Двигатель внутреннего сгорания
История изобретения двигателей внутреннего сгорания, его назначение, конструкция и условия работы. Расчет рабочего цикла, динамики, деталей и систем. Основные преимущества 4-х и 2-х-тактных ДВС. Перспективы последующего усовершенствования конструкции.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 14.01.2011 |
Размер файла | 103,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. История изобретения ДВС
2. Устройство современного ДВС
3. Работа ДВС
4. Применение двигателей
5. Достоинства и недостатки ДВС
6. Перспективы усовершенствования
Список источников
1. История изобретения ДВС
Использовать внутреннюю энергию - это значит совершить за счет нее полезную работу, то есть превращать внутреннюю энергию в механическую. В простейшем опыте, который заключается в том, что в пробирку наливают немного воды и доводят ее до кипения (причем пробирка изначально закрыта пробкой), пробка под давлением образовавшегося пара поднимается вверх и выскакивает.
Другими словами, энергия топлива переходит во внутреннюю энергию пара, а пар, расширяясь, совершает работу, выбивая пробку. Так внутренняя энергия пара превращается в кинетическую энергию пробки.
Если пробирку заменить прочным металлическим цилиндром, а пробку поршнем, который плотно прилегает к стенкам цилиндра и способен свободно перемещаться вдоль них, то получится простейший тепловой двигатель. двигатель внутренний сгорание
Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.
История тепловых машин уходит в далекое прошлое, говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи.
Как же стреляла эта пушка? Один конец ствола сильно нагревали на огне. Затем в нагретую часть ствола наливали воду. Вода мгновенно испарялась и превращалась в пар. Пар, расширяясь, с силой и грохотом выбрасывал ядро. Для нас интересно здесь то, что ствол пушки представлял собой цилиндр, по которому как поршень скользило ядро.
Примерно тремя столетиями позже в Александрии - культурном и богатом городе на африканском побережье Средиземного моря - жил и работал выдающийся ученый Герон, которого историки называют Героном Александрийским. Герон оставил несколько сочинений, дошедших до нас, в которых он описал различные машины, приборы, механизмы, известные в те времена.
В сочинениях Герона есть описание интересного прибора, который сейчас называют Героновым шаром. Он представляет собой полый железный шар, закрепленный так, что может вращаться вокруг горизонтальной оси. Из закрытого котла с кипящей водой пар по трубке поступает в шар, из шара он вырывается наружу через изогнутые трубки, при этом шар приходит во вращение. Внутренняя энергия пара превращается в механическую энергию вращения шара. Геронов шар - это прообраз современных реактивных двигателей.
В то время изобретение Герона не нашло применения и осталось только забавой. Прошло 15 столетий. Во времена нового расцвета науки и техники, наступившего после периода средневековья, об использовании внутренней энергии пара задумывается Леонардо да Винчи. В его рукописях есть несколько рисунков с изображением цилиндра и поршня. Под поршнем в цилиндре находится вода, а сам цилиндр подогревается. Леонардо да Винчи предполагал, что образовавшийся в результате нагрева воды пар, расширяясь и увеличиваясь в объеме, будет искать выход и толкать поршень вверх. Во время своего движения вверх поршень мог бы совершать полезную работу.
Несколько иначе представлял себе двигатель, использующий энергию пара, Джованни Бранка, живший навек раньше великого Леонардо. Это было колесо с лопатками, во второе с силой ударяла струя пара, благодаря чему колесо начинало вращаться. По существу, это была первая паровая турбина.
В XVII-XVIII веках над изобретением паровой машины трудились англичане Томас Севери (1650-1715) и Томас Ньюкомен (1663-1729), француз Денни Папен (1647-1714), русский ученый Иван Иванович Ползунов (1728-1766) и многие другие.
Папен построил цилиндр, в котором вверх и вниз свободно перемещался поршень. Поршень был связан тросом, перекинутым через блок, с грузом, который вслед за поршнем также поднимался и опускался. По мысли Папена, поршень можно было связать с какой-либо машиной, например водяным насосом, который стал бы качать воду. В нижнюю откидывающуюся часть цилиндра насыпали поpox, который затем поджигали. Образовавшиеся газы, стремясь расшириться, толкали поршень вверх. После оттого цилиндр и поршень с наружной стороны обливали диодной водой. Газы в цилиндре охлаждались, и их давление на поршень уменьшалось. Поршень под действием собственного веса и наружного атмосферного давления опускался вниз, поднимая при этом груз. Двигатель совершал полезную работу. Для практических целей он не годился: слишком уж сложен был технологический цикл его работы (засыпка и поджигание пороха, обливание водой, и это на протяжении всей работы двигателя!). Кроме того, применение подобного двигателя было далеко не безопасным.
