Испытания и измерение сопротивления и емкости изоляции в отрасли железных дорог

Характеристика видов воздействия на изоляцию, дефекты и механизмы их возникновения. Основные виды профилактических испытаний и методов контроля. Методика выявления повреждений в силовых трансформаторах по результатам анализа растворенных в масле газов.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 18.01.2009
Размер файла 108,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

19

ФАЖТ РФ

Иркутский Государственный Университет Путей Сообщения

Кафедра: ЭЖТ

Дисциплина: "Техника высоких напряжений"

Реферат

Тема: "Испытания и измерение сопротивления и ёмкости изоляции в отрасли железных дорог"

Выполнил:

студент группы ЭНС-04-2

Степанов И. К.

Проверил:

д-р техн. наук, профессор

Закарюкин В. П.

Иркутск 2008 г.

Содержание

Введение

1. Дефекты изоляции и механизмы их возникновения

2. Основные виды профилактических испытаний изоляции

3. Контроль сопротивления изоляции

4. Контроль ёмкости изоляции

5. Хроматографический анализ масла

Заключение

Список литературы

Введение

В процессе эксплуатации изоляции на нее воздействуют частичные разряды, тепловые и механические нагрузки, из окружающего воздуха проникает влага. Все это приводит к появлению сосредоточенных и распределенных дефектов изоляции.

Методы контроля состояния изоляции подразделяются на неразрушающие методы, производимые при пониженных напряжениях и при рабочих напряжениях, и на разрушающие методы контроля, предполагающие использование напряжений, повышенных по сравнению с рабочими.

1. Дефекты изоляции и механизмы их возникновения

Повторюсь, что в процессе эксплуатации на изоляцию воздействуют электрические, механические и тепловые нагрузки, вызывающие постепенное ухудшение ее свойств, связанное с уменьшением сопротивления изоляции, ростом диэлектрических потерь, снижением электрической прочности. Процесс ухудшения свойств называют старением изоляции. Эти изменения носят, как правило, необратимый характер и завершаются пробоем изоляции, что ограничивает сроки службы изоляционных конструкций.

Различают четыре основных вида воздействия на изоляцию и четыре процесса старения изоляции:

· электрические нагрузки, связанные с возможной ионизацией при большой напряженности электрического поля - электрическое старение изоляции;

· тепловые нагрузки, приводящие постепенному разложению или появлению трещин в изоляции - тепловое старение изоляции;

· механические нагрузки, связанные с возникновением и развитием трещин в твердой изоляции - механическое старение;

· проникновение влаги из окружающей среды - увлажнение изоляции.

Возникающие в изоляции дефекты подразделяются на сосредоточенные (трещины, газовые включения, эрозия, увлажнение небольшого объема изоляции) и распределенные, охватывающие значительный объем или поверхность изоляции.

Электрическое старение твердой изоляции происходит из-за возникновения разрядных процессов в толще изоляции. Электрическое старение может иметь место при средней напряженности электрического поля на промежутке, много меньшей (в 5..20 раз) кратковременной электрической прочности изоляции. С увеличением напряжения темпы электрического старения возрастают. Основной причиной электрического старения внутренней изоляции являются частичные разряды, то есть такие разрядные процессы в изоляции, которые распространяются лишь на часть изоляционного промежутка. Они возникают в ослабленных местах изоляции: в газовых включениях, в местах резкого усиления напряженности поля. Наибольшую опасность представляют частичные разряды в газовых включениях, так как они возникают при меньших напряжениях, чем разряды в жидких или твердых компонентах твердой изоляции. Последнее обстоятельство связано с меньшей диэлектрической проницаемостью газового промежутка и соответственно большей напряженностью электрического поля в нем, а также с малой электрической прочностью газа по сравнению с твердой или жидкой изоляцией.

Закономерности развития частичных разрядов можно проиллюстрировать схемой замещения, изображенной на рис. 1, где изображен газовый пузырь в твердой изоляции и схема замещения изоляции.

