Идентификация синергетики

Синергетика – объединяющая концепция современной научной картины мира. Структурные компоненты процесса самоорганизации. Ее роль в различных видах эволюции. Объекты исследований, начала и междисциплинарность синергетики. Механизм организации в природе.

Рубрика Социология и обществознание
Вид реферат
Язык русский
Дата добавления 02.11.2013
Размер файла 33,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Понятие "синергетика"

2. Синергетика - объединяющая концепция современной научной картины мира

3. Объекты исследований синергетики

4. Идентификация синергетики

5. Самоорганизация в синергетике

6. Самоорганизация как основа эволюции

7. Структурные компоненты процесса самоорганизации

8. Самоорганизация в различных видах эволюции

9. Начала синергетики

10. Междисциплинарность синергетики

11. Синергетическая концепция самоорганизации

12. Механизм самоорганизации в природе

13. Школы синергетики

14. Критика синергетики и синергетиков

Заключение

Литература

Введение

В настоящее время концепция самоорганизации получает все большее распространение не только в естествознании, но и в социально-гуманитарном познании. Поскольку большинство наук изучают процессы эволюции систем, постольку они вынуждены анализировать и механизмы их самоорганизации. Вот почему концепция самоорганизации становится теперь парадигмой исследования обширного класса систем и совершающихся в них процессов и явлений. Обычно под парадигмой в науке подразумевают фундаментальную теорию, которая применяется для объяснения широкого круга явлений, относящихся к соответствующей области исследования. Примерами таких теорий могут служить классическая механика Ньютона или эволюционное учение Дарвина. Сейчас значение понятия парадигмы еще больше расширилось, поскольку оно применяется не только к отдельным наукам, но и к междисциплинарным направлениям исследований. Типичными примерами таких междисциплинарных парадигм являются возникшая полвека назад кибернетика и появившаяся четверть века спустя синергетика. По ходу изложения в некоторых главах мы уже освещали некоторые понятия и принципы синергетики, чтобы получить более общее и глубокое представление о конкретных механизмах самоорганизации. В этой главе рассмотрим их подробнее в историческом и теоретическом плане.

1. Понятие "синергетика"

Автором термина "синергетика" является Ричард Бакминстер Фуллер - известный дизайнер, архитектор и изобретатель из США. Определение термина "синергетика", близкое к современному пониманию, ввёл Герман Хакен в 1977 году в своей книге "Синергетика" и в курсе лекций, прочитанных в 1969 году в университете Штутгарта. Удачное слово "синергетика", с легкой руки Германа Хакена, в 70-х годах быстро завоевало популярность. Свой выбор термина "синергетика" Г. Хакен объясняет следующим образом: "Я выбрал тогда слово "синергетика", потому что за многими дисциплинами в науке были закреплены греческие термины. Я искал такое слово, которое выражало бы совместную деятельность, общую энергию что-то сделать, так как системы самоорганизуются, и поэтому может показаться, что они стремятся порождать новые структуры. Я обратился тогда за советом к моему школьному другу Гауссу Кристофу Вольфу, который хорошо разбирался в греческом, и мы сним обсуждали различные понятия. Я преследовал цель привести в движение новую область науки, которая занимается вышеуказанными проблемами.

Синергетика - междисциплинарное направление науки, изучающее общие закономерности явлений и процессов в сложных неравновесных системах (физических, химических, биологических, экологических, социальных и других) на основе присущих им принципов самоорганизации.

Суть подхода синергетики заключается в том, что сложноорганизованные системы, состоящие из большого количества элементов, находящихся в сложных взаимодействиях друг с другом и обладающих огромным числом степеней свободы, могут быть описаны небольшим числом существенных типов движения, а все прочие типы движения оказываются "подчиненными" и могут быть достаточно точно выражены через параметры порядка. Поэтому сложное поведение систем может быть описано при помощи иерархии упрощенных моделей, включающих небольшое число наиболее существенных степеней свободы.