Однако нельзя не усмотреть в первой машине Папена черты современного двигателя внутреннего сгорания.
В своем новом двигателе Папен вместо пороха использовал воду. Ее наливали в цилиндр под поршень, а сам цилиндр разогревали снизу. Образующийся пар поднимал поршень. Затем цилиндр охлаждали, и находящийся в нем пар конденсировался - снова превращался в воду. Поршень, как и в случае порохового двигателя, под действием своего веса и атмосферного давления опускался вниз. Этот двигатель работал лучше, чем пороховой, но для серьезного практического использования был также малопригоден: нужно было подводить и отводить огонь, подавать охлажденную воду, ждать, пока пар сконденсируется, перекрывать воду и т.п.
Все эти недостатки были связаны с тем, что приготовление пара, необходимого для работы двигателя, происходило в самом цилиндре. А что если в цилиндр впускать уже готовый пар, полученный, например, в отдельном котле? Тогда достаточно было бы попеременно впускать в цилиндр то пар, то охлажденную воду, и двигатель работал бы с большей скоростью и меньшим потреблением топлива.
Об этом догадался современник Денни Папена англичанин Томас Севери, построивший паровой насос для откачки воды из шахты. В его машине приготовление пара происходило вне цилиндра - в котле.
Вслед за Севери паровую машину (также приспособленную для откачивания воды из шахты) сконструировал английский кузнец Томас Ньюкомен. Он умело использовал многое из того, что было придумано до него. Ньюкомен взял цилиндр с поршнем Папена, но пар для подъема поршня получал, как и Севери, в отдельном котле.
Машина Ньюкомена, как и все ее предшественницы, работала прерывисто - между двумя рабочими ходами поршня была пауза. Высотой она была с четырех-пятиэтажный дом и, следовательно, исключительно «прожорлива»: пятьдесят лошадей еле-еле успевали подвозить ей топливо. Обслуживающий персонал состоял из двух человек: кочегар непрерывно подбрасывал уголь в «ненасытную пасть» топки, а механик управлял кранами, впускающими пар и холодную воду в цилиндр.
Понадобилось еще 50 лет, прежде чем был построен универсальный паровой двигатель. Это произошло в России, на одной из отдаленных ее окраин - Алтае, где в то время работал гениальный русский изобретатель, солдатский сын Иван Ползунов.
Ползунов построил свою «огнедействующую машину» на одном из барнаульских заводов. Это изобретение было делом его жизни и, можно сказать, стоило ему жизни, В апреле 1763 года Ползунов заканчивает расчеты и подает проект на рассмотрение. В отличие от паровых насосов Севери и Ньюкомена, о которых Ползунов знал, и недостатки которых ясно осознавал, это был проект универсальной машины непрерывного действия. Машина предназначалась для воздуходувных мехов, нагнетающих воздух в плавильные печи.
Главной ее особенностью было то, что рабочий вал качался непрерывно, без холостых пауз. Это достигалось тем, что Ползунов предусмотрел вместо одного Цилиндра, как это было в машине Ньюкомена, два попеременно работающих. Пока в одном цилиндре поршень под действием пара поднимался вверх, в другом пар конденсировался, и поршень шел вниз. Оба поршня были связаны одним рабочим валом, который они поочередно поворачивали то в одну, то в другую стороны. Рабочий ход машины осуществлялся не за счет атмосферного давления, как у Ньюкомена, а благодаря работе пара в цилиндрах.
Весной 1766-года ученики Ползунова, спустя неделю после его смерти (он умер в 38 лет), испытали машину. Она работала в течение 43 суток и приводила в движение мехи трех плавильных печей.
Потом котел дал течь; кожа, которой были обтянуты поршни (чтобы уменьшить зазор между стенкой цилиндра и поршнем), истерлась, и машина остановилась навсегда. Больше ею никто не занимался.
Создателем другого универсального парового двигателя, который получил широкое распространение, стал английский механик Джеймс Уатт (1736-1819). Работая над усовершенствованием машины Ньюкомена, он в 1784 году построил двигатель, который годился для любых нужд. Изобретение Уатта было принято на ура. В наиболее развитых странах Европы ручной труд на фабриках и заводах все больше и больше заменялся работой машин. Универсальный двигатель стал необходим производству, и он был создан.
В двигателе Уатта применен так называемый кривошипно-шатунный механизм, преобразовывающий возвратно-поступательное движение поршня вовращательное движение колеса.
Уже потом было придумано «двойное действие» машины: направляя поочередно пар то под поршень, то сверху поршня, Уатт превратил оба его хода (вверх и вниз) в рабочие. Машина стала мощнее. Пар в верхнюю и нижнюю части цилиндра направлялся специальным парораспределительным механизмом, который впоследствии был усовершенствован и назван «золотником».
