Судовые водоопреснительные установки
Типы опреснительных установок самоиспарения. Эксплуатация водоопреснительных установок с минимальным удельным расходом пара. Конструкция испарителя поверхностного типа вакуумной опреснительной установки. Принцип действия и конструкция установки "Нирекс".
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 12.06.2009 |
Размер файла | 972,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Реферат на тему:
Судовые водоопреснительные установки
Опреснительные установки самоиспарения разделяются на два основных типа: циркуляционные и проточные. В циркуляционных установках испаряемая вода с помощью специального насоса многократно циркулирует между подогревателем и испарителем, при этом часть неиспарившегося рассола выдувается за борт. В проточных установках, как правило многоступенчатых, испаряемая вода предварительно подогревается образующимся вторичным паром, последовательно проходит через подогреватели-конденсаторы отдельных ступеней, затем окончательно перегревается в подогревателе, имеющем внешний источник тепла, и последовательно испаряется, проходя по ступеням испарителей.
Рис. 1. Принципиальная схема циркуляционной водоопреснительной установки самоиспарения.
На рис. 1 показана принципиальная схема циркуляционной водоопреснительной установки самоиспарения.
Питательная забортная вода, предварительно нагретая в подогревателе 4 греющим паром, подается через дроссельный клапан в испаритель 2. В испарителе, представляющем собой цилиндр, большую часть которого занимают паровое пространство с сепарирующим устройством 3, поддерживается вакуум за счет сообщения с конденсатором посредством трубопровода вторичного пара. Вследствие этого вода, поступающая из подогревателя, оказывается перегретой по отношению к температуре, соответствующей меньшему давлению в испарителе. За счет избыточного тепла, образовавшегося после дросселирования, вода, разбрызгиваемая в паровое пространство испарителя, испаряется за счет своего тепла парообразования. Температура неиспарившейся части воды понижается до температуры насыщения, соответствующей давлению в испарителе. Неиспарившаяся вода собирается на дне испарителя, откуда забирается циркуляционным насосом 5 и через подогреватель 4 снова подается в испаритель. Цикл периодически повторяется. Часть неиспарившегося рассола удаляется насосом за борт. Питательная забортная вода по трубопроводу через регулятор питания 1 поступает в испаритель; предварительно она может быть подогрета за счет утилизационного тепла энергетической установки. Вторичный пар, образовавшийся вследствие испарения большой поверхности капелек разбрызгиваемой воды, проходит через сепаратор 3, где осушается, и затем уходит в конденсатор.
Циркуляционные установки по отношению к проточным отличаются увеличенными габаритами вследствие большого парового объема испарителя и сложностью устройства в связи с большим количеством обслуживающих насосов.
С появлением в опреснителе вторичного пара закрывают воздушные краны, запускают циркуляционный насос конденсатора и открывают клапаны на паропроводах вторичного пара и дистиллята; включают соленомеры.
При эксплуатации водоопреснительных установок следует добиваться их экономичной работы, которая определяется минимальным удельным расходом свежего пара.
Это достигается путем:
· установления наивыгоднейших значений параметров свежего и вторичного пара;
· поддержанием в опреснителе надлежащей плотности рассола;
· минимальным расходом воды на конденсацию и охлаждение дистиллята;
· рациональным питанием опреснителя забортной водой;
· содержанием в чистоте нагревательных поверхностей змеевиков опреснителя, водоподогревателей и конденсатора;
· содержанием в исправном состоянии изоляции водоопреснительной установки.
В период действия водоопреснительной установки необходимо следить за качеством вторичного пара и дистиллята по показаниям соленомеров и периодически, не реже одного раза в сутки, брать пробы для определения качества дистиллята химическим способом. Соленость рассола должна быть в пределах 5000-- 7000° Б. Увеличение солености влияет на качество дистиллята, а также отражается на производительности установки. Вследствие интенсивного образования накипи снижается экономичность работы установки.
Плотность рассола определяют путем взятия пробы ареометром, не реже одного раза за вахту. Значение плотности по показанию ареометра соответствует солености. В опреснителе должен поддерживаться постоянный уровень рассола, что достигается хорошей работой регулятора питания. Для этого необходимо следующее: свободное перемещение питательного клапана, поплавка и штоков в местах прохода через сальники; хорошая плотность поплавка, чистота патрубков, соединяющих паровое и водяное пространство опреснителя с регулятором.