Рис. 1. Схема развития частичных разрядов в газовом включении

На рис. 1 Cв - емкость газового включения, Ст - емкость части изоляции, включенной последовательно с газовым включением, Cа - емкость оставшегося массива изоляции. При подаче на изоляцию переменного напряжения на воздушном включении также будет изменяющееся во времени напряжение, определяемое емкостным делителем:

,

и при достижении этим напряжением пробивного напряжения газового включения Uв-пр происходит пробой газового включения с резким снижением напряжения на нем до уровня напряжения гашения Uв-г, которое меньше пробивного напряжения. После этого, если напряжение на всей изоляции продолжает возрастать, то снова начинается рост напряжения и на газовом включении и может произойти новый пробой, то есть в газовом включении происходят многократные пробои промежутка. Графическое изображение зависимости напряжений от времени показаны на рис. 2 при условии подачи напряжения в нулевой момент времени.

Рис. 2. Зависимость напряжений от времени при частичных разрядах

Под действием частичных разрядов происходит постепенное разрушение микрообъемов изоляции, размеры газового включения растут в направлении электрического поля, и этот процесс завершается пробоем изоляции.

При постоянном напряжении интенсивность частичных разрядов существенно слабее, поскольку заряжение емкости газового включения Cв происходит за счет токов утечки через изоляцию, которые обычно много меньше емкостных токов.

Эффективным средством борьбы с частичными разрядами является пропитка изоляции. Замена воздуха жидким диэлектриком с диэлектрической проницаемостью ?r>1 увеличивает емкость Cв, снижая напряжение на воздушном включении; кроме того, электрическая прочность жидкого диэлектрика существенно больше электрической прочности газа.

Тепловое старение внутренней изоляции возникает за счет ускорения различных химических реакций при рабочих температурах изоляции, обычно лежащих в пределах от 60оС до 130оС. Химические реакции приводят к постепенному изменению структуры и свойств материалов и к ухудшению изоляции в целом.

Для твердой изоляции наиболее характерным является постепенное снижение механической прочности в процессе теплового старения, что приводит к повреждению изоляции под действием механических нагрузок и затем к ее пробою. В жидких диэлектриках продукты разложения загрязняют изоляцию и снижают ее электрическую прочность. Для органической изоляции повышение температуры на 10оС снижает срок службы изоляции вдвое; в сложной изоляции силовых трансформаторов процесс теплового старения протекает быстрее, чем по десятиградусному правилу.

Старение изоляции возникает и при механических нагрузках на твердую изоляцию. Сущность этого вида старения заключается в том, что в напряженном материале возникает упорядоченное движение локальных микродефектов, и за счет этого образуются и постепенно увеличиваются в размерах микротрещины. При действии сильных электрических полей в микротрещинах возникают частичные разряды, ускоряющие разрушение изоляции.

Увлажнение изоляции может рассматриваться как одна из форм старения изоляции. Влага проникает в изоляцию главным образом из окружающего воздуха. При этом происходит уменьшение сопротивления изоляции, рост диэлектрических потерь, связанный с дополнительным нагревом изоляции и ускоряющий тепловое старение изоляции. Неравномерное увлажнение, кроме того, приводит к искажению электрического поля и снижает пробивное напряжение изоляции.

Увлажнение - процесс в принципе обратимый, влага может быть удалена из изоляции сушкой. Однако сушка крупногабаритных конструкций требует вывода оборудования из строя на длительное время, а в ряде случаев извлечение влаги из изоляции затруднено или невозможно, например, практически не поддается сушке бумажно-масляная изоляция кабелей, вводов и другого оборудования.

Для снижения увлажнения применяют герметизацию конструкций, воздухоосушители, гибкие диафрагмы и другие методы.

2. Основные виды профилактических испытаний изоляции

Перечисленные выше механизмы старения изоляции не исчерпывают все воздействующие на изоляцию факторы. Дополнительно на изоляцию воздействуют загрязнения, внешний перегрев, перенапряжения, короткие замыкания. Влияние этих факторов на характеристики изоляции представлено в табл. 1.

Таблица 1

Изменение характеристик изоляции в зависимости от воздействующих факторов

Фактор

Изменение

Увлажнение

Уменьшение сопротивления

Увеличение емкости

Увеличение tg ?

Повышение температуры

Повышение давления во вводах

Снижение пробивного напряжения трансформ. масла

Изменение химического состава

Частичные разряды

Загрязнение

Уменьшение сопротивления

Увеличение tg ?

Повышение температуры

Снижение пробивного напряжения трансформ. масла

Изменение химического состава

Частичные разряды

Перенапряжения

Пробой изоляции

Частичные разряды

Перегрев

Уменьшение сопротивления

Увеличение tg ?