Затем Уатт пришел к выводу, что вовсе не обязательно все время, пока поршень движется, подавать в цилиндр пар. Достаточно впустить в цилиндр какую-то порцию пара и сообщить поршню движение, а дальше этот пар начнет расширяться и перемещать поршень в крайнее положение. Это сделало машину экономичней: меньше требовалось пара, меньше расходовалось топлива.
Раз появилась на свет паровая машина, значит, рано или поздно кто-то непременно должен был задуматься над тем, как её усовершенствовать. Так случается со всеми изобретениями. И нередко в процессе усовершенствования появляется новое, не менее значимое изобретение. Именно так из паровой машины «вырос» и двигатель внутреннего сгорания. Многие конструкторы, присматриваясь к ней, задумывались, как сделать её компактнее и производительнее.
Самыми громоздкими, да к тому же и опасными частями были котёл, где вода превращалась в движущую силу-пар, и топка, дающее сильное пламя. Неудивительно, что, в конце концов, появилась идея вовсе отказаться от них, а вместо этого вводить какую-нибудь горючую смесь непосредственно в цилиндр и там поджигать её. При взрыве смеси её объём расширится и приведёт в движение поршень.
Таким образом, постоянно и с достаточной скоростью пуская в цилиндр «порции» горючего газа, можно обеспечить бесперебойное движение поршня, который в свою очередь через систему механизмов будет двигать рабочий вал машины.
Наиболее подходящей горючей смесью поначалу представлялся светильный газ с добавленным к нему воздухом. Но технических проблем предстояло решить много. Надо было придумать систему зажигания, которая воспламеняла бы смесь в цилиндре именно тогда, когда в него поступала новая порция смеси, саму систему её периодического впуска и выпуска отработанных газов.
Первым кто построил двигатель нового типа, был французский механик Этьен Ленуар. Это случилось ещё в 1860 году. Для зажигания использовались две электрические свечи, ввёрнутые в крышки цилиндра. Рабочий процесс в двигателе Ленуара, говоря инженерным языком, происходил с обеих сторон поршня и в два такта. Иными словами, полный цикл работы поршня происходил за время двух его ходов.
Во время первого хода происходил впуск смеси, затем-воспламенение от свечи зажигания и расширение объёма, двигающее поршень. При втором такте выпускались отработанные газы. Впуском и выпуском управляла задвижка-золотник, соединённая с эксцентриком на валу двигателя. Таким образом, впуск и выпуск происходили автоматически и определялись положением поршня в цилиндре.
Достоинства двигателя, построенного Ленуаром, состояли не только в отсутствии котла и топки. Обслуживать его было гораздо проще чем паровой, потому что не было необходимости разводить пар. Но были, увы, и существенные недостатки. Единица выработанной мощности обходилась… в семь раз дороже, чем у паровой машины. Коэффициент полезного действия составлял лишь 4%. Вся остальная энергия уходила вместе с отработавшими газами, тратилась на нагрев корпуса и другие потери.
Да и сам двигатель был пока ещё очень несовершенным. Когда частота вращения вала достигала всего лишь 100 оборотов в минуту, система зажигания уже «не успевала» за тактами, и двигатель начинал работать с перебоями. На охлаждение двигателя приходилось тратить до 120 кубических метров воды в час, потому что температура газов достигала 800 градусов. Сгорание при этом было неполным, и несгораемые частицы засоряли каналы впуска-выпуска.
Производительность двигателя Ленуара была…в тысячу раз ниже, чем производительность двигателя современного автомобиля, и это при том, что сам он был много тяжелее и массивнее. У двигателя был всего лишь один цилиндр, а давление воспламенённой смеси было невысоко, да ещё и снижалось втрое во время рабочего хода. Однако сама идея газового двигателя, безусловно, была очень перспективной. Прошло 16 лет, и это доказал немецкий изобретатель Николаус Август Отто. Он развил высказанную ещё раньше французским инженером А. Бо де Рошем идею 4-тактного цикла со сжатием и воплотил её в практику. Размышляя над принципом работы газового двигателя, Отто пришёл к выводу, что производительность станет много выше, если зажигать смесь не на середине хода поршня, как это было в двигателе Ленуара, а в его начале.
Тогда давление газов при сгорании смеси будет действовать на поршень в течение всего его хода.