На теплоходах отечественного морского флота получили распространение утилизационные вакуумные водоопреснительные установки с камерами испарения бесповерхностного типа с циркуляционным контуром рассола. Наиболее широко распространены установки датской фирмы «Нирекс», установленные на грузовых теплоходах серии «Красноуральск» производительностью 21 т/сут и танкерах серии «Леонардо да Винчи» производительностью 12 и 20 т/сут.
Водоопреснительные установки «Нирекс» с циркуляционным контуром рассола выпускаются производительностью от 10 до 60 т/сут. Как и в проточных установках небольшой производительности, фирма «Нирекс» применяет пластинчатые теплообменные аппараты и в установках с циркуляционным контуром рассола. Однако, в связи с нецелесообразностью применения пластинчатых аппаратов в качестве испарителей и конденсаторов в установках большей производительности, такие аппараты применяются как подогреватели рассола и охладители дистиллята, используемого в качестве охлаждающей воды в конденсаторе смесительного типа. Различная производительность рассматриваемых установок достигается различным числом пластин, образующих поверхности теплообмена подогревателей рассола и охладителей -дистиллята. По многим другим узлам установки унифицированы.
Принцип действия установки «Нирекс» с камерами испарения бесповерхностного типа с циркуляционным контуром рассола понятен из рассмотрения ее схемы, приведенной на рис. 2. Для подогрева рассола имеется магистраль 1 греющей воды. Из нижней части камеры испарения 3 циркуляционная секция сдвоенного рассольного насоса 16 принимает рассол и через пластинчатый подогреватель 2 подает подогретый рассол в камеру испарения, в которой около 1 % его испаряется. Неиспарившийся рассол стекает в нижнюю часть камеры, откуда вновь поступает в циркуляционную секцию насоса. Пар из камеры испарения через сепаратор 4 поступает в конденсатор смесительного типа. Часть рассола из камеры испарения стекает в нижнюю часть камеры сепаратора (чем поддерживается уровень в первой), откуда вместе с рассолом, отделившимся от пара в сепараторе, удаляется; за борт другой секцией 17 рассольного насоса. Питательная забортная вода, подогретая на 4--6°, подается через ротаметр 15 и клапан 18 во всасывающую магистраль циркуляционного рассольного насоса 16.
Рис. 2. Водоопреснительная установка «Нирекс» с циркуляционным контуром рассола
Конденсатор обслуживается также сдвоенным дистиллятным насосом 14 и вакуумным эжектором 13, рабочую забортную воду к которому подает эжекторный насос 8 по трубопроводу 7. В смесительном конденсаторе 5 пар конденсируется, соприкасаясь с охлаждающим конденсатом, стекающим струйками через отверстия в днище расположенного вверху бачка. Из сборника охлаждающий дистиллят забирается циркуляционной секцией сдвоенного дистиллятного насоса 14, прокачивается через пластинчатым охладитель 6 и через бачок снова поступает в конденсатор.
Таким образом, охлаждающий дистиллят циркулирует, попеременно охлаждаясь в охладителе (через который прокачивается забортная вода) и нагреваясь в конденсаторе. Дистиллят, образующийся при конденсации пара, смешивается с охлаждающим дистиллятом, стекает через переливную трубу и удаляется откачивающей секцией дистиллятного насоса в цистерны. На напорной магистрали этого насоса установлены суммирующий расходомер 12, датчик соленомера 11 и невозвратный клапан. В случае засоления, обычно при содержании хлоридов более 80 мг/л, дистиллят через электромагнитный клапан 10 автоматически сбрасывается в льяла (одновременно включается сигнализация)'.
Вакуум создает гидравлический эжектор 13, рабочей средой в котором является забортная вода, подаваемая сдвоенным эжекторным насосом 8. Несколько ступеней этого насоса используется для подачи забортной воды к эжектору и еще одна отдельная ступень служит для увеличения напора водовоздушной смеси, удаляемой из эжектора за борт.
При первом пуске установки поддон конденсатора заполняется пресной водой из гидрофорной системы по специальному трубопроводу, не показанному на рис. 2. Подача воды на рассеивающие решетки днища бачка конденсатора обеспечивается насосом 14. Когда начинается образование пресной воды, избыток ее поступает по переливной трубе к отдельной ступени того же насоса. Количество получаемого дистиллята непрерывно контролируется соленомером 11, чтобы не допустить засоления.
Необходимый для процесса опреснения вакуум поддерживается эжектором 13, который удаляет воздух из установки через трубопровод 9.