Повышение давления во вводах

Изменение химического состава

Частичные разряды

Короткие замыкания

Термические и динамические внешние воздействия на изоляцию

Дефекты в изоляции подразделяются на сосредоточенные (трещины и микротрещины, газовые включения, эрозия, увлажнение небольшого объема) и распределенные, охватывающие значительные объемы или поверхности изоляции. Возможности обнаружения разных видов дефектов значительно различаются; классификация методов диагностики и испытаний изоляции производится по признаку возможного разрушения изоляции в процессе контроля и по признаку применения электрических методов.

По признаку возможного разрушения изоляции методы контроля изоляции подразделяются на три группы:

· неразрушающие методы контроля, производимые при напряжениях, меньших рабочих, и основанные на явлениях, возникающих в слабых электрических полях (электропроводность и поляризационные явления) и связанных с пробивным напряжением изоляции;

· неразрушающие методы контроля, производимые при рабочих напряжениях, - в основном это контроль частичных разрядов, а также тепловой и ультразвуковой контроль;

· разрушающие методы контроля, связанные с использованием напряжения, повышенного по сравнению с рабочим напряжением и вызывающего ускоренное разрушение изоляции в дефектном месте; приложение повышенного напряжения не исключает появления дефекта, который может привести к пробою изоляции во время эксплуатации.

По признаку применения электрических методов методы контроля подразделяют на две группы:

· электрические методы контроля изоляции, которые рассмотрены далее;

· неэлектрические методы контроля: хроматографический анализ газов в трансформаторном масле, ультразвуковые методы контроля, радиоволновой метод, тепловизионный метод, оптикоэлектронный метод, рентгенографический метод.

3. Контроль сопротивления изоляции

Основное требование к изоляции сводится к отсутствию ее нагрева при рабочем напряжении, и вместе с тем от изоляции требуется не проводить ток при постоянном напряжении. Измерение сопротивления изоляции является одним из простейших, но весьма эффективных методов контроля состояния изоляции, позволяющих фиксировать один из самых распространенных дефектов изоляции - ее увлажнение, приводящее к существенному нагреву при переменном напряжении из-за увеличения сквозной электропроводности диэлектрика и увеличения поляризационных потерь. Измерение сопротивления изоляции позволяет контролировать как сплошное увлажнение изоляции, так и увлажнение только одного из слоев в слоистой изоляции.

Сопротивлением изоляции называют отношение напряжения, приложенного к изоляции, к току через сечение изоляции, при приложении постоянного напряжения и через 1 мин. после подачи напряжения, то есть это - сопротивление при постоянном напряжении через 1 мин. после его подачи. Сплошное увлажнение изоляции приводит к снижению ее сопротивления ввиду высокой проводимости влаги, что позволяет по величине сопротивления сразу судить о возможном ее увлажнении. Из-за наличия абсорбционных явлений ток через изоляцию при приложении постоянного напряжения меняется по величине в течение некоторого времени порядка десятков секунд, поэтому сопротивлением изоляции и считают ее сопротивление через 60 с после приложения напряжения. Суть абсорбционных явлений - и одновременно возможность контроля слоистого увлажнения изоляции - поясняет рис. 3, на котором изображена двухслойная изоляция и две равноправные эквивалентные схемы замещения двухслойной изоляции.

Схема рис. 3б является естественной схемой замещения двухслойной изоляции, учитывающей сквозные токи через слои изоляции и емкости слоев. Схема рис. 3в совершенно аналогична схеме рис. 3б, если выполняются соотношения следующего типа:

, ;

, .

Рис. 3. Двухслойная изоляция и различные схемы ее замещения

При подаче постоянного напряжения сначала происходит резкий скачок напряжения от нуля до установившегося значения, при котором ток протекает только по емкостным элементам (рис. 3б). Распределение напряжения определяется емкостями этих элементов. По прошествии некоторого времени емкостные элементы перестают играть какую-либо роль и распределение напряжения по слоям определяется их омическими сопротивлениями. Если величины сопротивлений велики, то перезарядка емкостных элементов длится достаточно долго, показания мегаомметра в течение некоторого времени (десятки секунд) будут изменяться; хорошая изоляция без увлажнения означает достаточно длительный процесс перехода в установившийся режим. При увлажнении одного из слоев перезарядка через один из низкоомных элементов R1 или R2 пройдет достаточно быстро, за время менее 15 с. Если даже второй слой имеет большое сопротивление (а при переменном напряжении низкоомный слой будет нагреваться емкостными токами высокоомного слоя), то по соотношению сопротивлений, измеренных в разные моменты времени (конкретно - через 60 с, R60, и через 15 с, R15), можно судить об увлажнении одного из слоев.