Отто экспериментировал: вращая маховик вручную, он впустил смесь, затем продолжать вращать маховик и включил зажигание лишь тогда, когда поршень вернулся в исходное положение. Маховик немедленно начал работать. Таким образом выяснилось, что наилучший эффект достигается, если горючая смесь зажигается в тот момент, когда её объём сжат поршнем. Немецкий изобретатель совершенствовал газовый двигатель целых 15 лет, прежде чем его КПД превысил КПД паровой машины. Теперь он достигал 15%. Двигатель Отто назвали четырёхтактным, потому что процесс совершался в нём на продолжении четырёх ходов поршня, соответствующих двум оборотам коленчатого вала. Зажигание обеспечивалось специальной запальной камерой, где постоянно горел газ - в нужный момент золотник открывал доступ в цилиндр, и горелка зажигала смесь. В современных двигателях внутреннего сгорания применяется другая система зажигания, однако сам 4-тактный цикл Отто сохранил в подавляющем большинстве современных автомобильных двигателей. Он описал даже в школьных учебниках физике, но еще раз припомнить, как он происходит, не лишне.
Во время первого такта поршень удаляется от исходной» мёртвой точки»- головки цилиндра, создавая в нём разряжение. При этом всасывается приготовленная специальным устройством-карбюратором - горючая смесь из газа и воздуха. Выпускное отверстие в этот момент закрыто. Когда поршень достигает нижней «мёртвой точки», закрывается впускное отверстие.
Во время второго такта оба отверстия закрыты, поршень, приводимый в движение шатуном, идёт вверх и сжимает смесь. Момент сжатия наиболее благоприятен для воспламенения, потому что под давлением частицы топлива максимально сближаются и загораются все сразу, создавая большое давление.
Третий такт-это рабочий ход. В начале его происходит зажигание сжатой смеси. Оба отверстия в цилиндре закрыты, и давление сгорающей смеси воздействует на поршень, движение которого через шатун преобразуется во вращение коленчатого вала.
Во время четвёртого такта маховик, получив импульс движения, продолжает вращаться, двигая шатун, который толкает поршень. В этот момент открывается выпускное отверстие, и поршень вытесняет отработавшие газы в атмосферу.
Инерции маховика хватает на то, чтобы поршень совершил не только четвёртый такт, но и повторил первый и второй. А во время третьего такта он вновь получает импульс от сгорающей воздушной смеси, передавая его в свою очередь маховику. Впускное и выпускное отверстие открывает и закрывает специальный газораспределительный механизм. Для своевременного воспламенения смеси служит система зажигания. А чтобы запустить двигатель, надо приложить к маховику внешнюю силу, чтобы произвести первые два такта цикла.
Долгое время маховик приходилось поворачивать вручную с помощью специальной рукоятки, а теперь для этого служит специальный пусковой электродвигатель- стартер. Он автоматически отключается после первых нескольких тактов, и двигатель начинает работать самостоятельно.
Двигатель Отто позволял располагать цилиндры как угодно- вертикально, наклонно или горизонтально, поскольку сам процесс работы от этого не менялся. Однако он ещё не годился для автомобиля. Масса его была чересчур велика, да ещё для размещения запаса газа требовался огромный резервуар. Вдобавок уже при 180 оборотах вала в минуту начинались перебои в работе, и золотник быстро выходил из строя.
Тем не менее, двигатель Отто быстро вошёл в обиход в стационарных условиях, обеспечивая работу различных механизмов. А для того чтобы поставить двигатель внутреннего сгорания на колёса, надо было сделать его на много компактнее, легче и увеличить частоту вращения вала.
Заслуга дальнейшего совершенствования двигателя внутреннего сгорания во многом принадлежит немецкому изобретателю Готлибу Даймлеру, работавшему вместе с Вильгельмом Майбахом. Даймлер сумел создать конструкцию, способную работать не только на газе, но и на жидком топливе. Но справедливости ради надо сказать, что трудились над этой проблемой и многие другие изобретатели, например, соотечественник Даймлера Карл Бенц.
Мечта о новом совершенном двигателе овладела Готлибом Даймлером ещё в юности, когда он учился в Высшем политехническом училище в Штутгарте. Затем молодой инженер работал в Эльзасе и на английских машиностроительных заводах. Он внимательно следил за всеми техническими новинками. Хорошее знание английского и французского языков позволяло молодому Даймлеру читать специальную техническую литературу.
В поисках наиболее подходящего топлива для своего двигателя Даймлер остановил своё внимание на сырой нефти и продуктах её перегонки. Для того чтобы глубже постичь этот процесс, молодой инженер даже совершил в 1881 году длительную поездку в Россию.
Дело в том, что ещё в 1875 году русский химик Александр Александрович Летний впервые обнаружил, что при температуре выше 300С тяжёлые нефтяные остатки частично разлагаются на более лёгкие продукты - керосин, бензин, газы. После 1879 года по проектам А.Летнего и под его руководством в России было построено несколько заводов, где сырая нефть перегонялась через раскалённые трубы в керосин. Одним из продуктов такой перегонки был бензин. Именно он оказался тем самым топливом, какое искал для своего двигателя Даймлер, - бензин хорошо испаряется, быстро и полно сгорает, его удобно транспортировать в специальных бочках-цистернах.