2. Синергетика - объединяющая концепция современной научной картины мира

Это вопиющее противоречие было разрешено только после того, как физика повернулась к рассмотрению открытых систем, т. е. систем, обменивающихся с окружающей средой веществом, энергией и информацией. Выяснилось, что при определенных условиях в открытых системах возможны процессы самоорганизации, сопровождаемые процессами диссипации энергии, т. е. перехода части энергии упорядоченных процессов в энергию процессов неупорядоченных и, в конечном итоге, в теплоту. Таким образом, понимание процессов самоорганизации оказалось связанным с изучением взаимодействия открытых систем с окружающей средой. Стало очевидным, что признание наличия у материи наряду с тенденцией к дезорганизации также и созидательной тенденции позволяет создать новую, непротиворечивую картину мира. Речь идет о способности материи, говоря на языке механики, совершать работу против термодинамического равновесия, т. е. самоорганизовываться и самоусложняться. Так возникла синергетика, или теория самоорганизации. Видными теоретиками синергетики, ее создателями считаются немецкий физик Герман Хакен и бельгийский физико-химик И.Р. Пригожин, русский по происхождению. Если Г. Хакен пришел к идее синергетики, изучая так называемые кооперативные процессы в твердотельных лазерах, то И.Р. Пригожин - от исследования специфических химических реакций, приводящих к образованию упорядоченных пространственных структур. Заметим, что сам термин "синергетика" отражает именно коллективный характер упомянутых процессов. Признание способности систем к самоорганизации отнюдь не отвергает действия деградационных процессов. Общий смысл понятия синергетики определяется поэтому следующим образом:

- процессы эволюции и деградации во Вселенной равноправны;

- эволюционные процессы, т. е. процессы нарастания упорядоченности и сложности не зависят от природы систем, в которых они происходят.

Речь, таким образом, идет о некотором универсальном механизме, в соответствии с которым осуществляется самоорганизация как в живой, так и в неживой природе. Подчеркнем, что под самоорганизацией понимается спонтанный, самопроизвольный переход открытой неравновесной системы любой природы к более высокому уровню упорядоченности. Итак, теория самоорганизации имеет объектами исследования системы, отвечающие как минимум двум условиям. Они должны быть открытыми, т. е. иметь канал обмена с внешней средой, и существенно неравновесными, т. е. значительно отклоняться от состояния термодинамического равновесия. Именно таким и является большинство реальных систем. Очевидно, что если система находится в состоянии термодинамического равновесия, то она обладает максимальной энтропией, т. е. максимально дезорганизована. Если же она находится вдали от точки равновесия, то приоритет получает процесс уменьшения энтропии, т. е. происходит самоорганизация. Чем же определяется грань между двумя противоположными направлениями изменения системы? Всё дело в интенсивности диссипации: если использованная системой энергия рассеивается в окружающую среду и восполняется свежей энергией из нее, то это и свидетельствует о нахождении системы в существенно неравновесном состоянии, т. е. о ее способности к самоорганизации. В связи с диссипацией энергии можно говорить о том, что любая система производит энтропию, только из открытой и существенно неравновесной системы энтропия выводится и рассеивается в окружающую среду, а в изолированной или близкой к равновесию системе энтропия накапливается. Здесь снова проявляется роль окружающей среды в отборе структур, способных к самоорганизации или эволюции. В этой связи возникает вопрос о том, является ли сложнейшая из всёх возможных систем - Вселенная - открытой и неравновесной. Что, при положительном ответе на этот вопрос, служит для нее внешней средой? Согласно воззрениям современной квантовой физики, для вещественной Вселенной такой средой является физический вакуум. Физический вакуум вводится в квантовой теории как низшее энергетическое состояние квантованных полей, для которого характерно отсутствие каких-либо реальных частиц. Все квантовые числа такого состояния равны нулю. Однако состояние физического вакуума рассматривается не как простое отсутствие электромагнитного, а как одно из возможных состояний поля, обладающее определенными свойствами, которые могут проявляться на опыте. Понятие физического вакуума тесно связано с соотношением неопределенностей между энергией и временем, из которого следует невозможность одновременного равенства нулю и числа частиц, и напряженностей электрического и магнитного полей. При взаимодействии реальных частиц с физическим вакуумом из него рождаются, а затем аннигилируют виртуальные пары частиц - античастиц. Виртуальными частицами в квантовой теории называются частицы, имеющие такие же квантовые числа, как и соответствующие реальные частицы, но для которых не выполняется обычное, справедливое для реальных частиц, соотношение между энергией и импульсом. Поэтому виртуальные частицы могут существовать только в промежуточных состояниях, что препятствует их экспериментальной регистрации. Особая роль виртуальных частиц состоит в том, что они являются переносчиками взаимодействия. В частности, два электрона взаимодействуют посредством испускания одним из них и поглощения другим виртуального фотона. Понятие физического вакуума является в квантовой теории одним из основных, так как его свойства определяют свойства всех остальных состояний, поскольку любое из них может быть получено из вакуумного вследствие рождения частиц.

3. Объекты исследований синергетики

Объединяющим началом в синергетике являются объекты исследований - открытые сложные нелинейные системы с обратными связями. Разумеется, такие системы изучались и ранее без использования термина "синергетика". Общая трудность подобных исследований - исключительная трудность точного математического описания, особенно если в системе работает множество обратных связей. Ввиду широкого использования в синергетике аналогий полезно проследить, как методически решаются подобные проблемы в наиболее успешных работах.

