозной жидкости. Выбор сорта и марки смазочных материалов для автомобиля.
курсовая работа [39,8 K], добавлен 07.08.2013Длительная бесперебойная и экономичная работа автомобиля, его агрегатов. Эксплуатационные свойства и показатели их оценивающие. Чистота дизельного топлива. Система классификации и маркировки тормозных жидкостей. Характеристика эксплуатационных материалов.
контрольная работа [284,1 K], добавлен 25.07.2012Характеристика свойств и эксплуатационных качеств масел, применяемых для карбюраторных, дизельных и роторных двигателей. Свойства трансмиссионных масел для автомобилей, их классификация. Технические автомобильные смазки общего и специального назначения.
реферат [335,9 K], добавлен 08.10.2014Эксплуатационные свойства пластичных смазок: температура каплепадения, эффективная вязкость, коллоидная стабильность и водостойкость. Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости при ремонтных работах.
курсовая работа [30,4 K], добавлен 06.03.2015