Если пренебречь начальным скачком тока, заряжающего геометрическую емкость CГ, то после приложения постоянного напряжения ток через изоляцию определяется суммой сквозного тока через элемент R (рис. 3в) и тока заряда элемента ?C:

,

откуда - сопротивление двухслойной изоляции меняется во времени, и скорость изменения выше, если хотя бы один из слоев имеет невысокое сопротивление (рис. 4); .

Таким образом, контролируя величину R60, можно судить о наличии сплошного увлажнения изоляции, а по отношению , называемому коэффициентом абсорбции, можно судить о наличии увлажнения одного из слоев изоляции. Более конкретно, если Kабс1.3, то, как это следует из опытных данных, изоляция недопустимо увлажнена.

Рис. 4. Зависимость сопротивления от времени при сухой и увлажненной изоляции

Коэффициент абсорбции является показателем увлажнения изоляции при температурах ниже 35..40ОС. При более высокой температуре возрастает ток сквозной проводимости и коэффициент абсорбции и для сухой, и для влажной изоляции приближаются к единице.

При измерении сопротивления изоляции принимают во внимание прежде всего абсолютную величину сопротивления R60, которая должна быть не меньше нормированного значения, а затем и коэффициент абсорбции. Если обе величины не выходят за пределы нормы, то говорят о том, что увлажнения изоляции не обнаружено; если хотя бы одна из величин неудовлетворительна, то делают вывод о недопустимом увлажнении изоляции.

Требуемые значения сопротивления изоляции для различных установок представлены в правилах эксплуатации электроустановок. Для силовых трансформаторов значения сопротивления изоляции, устанавливаемые нормами, зависят от температуры обмоток; так, у трансформаторов с номинальным напряжением обмотки высшего напряжения 35 кВ при 20ОС сопротивление главной изоляции должно быть не менее 300 МОм, у трансформаторов 110 кВ - не менее 600 МОм. Поскольку изоляция трансформаторов включает в свой состав ряд изоляционных промежутков, для контроля характеристик изоляции, включая и измерения сопротивления, используют нормативные схемы измерения. Перечень схем для двухобмоточных и трехобмоточных трансформаторов приведен в табл. 2.

Измерения сопротивления изоляции в эксплуатации производят мегаомметрами на напряжение 0.5 кВ, 1 кВ или 2.5 кВ. Наиболее распространенными являются мегаомметры со встроенными генераторами, обеспечивающими автономную работу; к такому типу относится мегаомметр М1102. Мегаомметры типа Ф4101, позволяющие измерять сопротивления до 50000 МОм, имеют комбинированное питание (от сети и от сухих элементов) и построены по последовательной схеме, в которой источник напряжения, измерительный элемент и испытуемая изоляция включаются последовательно.

Таблица 2

Схемы измерения характеристик изоляции трансформаторов

Последовательность измерений

Двухобмоточные

Трехобмоточные

Измеряемые обмотки

Заземляемые части

Измеряемые обмотки

Заземляемые части

1

НН

Бак, ВН

НН

Бак, СН, ВН

2

ВН

Бак, НН

СН

Бак, НН, ВН

3

(ВН+НН)*

Бак

ВН

Бак, НН, СН

4

-

-

(ВН+СН)*

Бак, НН

5

-

-

(ВН+СН+НН)*

Бак

*Измерения обязательны только для трансформаторов мощностью 16000 кВА и более.

4. Контроль емкости изоляции

Контроль величины емкости изоляции позволяет выявлять слоистое увлажнение изоляции. Емкость идеального конденсатора не зависит от частоты; чем больше диэлектрические потери в реальном конденсаторе или в изоляции, тем сильнее зависит от частоты емкость идеального емкостного элемента в схеме замещения реального конденсатора.