4. Идентификация синергетики

К выработке определения синергетики мы подойдем как к задаче идентификации. С одной стороны имеются некоторые определения и суждения о синергетике, с другой - разнообразное содержание, которое специалисты относят к области синергетики. К тому, что говорилось о контактах специалистов, надо добавить и то, что специалисты разных профилей выделяют в качестве главных признаков синергетики то, что характерно именно их специализации. В одном случае, это когерентные взаимодействия, в другом, фрактальность структуры, также, прогрессивная эволюция или бифурикационные явления и другое. Группы специалистов разных направлений полагают, что синергетика более всего соотносится с тем, чем они занимаются: нелинейная динамика, лазерная физика, теория диссипативных структур, материаловедение. Ряд авторитетных авторов высказывается о синергетике как о новой научной парадигме. Например, говорится: ''Предельно краткая характеристика синергетики как ноной научной парадигмы включает в себя три основные идеи: нелинейность, открытость диссипативность''. Более общей является следующая трактовка: ''Синергетика является теорией эволюции и самоорганизации сложных систем мира, выступая в качестве современной парадигмы эволюции''. Заслуживающим внимания представляется следующее определение: ''Синергетика - научное направление, изучающее связи между элементами структуры, которые образуются в открытых системах благодаря интенсивному обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень ее упорядоченности, т. е. уменьшается энтропия. Основа синергетики - термодинамика неравновесных процессов, теория случайных процессов, теория нелинейных колебаний и волн''. Через многие разночтения просматривается фундаментальная проблема - проблема связи и соотношения понятий синергетики, самоорганизации, системы, развития и эволюции. То, что синергетика понимается многими исследователями, включая и ее основоположника Г. Хакена, как учение о самоорганизации, является непреложным фактом. В отношении самоорганизации Г. Хакен пишет: ''Полезно иметь какое-нибудь подходящее определение самоорганизации. Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную и функциональную структуру. Под специфическим воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизации система испытывает неспецифическое воздействие. Например жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя ''шестиугольные ячейки''. Сказанное можно дополнить, например, следующим определением: ''Самоорганизация, целенаправленный процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы''.

5. Самоорганизация в синергетике

В определенной части своего смысла синергетика и такие понятия как самоорганизация, саморазвитие и эволюция имеют общность, которая позволяет указать их все в качестве результатов синергетического процесса. В особенности самоорганизация устойчиво ассоциируются сегодня с синергетикой. Однако такие ассоциации имеют двоякое значение. С одной стороны, эффект самоорганизации является существенным, но, тем не менее, одним из компонентов, характеризующих синергетику, с другой - именно этот компонент придает выделенный смысл всему понятию синергетики и, как правило, является наиболее существенным и представляющим наибольший интерес. Не только результаты, а и условия, причины и движущие силы самоорганизации имеют альтернативы. В рассмотрении И.Р. Пригожина применительно к диссипативным структурам речь идет о когерентной самоорганизации, альтернативой для которой является континуальная самоорганизация индивидуальных микросистем, разработанная и предложенная А.П. Руденко. Показано, что теоретическое обоснование явления самоорганизации неравновесных открытых систем, равно как и процесса неравновесного упорядочения, было дано И.Р. Пригожиным и А.П. Руденко практически в одно время независимо друг от друга. Главным достоинством "континуальной" самоорганизации, предложенной А.П. Руденко, является то, что именно такой подход позволяет провести рассмотрение связи самоорганизации и саморазвития. В соответствии с развитыми взглядами сущность прогрессивной эволюции состоит в саморазвитии континуальной самоорганизации индивидуальных объектов. Показывается, что способностью к саморазвитию и прогрессивной эволюции с естественным отбором обладают только индивидуальные микрообъекты с континуальной самоорганизацией и что именно прогрессивная химическая эволюция способна быть основанием для возникновения жизни. синергетика самоорганизация междисциплинарность

Несмотря на то, что идеи эволюции, начиная от космогонической гипотезы Канта - Лапласа и кончая эволюционной теорией Дарвина, получили широкое признание в науке, тем не менее, они формулировались скорее в интуитивных, чем теоретических терминах. Поэтому в них трудно было выявить тот общий механизм, посредством которого осуществляется эволюция. Как отмечалось выше, главным препятствием здесь служило резкое противопоставление живых систем неживым, общественных -- природным. В основе такого противопоставления лежали слишком абстрактные, а потому неадекватные понятия и принципы классической термодинамики об изолированных и равновесных системах. Именно поэтому эволюция физических систем связывалась с их дезорганизацией, что противоречило общепринятым в биологических и социальных науках представлениям об эволюции.