В 1882 году конструкция первого двигателя Даймлера уже была окончательно разработана. Он мог работать как на газе, так и на бензине. Но все следующие конструкции даймлеровского двигателя внутреннего сгорания уже были рассчитаны исключительно на жидкое топливо. Некоторые из них имели два цилиндра, некоторые один.
Как бы то ни было, в историю техники золотыми буквами вписано: в1883 году немецкий конструктор Готлиб Даймлер вместе со своим помощником Вильгельмом Майбахом создал двигатель внутреннего сгорания, работающий на бензине. Показатели его были существенно лучше, чем у газовых предшественников. Частота вращения вала достигала 900 оборотов в минуту - в пять раз больше, чем у двигателя Отто. Мощность на 1 литр рабочего объёма цилиндра была вдвое больше, да и чисто конструктивно двигатель Даймлера-Майбаха был совершеннее.
Подвижные части двигателя закрывал специальный кожух (картер), заполненный смазочным маслом. Водяная система охлаждения была дополнена радиатором с металлическими пластинами-рёбрами. Для пуска двигатель был снабжён удобной заводной рукояткой. Такой двигатель, запатентованный конструкторами, был уже полностью готов к тому, чтобы использоваться его на колёсных машинах.
Сегодня один из самых распространенных тепловых двигателей - двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т.д., во всем мире насчитываются сотни миллионов таких двигателей.
2. Устройство современного ДВС
Поршневые ДВС состоят из механизмов и систем, выполняющих заданные им функции и взаимодействующих между собой. Основными частями такого двигателя являются кривошипно-шатунный механизм и газораспределительный механизм, а также системы питания, охлаждения, зажигания и смазочная система.
Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания.
Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания.
Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания.
Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма.
Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя.
Итак, четырехтактный поршневой двигатель состоит из цилиндра и картера, который снизу закрыт поддоном. Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки. Цилиндр, поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм. Сверху цилиндр накрыт головкой с клапанами, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а, следовательно, и с перемещением поршня.
Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение - нижняя мертвая точка (НМТ).
Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом. Расстояние, проходимое поршнем от ВМТ до НМТ, называется ходом поршня S, который равен удвоенному радиусу R кривошипа: S=2R.
Пространство над днищем поршня при нахождении его в ВМТ называется камерой сгорания; ее объем обозначается через Vс; пространство цилиндра между двумя мертвыми точками (НМТ и ВМТ) называется его рабочим объемом и обозначается Vh. Сумма объема камеры сгорания Vс и рабочего объема Vh составляет полный объем цилиндра Vа:
Vа=Vс+Vh
Рабочий объем цилиндра (его измеряют в кубических сантиметрах или метрах):
Vh=пД^3*S/4,
где Д - диаметр цилиндра. Сумму всех рабочих объемов цилиндров многоцилиндрового двигателя называют рабочим объемом двигателя, его определяют по формуле:
Vр=(пД^2*S)/4*i,
где i - число цилиндров. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия:
E=(Vc+Vh)Vc=Va/Vc=Vh/Vc+1
Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность.
3. Работа ДВС
Действие поршневого двигателя внутреннего сгорания основано на использовании работы теплового расширения нагретых газов во время движения поршня от ВМТ к НМТ. Нагревание газов в положении ВМТ достигается в результате сгорания в цилиндре топлива, перемешанного с воздухом. При этом повышается температура газов и давления. Т. к. давление под поршнем равно атмосферному, а в цилиндре оно намного больше, то под действием разницы давлений поршень будет перемещаться вниз, при этом газы - расширяться, совершая полезную работу. Вот здесь-то и дает о себе знать тепловое расширение газов, здесь и заключается его технологическая функция: давление на поршень. Чтобы двигатель постоянно вырабатывал механическую энергию, цилиндр необходимо периодически заполнять новыми порциями воздуха через впускной клапан и топливо через форсунку или подавать через впускной клапан смесь воздуха с топливом. Продукты сгорания топлива после их расширения удаляются из цилиндра через впускной клапан. Эти задачи выполняют механизм газораспределения, управляющий открытием и закрытием клапанов, и система подачи топлива.