Можно попытаться использовать простую параллельную схему замещения двухслойной изоляции по рис. 5.1а с параллельно соединенными резистивным элементом RП и емкостным элементом CП (рис. 3г). При этом, однако, значения параметров схемы замещения оказываются частотно-зависимыми; в частности, , . Вид зависимости показан на рис. 5. С ростом степени увлажнения возрастает размах изменения емкости с изменением частоты. Использование этой зависимости может служить для обнаружения слоистого увлажнения изоляции.

Рис. 5. Зависимость емкости от частоты для двухслойной изоляции

Для оценки состояния изоляции измерения производят на частотах 2 Гц и 50 Гц при неизменной температуре изоляции и затем определяют отношение , которое и служит показателем качества изоляции. На основании опыта установлено, что изоляция имеет недопустимое увлажнение, если >1.3.

Для измерения емкостей используются два основных принципа, проиллюстрированные рис. 6.

Переключатель в схеме рис. 6а периодически подключает испытуемую изоляцию к источнику постоянного напряжения, заряжая емкость изоляции, а затем - к цепи с гальванометром PA, через который емкость изоляции разряжается. Средний ток через гальванометр определяется частотой переключения, , так что при измерении на частотах 2 Гц и 50 Гц отношение емкостей определяется отношением токов: . По такому принципу работают приборы контроля влажности серии ПКВ.

Рис. 6. Принципиальное устройство приборов емкостного контроля увлажнения

По схеме рис. 6б испытуемая изоляция заряжается от источника постоянного напряжения, а затем на короткое время, примерно на четверть периода частоты 50 Гц, то есть на 5 мс, подключается к образцовому конденсатору C0. На образцовый конденсатор переносится заряд, пропорциональный емкости C50 (примерно соответствующей геометрической емкости CГ рис. 3в). Затем изоляция снова заряжается, кратковременно замыкается для разряда геометрической емкости и на время около четверти периода частоты 2 Гц (примерно 130 мс) подключается к образцовому конденсатору для снятия части заряда с абсорбционной емкости ?C, что позволяет определить разность С250. По этой разнице и по значению С50 определяется отношение емкостей: . Напряжение на эталонном конденсаторе измеряется с помощью электронного вольтметра, имеющего большое входное сопротивление. По этому принципу работают приборы серии ПЕКИ и У-268.

5. Хроматографический анализ масла

При возникновении дефектов в маслонаполненной изоляции (масляные трансформаторы, маслонаполненные вводы) происходит изменение физических характеристик и химического состава масла. Распределенные дефекты в такой изоляции могут быть выявлены при проведении общего химического анализа нефтяного масла или при измерении его электрической прочности и тангенса угла диэлектрических потерь.

В последнее время все более широкое распространение находит методика выявления повреждений в силовых трансформаторах по результатам анализа растворенных в масле газов. Идея метода основана на предположении о том, что повреждение в трансформаторе сопровождается выделением различных газов, отсутствующих в масле при нормальной работе. Эти газы первоначально растворяются в масле и в газовое реле практически не попадают. Выделив эти газы из масла и проведя их анализ, можно обнаружить повреждения на разной стадии их возникновения.

Отбор масла производится так, чтобы исключить его соприкосновение с окружающей воздушной средой для предотвращения потерь растворенных в масле газов. Масло помещается в замкнутый объем и газ над поверхностью масла подвергается анализу на хроматографе. Оценка состояния маслонаполненного оборудования осуществляется обычно на базе следующих критериев:

· критерий предельных концентраций (водород, метан, этилен, этан, ацетилен, окись и двуокись углерода и др. газы); разложение масла и разложение целлюлозы приводят к превышению концентраций разных газов, частичные разряды приводят к появлению водорода и т.п.;

· критерий скорости нарастания концентраций газов - при ежемесячном контроле;

· критерий отношений концентраций газов - соотношение концентраций позволяет выявлять перегревы и даже температуру перегрева;

· критерий равновесия - сопоставление результатов анализа масла из газового реле и из пробы.

Хроматографический анализ газов производится на компьютерных комплексах, позволяющих автоматизировать анализ критериев и распознавать появляющиеся дефекты в оборудовании до отказа оборудования.

Заключение

Измерение сопротивления изоляции позволяет контролировать как сплошное увлажнение изоляции, так и увлажнение только одного из слоев в слоистой изоляции. При измерении сопротивления изоляции принимают во внимание прежде всего абсолютную величину сопротивления R60, которая должна быть не меньше нормированного значения, а затем и коэффициент абсорбции. Если обе величины не выходят за пределы нормы, то говорят о том, что увлажнения изоляции не обнаружено; если хотя бы одна из величин неудовлетворительна, то делают вывод о недопустимом увлажнении изоляции.