При пуске в действие установки необходимо обеспечить доступ воды в эжектор 13, так как его резиновые подшипники без водяной смазки могут выйти из строя. Циркуляционные насосы 16 и 14 пускаются в ход при вакууме около 70%. При достижении вакуума около 90% дно камеры распыливания заполняется забортной водой. При этом клапан 18 регулируется так, чтобы количество поступающей в испаритель воды превышало в 10--15 раз (но не меньше чем в 8 раз) количество испаряющейся воды. При нормальном уровне водомерное стекло на камере испарения должно быть заполнено водой на три четверти.
В начале эксплуатации установки (10-:-20 мин) получаемый дистиллят сливают за борт, так как он имеет повышенную соленость. Отбором проб воды через пробные краны проверяют качество работы соленомера.
Для вывода из действия установки необходимо: прекратить поступление воды от ДВС; остановить циркуляционный насос 16 забортной воды; после отбора дистиллята остановить циркуляционный насос 14; закрыть вентиль на цистерну пресной воды; остановить эжекторный насос для прекращения подачи воды на эжектор; отключить напряжение к соленомеру; прекратить поступление забортной воды в конденсатор.
Наличие на судне водоопреснительной установки позволяет уменьшить его водоизмещение, что приведет к увеличению скорости при сохранении мощности силовой установки или к уменьшению мощности силовой установки при сохранении скорости хода. Увеличение скорости судна дает экономический эффект от увеличения его оборачиваемости, а уменьшение мощности силовой установки -- снижение построечной и эксплуатационной стоимости силовой установки и судна в целом.
Конструкция испарителя поверхностного типа вакуумной опреснительной установки СРТ с использованием в качестве теплоносителя отработавших газов от главного дизеля показана на рис. 3. Испаритель состоит из цилиндрического вертикального корпуса 4 с размещенными внутри двумя трубными решетками 5 и 9, к которым приварены трубки 8, расположенные в шахматном порядке. В межтрубном пространстве имеются две направляющие перегородки 7. Отработавшие газы главного двигателя входят через патрубок 14 в межтрубное пространство, совершают два поворота, через стенки трубок передаюттеплоту на испарение рассола и уходят через патрубок 6 в атмосферу.
Рис. 3. Испаритель вакуумный поверхностный утилизационный установки СРТ.
В нижней крышке 13 расположены входной 12 и выходной 11патрубки для морской воды и рассола, а также закрытый патрубок 10 с цинковым протектором для предохранения испарителя от коррозии. В верхней крышке имеются сепараторы пара: конусный 3 и сетчатый 2 с кольцами Рашига 1. Уравнительная трубка поплавкового регулятора уровня присоединена к патрубку 15.
Производительность испарителя равна 500 кг/ч.
На современных судах получили распространение многоступенчатые бесповерхностные адиабатные опреснители, обладающие высокими экономическими показателями. Они имеют наиболее высокий коэффициент полезного использования теплоты и значительную производительность.
На рис. 4 изображена конструкция пятиступенчатого опреснителя бесповерхностного адиабатного типа М-5.
Рис. 4. Конструкция пятиступенчатого опреснителя бесповерхностного адиабатного типа М-5.
Основой опреснительного агрегата является пятикамерный корпус, который с помощью опорных лап 3 крепится к фундаментной раме. Каждая камера разделена на две части: нижнюю - испарительную и верхнюю - конденсаторную с жалюзийным сепаратором 7, очищающим пар от капель рассола. Нижняя испарительная часть камер изготовлена из листовой углеродистой стали, а верхняя с встроенным конденсатором 1 - из нержавеющей стали, трубки - мельхиоровые, трубные доски - латунные; крышки - сварные из листов медно-никелевого сплава. Крышки 9 конденсаторов имеют внутри цинковые протекторы для предохранения от коррозионного разъедания. Для осмотра внутренних поверхностей камер и их чистки на переднем фронте корпуса предусмотрены лазы, закрываемые крышками 2, в которых имеются смотровые окна 11. К днищу камер приварены трубы 5, по которым забортная питательная вода подается в камеры испарения. Отбойные колпаки 6 выполняют роль отражателей, препятствуя уносу крупных капель воды с паром. Неиспарившийся рассол удаляется из камер через, спускные трубы 4, которые соединяются с питательными трубами последующих камер испарения.
Дистиллят, собирающийся в сборниках конденсатов, перетекает из одной камеры в другую через перепускные трубы 10,являющиеся гидрозатворами. Воздух из камеры в камеру перепускается через коленчатые патрубки 8.