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом:
1. Такт впуска. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение 0.07 - 0.095 МПа, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
2. Такт сжатия. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
3. Такт расширения или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 -0.75 МПа, а температура до 950 - 1200 С. 4. Такт выпуска. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
Двухтактные двигатели отличаются от четырехтактных тем, что у них наполнение цилиндров горючей смесью или воздухом осуществляется в начале хода сжатия, а очистка цилиндров от отработавших газов в конце хода расширения, т.е. процессы выпуска и впуска происходят без самостоятельных ходов поршня. Общий процесс для всех типов двухтактных двигателей - продувка, т.е. процесс удаления отработавших газов из цилиндра с помощью потока горючей смеси или воздуха. Поэтому двигатель данного вида имеет компрессор (продувочный насос). Рассмотрим работу двухтактного карбюраторного двигателя с кривошипно-камерной продувкой. У этого типа двигателей отсутствуют клапаны, их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Через эти окна цилиндр в определенны моменты сообщается с впускным и выпускным трубопроводами и кривошипной камерой (картер), которая не имеет непосредственного сообщения с атмосферой. Цилиндр в средней части имеет три окна: впускное, выпускное и продувочное, которое сообщается клапаном с кривошипной камерой двигателя.
Рабочий цикл в двухтактном двигателе осуществляется за два такта:
1. Такт сжатия. Поршень перемещается от НМТ к ВМТ, перекрывая сначала продувочное, а затем выпускное окно. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси.
Одновременно в кривошипной камере вследствие ее герметичности создается разряжение, под действием которого из карбюратора через открытое впускное окно поступает горючая смесь в кривошипную камеру.
2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно опускающийся поршень закрывает впускное окно и сжимает находящуюся в кривошипной камере горючую смесь.
Когда поршень дойдет до выпускного окна, оно открывается и начинается выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно и сжатая в кривошипной камере горючая смесь перетекает по каналу, заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.
Рабочий цикл двухтактного дизельного двигателя отличается от рабочего цикла двухтактного карбюраторного двигателя тем, что у дизеля в цилиндр поступает воздух, а не горючая смесь, и в конце процесса сжатия впрыскивается мелкораспыленное топливо.
Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на привод продувочного компрессора приводят практически к увеличению мощности только на 60...70%.
4. Применение двигателей
Двигатели внутреннего сгорания используются практически во всех областях транспорта. Они являются "сердцем" автомобиля, трактора, тепловоза, судна. Современный двигатель внутреннего сгорания представляет собой своеобразный сплав последних достижений науки и техники. Двигатель внутреннего сгорания (ДВС) является наиболее распространенным энергетическим сердцем автомобилей, тракторов, судов и других транспортных средств. Двигатели внутреннего сгорания играют важную роль в жизни человечества. Применение двигателей внутреннего сгорания чрезвычайно разнообразно: они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах. Несмотря на то, что двигатели внутреннего сгорания являются весьма несовершенным типом тепловых машин (низкий КПД, громкий шум, токсичные выбросы, меньший ресурс) благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) двигатели внутреннего сгорания очень широко распространены, например на транспорте.
5. Достоинства и недостатки ДВС
Основные преимущества 4-х и 2-х тактных ДВС
Преимущества четырёхтактных двигателей:
Больший ресурс.
Большая экономичность.
Более чистый выхлоп.
Не требуется сложная выхлопная система.
Меньший шум.
Преимущества двухтактных двигателей:
Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
Большая мощность в пересчёте на 1 литр рабочего объёма.
Проще и дешевле в изготовлении.
Карбюраторные и инжекторные двигатели.
Важное преимущество двухтактных двигателей -- отсутствие громоздкой системы клапанов и распределительного вала. Так же мощность двухтактного двигателя того же литража, что и четырёхтактного больше в 1,5 -- 1,8 раза.
В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе -- специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.
В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления -- подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой. Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов).
Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода.
Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это -- процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).
Бензиновый двигатель является довольно неэффективным и способен преобразовывать всего лишь около 20-30% энергии топлива в полезную работу. Стандартный дизельный двигатель, обычно имеет коэффициент полезного действия в 30-40%, дизели с турбонаддувом и промежуточным охлаждением до 50%. Дизельное топливо, как правило, дешевле.
Дизельный двигатель выдает высокий крутящий момент в широком диапазоне оборотов, что делает автомобиль с дизельным двигателем более «гибким» в движении, чем такой же автомобиль с бензиновым двигателем. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более легким эффективное использование мощности двигателя.
По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах -- это углеводороды (НС или СН), оксиды (окислы) азота (NОх) и сажа (или её производные) в форме черного дыма. Они могут привести к астме и раку легких. Больше всего загрязняют атмосферу дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными. Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (т. е. легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более что в них не используется система зажигания. Это стало причиной широкого применения дизелей на танках, т. к. при попадании снаряда пары бензина, всегда находящиеся в плохо вентилируемом из-за броневой защиты моторном отсеке, легко воспламенялись.