Контроль величины емкости изоляции позволяет выявлять слоистое увлажнение изоляции.

Для выявления повреждений в силовых трансформаторах используется хроматографический анализ растворенных в масле газов.

Список литературы

1. Техника высоких напряжений: Учебное пособие для вузов. И.М.Богатенков, Г.М.Иманов, В.Е.Кизеветтер и др.; Под ред. Г.С.Кучинского. - СПб: изд. ПЭИПК, 1998. - 700 с.

2. Радченко В.Д. Техника высоких напряжений устройств электрической тяги. М.: Транспорт, 1975. - 360 с.

3. Бабиков М.А.,Комаров Н.С.,Сергеев А.С. Техника высоких напряжений. М.: ГЭИ, 1963. 671 с.

4. Техника высоких напряжений: теоретические и практические основы применения: Пер. с нем. /Бейер М., Бек В., Меллер К., Цаенгль В. М: Энергоатомиздат, 1989. - 554 с.


Подобные документы

  • Линейные и станционные изоляторы. Распределение напряжения вдоль гирлянды изоляторов. Нормированные эффективные длины пути утечки внешней изоляции электрооборудования. Характеристика участков железных дорог по степени загрязненности атмосферы.

    реферат [33,8 K], добавлен 09.11.2008

  • История изыскания железных дорог в мире: предпосылки их появления; первые опыты. Становление железных дорог в Европе, Америке, России. Развитие прогрессивных видов тяги в XX веке. Объем железнодорожных перевозок, формирование единых национальных рынков.

    реферат [57,8 K], добавлен 19.10.2012

  • Обобщение основных показателей эксплуатационной работы железных дорог, которые необходимы для контроля за ходом выполнения планов перевозок, анализа использования технических средств, планирования, учета и оценки работы. Пробеги вагонов по участкам.

    контрольная работа [727,6 K], добавлен 18.10.2010

  • Анализ развития видов тяги на железных дорогах СССР. Особенности развития железных дорог России 1990-2005 гг. Общая характеристика пассажирских тепловозов ТЭП60, 2ТЭП60, ТЭП70 и опытных тепловозов ТЭП75: их эффективность, применение на практике.

    реферат [1,9 M], добавлен 10.09.2012

  • Обоснованность и выбор метода неразрушающего контроля вагонных деталей для бесперебойного движения поездов. Исследование физической сущности вихретокового контроля. Технология испытания надрессорных балок тележки вихретоковым дефектоскопом ВД-12-НФ.

    контрольная работа [1,8 M], добавлен 17.11.2011

  • Краткая характеристика силовых цепей электровоза ВЛ80с. Классическая кривая интенсивности отказов. Гистограмма числа повреждений. Контролируемые параметры силовых цепей и методы их диагностики. Измерение характеристик срабатывания аппаратов защиты.

    дипломная работа [3,3 M], добавлен 23.09.2011

  • Формирование эффективной железнодорожной транспортной политики. Организация ремонта вагонов в депо. Расчет параметров поточной линии вагоносборочного цеха. Разработка методов обмера элементов колесных пар для выявления износов и неисправностей.

    дипломная работа [179,9 K], добавлен 24.11.2010

  • История железных дорог Испании, их современное состояние. Существующие стандарты ширины колеи и международные железнодорожные переходы. Особенности дальнего, среднего и пригородного пассажирского сообщения. Характеристика различных видов поездов.

    реферат [1,8 M], добавлен 17.01.2014

  • Тележечные конструкции подвижного состава железных дорог. Узлы локомотивной тележки. Общие сведения о локомотивном хозяйстве. Принцип кратности межремонтных наработок. Способы обслуживания поездов локомотивами. Разветвленный участок, разновидности.

    практическая работа [398,9 K], добавлен 07.03.2016

  • Трудности развития железных дорог РФ в переходный период: падение грузооборота и снижение доходности, старение технических средств. Стратегия вхождения железнодорожного транспорта в рыночную экономику. Результаты Всероссийского съезда железнодорожников.

    презентация [2,8 M], добавлен 25.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.