Корпус опреснителя покрыт снаружи тепловой изоляцией, и имеет кронштейны и приварыши для крепления приборов и оборудования.
Система охлаждения забортной воды предназначена для охлаждения смазочного масла, пресной воды замкнутого контура и наддувочного воздуха дизелей. Для этого вода из-за борта прокачивается через соответствующие охладители и сливается за борт.
Наиболее часто применяемое оборудование системы:
- кингстоны, бортовой и донный, через которые поступает вода;
- фильтры за кингстонами;
- центробежные электроприводные насосы;
- охладители смазочного масла;
- охладители пресной воды;
- охладители наддувочного воздуха ГД;
- маслоохладители и воздухоохладители ДГ;
- охладители воздушных компрессоров;
- подшипники гребного вала;
- отливной клапан;
-терморегулирующий клапан VT (управляемый автоматически или вручную);
- опреснительная установка.
Литература
1. О.Г.Колесников, Судовые вспомогательные механизмы и системы, М.,Транспорт, 1977
2. А.Е.Богомольный, Судовые вапомогательные и рыбопромысловые механизмы, Л., Судостроение, 1971
3. Л.И.Токарев, Судовые электрические приборы управления, М., Транспорт, 1988
4. М.М.Баранников, Электрооборудование и вспомогательные механизмы промысловых судов, М., Агропромиздат, 1987
Подобные документы
Принципы подбора насосов для обеспечения перемещения жидкости по трубопроводу. Преимущества и принцип действия центробежных насосов, их попарное использование. Устройство сепаратора, его режимы работы. Описание опреснительных установок самоиспарения.
реферат [1,6 M], добавлен 04.06.2009Отчистка и дефектовка труб. Изготовление элементов трубопроводов. Гибка труб по технологическим эскизам и картам замеров. Испытания на прочность. Монтаж опреснительной установки. Выбор оборудования, приспособлений, инструмента для монтажа установки.
контрольная работа [989,1 K], добавлен 15.12.2014Общая характеристика использования ядерных энергетических установок в морском транспорте. Обоснование выбора энергетической установки ледокола. Расчет мощности двигателя, турбины. Технология изготовления и монтажа трубопроводов системы гидравлики.
дипломная работа [2,5 M], добавлен 16.07.2015Изучение использования судовых ядерных установок. Обоснование выбора энергетической установки фрегата. Тепловой расчет двигателей. Описания схемы и принципа работы мобильной установки кондиционирования. Процесс монтажа холодильной машины в контейнер.
дипломная работа [946,3 K], добавлен 16.07.2015Характеристики и режимы работы СЭУ. Судовые комбинированные энергетические установки. Системы, которые обслуживают двигатель. Системы управления комплексом двигатель-ВРШ. Холодильные установки, их классификация по принципу работы и холодильному агенту.
контрольная работа [2,6 M], добавлен 14.07.2008Изобретение ядерного реактора. Принцип действия судовых ядерных энергетических установок. Первые атомоходы, их назначение и конструкция. Типы судов с ядерной судовой энергетической установкой. Конструирование, постройка и эксплуатация атомоходов.
реферат [299,6 K], добавлен 19.01.2015Поняття енергетичної установки, її розташування на судні. Проектування комплектуючого устаткування: двигуна, передач, муфти, валопроводів, електростанції, котельних та опріснювальних установок. Режими роботи судна і установки; розрахунок потоків енергії.
дипломная работа [109,7 K], добавлен 13.08.2014Состав и функции основных элементов вспомогательного энергетического комплекса судна. Обоснование оптимального режима работы вспомогательных двигателей. Расчет топливной системы судовой энергетической установки. Выбор водоопреснительной установки.
дипломная работа [860,5 K], добавлен 04.02.2016Обзор флота нефтеналивных судов. Энергетические установки нефтеналивных судов. Оценка эксплуатационных качеств дизельных энергетических установок. Расчет теплоутилизационного контура. Выбор оптимального скоростного режима работы энергетических установок.
дипломная работа [4,6 M], добавлен 21.06.2015Судовая сеть и ее характеристика. Технические показатели насоса. Конструкция, принцип действия, обслуживание в работе центробежных насосов. Состав рулевого устройства, типы рулевых органов, рулевые приводы. Принцип действия электрических рулевых машин.
шпаргалка [1,1 M], добавлен 13.01.2011