Конечно, существуют и недостатки, среди которых характерный стук дизельного двигателя при его работе и маслянистое топливо. Однако они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.Явными недостатками дизельных двигателей является необходимость использования стартера большой мощности, помутнение и застывание дизельного топлива при низких температурах, сложность в ремонте топливной аппаратуры, так как насосы высокого давления являются устройствами, изготовленными с высокой точностью. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Данные загрязнения очень быстро выводят топливную аппаратуру из строя. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов так же, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным крутящим моментом в своем рабочем диапазоне. Экологические показатели дизельных моторов значительно уступали до последнего времени моторам бензиновым. На классический дизель-мотор с механически управляемым впрыском практически невозможно установить современный нейтрализатор отработавших газов («катализатор» в просторечье) из-за нестабильного состава этих самых отработанных газов. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой «Common-rail» системы. В данном типе дизелей впрыск топлива осуществляется электрически управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что по сложности современный -- и экологически такой же чистый, как и бензиновый -- дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров сложности и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар, то в новейших «Common-rail» оно находится в диапазоне от 1000 и до 2500 бар, что влечет за собой немаленькие проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра». «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах.
Однако часть сажи не всегда окисляется, и остается в "сажевом фильтре", поэтому программа блока управления периодически переводит двигатель в режим очистки "сажевого фильтра" путем так называемой "постинжекции", то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путем сжигания накопившейся сажи. Стандартом в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы -- и так называемого "интеркулера" -- то есть устройства, охлаждающего сжатый турбонагнетателем воздух. Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры, и, соответственно, впрыснуть больше топлива. Основная конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако одинаковые детали у дизеля обычно тяжелее и более устойчивы к более высоким давлениям сжатия, имеющим место у дизеля. Головки поршней, специально разработаны под особенности сгорания в дизельных двигателях и часто (но не всегда) под повышенную степень сжатия и головки поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Во многих случаях головки поршней содержат в себе камеру сгорания.
6. Перспективы усовершенствования
Совершенствование Двигателей внутреннего сгорания идёт по пути повышения их мощности, надёжности и долговечности, уменьшения массы и габаритов, создания новых конструкций. Можно наметить также такие тенденции в развитии двигателей внутреннего сгорания, как постепенное замещение карбюраторных Двигателей дизелями на автомобильном транспорте, применение многотопливных двигателей, увеличение частоты вращения и другими улучшениями в конструкции. Над совершенствованием двигателя внутреннего сгорания работали и продолжают работать многие учёные, инженеры, испытатели. Вот некоторые интересные новости развития Двигателей внутреннего сгорания. Министр энергетики США Спенсер Абрахам представил топ-менеджерам американских автоконцернов доклад о "национальном водородном энергетическом графике". Авторы программы предлагают постепенно развертывать производство водородных двигателей вместо традиционных двигателей внутреннего сгорания. По их замыслу, это позволило бы снизить зависимость США от импорта нефти. Около года назад Министерство энергетики США вместе с ведущими американскими автоконцернами и нефтяными компаниями начало реализовывать программу по разработке и производству автомобильных двигателей на основе водородных топливных ячеек. В январе 2002 г. администрация Джорджа Буша отказалась от программы разработки сверхэкономичных автомобилей, оснащенных бензиновыми двигателями (ее начали реализовывать еще при президенте Клинтоне).
В штаб-квартире Ford Motor состоялась презентация "национального водородного энергетического графика". По словам министра энергетики США Спенсера Абрахама, выступившего с докладом перед представителями автоконцернов и нефтяных компаний, внедрение новой технологии существенно снизит зависимость страны от импорта нефти с Ближнего Востока, а также решит проблему парниковых газов, вызывающих глобальное потепление климата. Для выработки электроэнергии в двигателях на топливных ячейках используется продукт химической реакции водорода и кислорода. При этом, если применяется абсолютно чистый водород, выхлоп автомобиля состоит из водяного пара. Однако Абрахам вынужден был признать, что новая технология вряд ли получит широкое распространение до конца десятилетия. "Разработка автомобилей будущего (с двигателями) на топливных ячейках сопряжена с многочисленными техническими трудностями", - заявил Абрахам. Одна из главных проблем, по его словам, - как найти безопасный способ хранения водорода в автомобиле. Другая трудность - в том, как организовать сеть доставки водорода, которая функционировала бы по образцу ныне действующей системы поставок бензина на АЗС. Наконец, по словам Абрахама, необходимо найти экономичный способ промышленного производства водорода. Тем не менее, еще в мае General Motors представила грузовой пикап, который, по словам представителей компании, стал первым в мире автомобилем с двигателем на топливных ячейках. Он производит электричество из водорода, экстрагированного из бензина.
Пикап оборудован топливным процессором, который путем ряда химических реакций превращает бензин с низким содержанием серы в топливо, пригодное для использования в топливных ячейках.
Есть возможности усовершенствования и двухтактных ДВС, устанавливаемых, в основном, на мотоциклах. Они выдают значительно большую, чем четырёхтактные мощность и разгонную динамику за счёт меньшего холостого хода поршней и сопутствующего ему сопротивления инерции и трения. Однако нынешние двухтактники более "прожорливые", так как вместе с отработавшими газами в выхлопную трубу у них вылетает часть топливовоздушной смеси поступающей в это время в цилиндр для последующего сжигания. Логично к существующему циклу добавить кратковременную фазу принудительной (с помощью турбонаддува) вентиляции цилиндра, частично охлаждающей его изнутри простым воздухом в начальный момент обратного хода поршня, с тем, чтобы предотвратить выбросы и обеспечить улучшенные условия сгорания более обогащённой топливовоздушной смеси, впускаемой в цилиндр только после закрытия выпускного клапана.
Вывод
Актуальность данной темы заключается в том, что двигатели внутреннего сгорания играют важную роль в жизни человечества.
Я поставил перед собой задачу изучить историю создания и развитие двигателей внутреннего сгорания. Подробнее изучить строение двигателей внутреннего сгорания. Рассмотреть принцип работы двигателей внутреннего сгорания.
И из этого реферата я узнал историю создания и развития, строение, и принцип работы двигателей внутреннего сгорания и получил дополнительные знания по этой теме.
Список источников
1. В.И. Малов «Я познаю мир» Автомобили. 2002г.
2. www.yandex.ru
3. www.google.ru
4. А.В. Пёрышкин, Е.М. Гутник «Физика 8класс»
Размещено на Allbest.ru
Подобные документы
Двигатели внутреннего сгорания (ДВС) широко применяются во всех областях народного хозяйства и являются практически единственным источником энергии в автомобилях. Расчет рабочего цикла, динамики, деталей и систем двигателей внутреннего сгорания.
курсовая работа [2,5 M], добавлен 07.03.2008Назначение, конструкция, условия работы, материалы блоков и блок-картеров судовых двигателей внутреннего сгорания. Устройство и принцип изготовления цилиндровых втулок 4-х и 2-х тактных дизелей. Способы посадки цилиндровых втулок в блок цилиндров.
курсовая работа [721,8 K], добавлен 27.02.2009Общая характеристика судовых двигателей внутреннего сгорания, описание конструкции и технические данные двигателя L21/31. Расчет рабочего цикла и процесса газообмена, особенности системы наддува. Детальное изучение топливной аппаратуры судовых двигателей.
курсовая работа [2,9 M], добавлен 26.03.2011Классификация, особенности конструкции и эксплуатационные свойства двигателей внутреннего сгорания, их обслуживание и ремонт. Принцип работы четырехцилиндровых и одноцилиндровых бензиновых двигателей в современных автомобилях малого и среднего класса.
курсовая работа [39,9 K], добавлен 28.11.2014Изучение конструкции и принципа действия двигателя внутреннего сгорания и его основных систем. Расчёт рабочего цикла с учётом особенностей потребителя для ряда режимов работы. Разработка рекомендаций для повышения основных характеристик двигателя.
курсовая работа [7,6 M], добавлен 16.01.2012Техническая характеристика двигателя внутреннего сгорания. Тепловой расчет рабочего цикла и свойства рабочего тела. Процессы выпуска, сжатия, сгорания, расширения и проверка точности выбора температуры остаточных газов, построение индикаторной диаграммы.
курсовая работа [874,5 K], добавлен 09.09.2011Двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. История создания и развитие ДВС, строение и разновидности, принцип работы двигателей.
творческая работа [925,7 K], добавлен 06.03.2008Сущность и процесс запуска двигателя внутреннего сгорания, причины его широкого использования в транспорте. Принципы работы бензинового, дизельного, газового, роторно-поршневого двигателей. Функции стартера, трансмиссии, топливной и выхлопной систем.
презентация [990,4 K], добавлен 18.01.2012Классификация судовых двигателей внутреннего сгорания, их маркировка. Обобщённый идеальный цикл поршневых двигателей и термодинамический коэффициент различных циклов. Термохимия процесса сгорания. Кинематика и динамика кривошипно-шатунного механизма.
учебное пособие [2,3 M], добавлен 21.11.2012Понятие фрикций как процесса трения деталей. Фрикци в двигателях внутреннего сгорания как причина износа деталей и уменьшение коэффициента полезного действия двигателя. Применение системы смазки трущихся деталей для уменьшения фрикционного износа.
реферат [3,3 M], добавлен 01.04.2018