Чтобы разрешить возникшее глубокое противоречие между классической термодинамической эволюцией, с одной стороны, и эволюцией биологической и социальной, с другой, - физики вынуждены были отказаться от упрощенных понятии и схем и вместо них ввести понятия об открытых системах и необратимых процессах. Благодаря этому оказалось возможным развить новую нелинейную и неравновесную термодинамику необратимых процессов, которая стала основой современной концепции самоорганизации.

6. Самоорганизация как основа эволюции

Несмотря на то, что идеи эволюции, начиная от космогонической гипотезы Канта - Лапласа и кончая эволюционной теорией Дарвина, получили широкое признание в науке, тем не менее, они формулировались скорее в интуитивных, чем теоретических терминах. Поэтому в них трудно было выявить тот общий механизм, посредством которого осуществляется эволюция. Как отмечалось выше, главным препятствием здесь служило резкое противопоставление живых систем неживым, общественных -природным. В основе такого противопоставления лежали слишком абстрактные, а потому неадекватные понятия и принципы классической термодинамики об изолированных и равновесных системах. Именно поэтому эволюция физических систем связывалась с их дезорганизацией, что противоречило общепринятым в биологических и социальных науках представлениям об эволюции. Чтобы разрешить возникшее глубокое противоречие между классической термодинамической эволюцией, с одной стороны, и эволюцией биологической и социальной, с другой, физики вынуждены были отказаться от упрощенных понятии и схем и вместо них ввести понятия об открытых системах и необратимых процессах. Благодаря этому оказалось возможным развить новую нелинейную и неравновесную термодинамику необратимых процессов, которая стала основой современной концепции самоорганизации.

7. Структурные компоненты процесса самоорганизации

Структурными компонентами, посредством которых осваивается информация, являются:

1) Механизм управления, представленный в том или ином виде и отвечающий за получение, оценку, переработку информации и формулирование информационной программы ответного действия.

2) Канал обратной связи.

Свойства самоорганизующейся системы.

К свойствам процесса самоорганизации относятся следующие:

1) Самоорганизующаяся система охраняет состояние термодинамического равновесия.

2) Негаэнропийный характер самоорганизующейся системы обеспечивается использованием информации.

3) Самоорганизующаяся система обладает функциональной активностью, выражающейся в противодействии внешним силам.

4) Самоорганизующаяся система обладает выбором линии поведения.

5) Целенаправленность действий.

6) Гомеостаз и связанная с ним адаптивность системы.

8. Самоорганизация в различных видах эволюции

Теория диссипативных структур, возникшая на основе исследования простейших физико-химических систем, оказалась способной объяснить многие эволюционные процессы, происходящие в биологических, экологических и даже социально-культурных системах. Разумеется, на этом пути встречается немало трудностей и проблем, которые ждут своего конкретного разрешения. Но главное ее преимущество состоит в том, что новая парадигма помогает взглянуть на мир и составляющие ее системы с точки зрения их возникновения и развития без привлечения каких-либо мистических сил вроде пресловутой "жизненной силы" или еще более ранней "энтелехии". Попытка приписать качественно отличным от неорганических систем живым системам особые сверхприродные, а потому необъяснимые рациональным способом свойства или качества по сути дела устанавливает непроходимые границы между ними. В результате этого устраняется возможность установления какой-либо связи между неживой и живой природой, неодушевленным и одушевленным миром, а тем самым ликвидируется какая-либо попытка взглянуть на весь окружающий мир с точки зрения его эволюции. Учение о диссипативных структурах может раскрыть механизмы эволюции в конкретных видах эволюции, начиная от простейших систем неживой природы и кончая сложными формами эволюции в биологических, социально-экономических и культурно-исторических системах

9. Начала синергетики

· Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы при управлении мышечными движениями (согласованное действие сгибательных и разгибательных мышц - протагониста и антигониста).

· С. Улам был непосредственным участником одного из первых численных экспериментов на ЭВМ первого поколения (ЭНИВАКе) и понял всю важность и пользу "синергии, т. е. непрерывного сотрудничества между машиной и ее оператором", осуществляемого в современных машинах за счет вывода информации на дисплей.

· И. Забуский к середине 60-х годов, реалистически оценивая ограниченные возможности как аналитического, так и численного подхода к решению нелинейных задач, пришел к выводу о необходимости единого синтетического подхода. По его словам, "синергетический подход к нелинейным математическим и физическим задачам можно определить как совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений".

Все вышеприведенные начала объединяет тот факт, что во всех случаях речь идет о согласованности действий.

10. Междисциплинарность синергетики

Системы, составляющие предмет изучения синергетики, могут быть самой различной природы и содержательно и специально изучаться различными науками, например, физикой, химией, биологией, математикой, нейрофизиологией, экономикой, социологией, лингвистикой. Каждая из наук изучает "свои " системы своими, только ей присущими, методами и формулирует результаты на "своем" языке. При существующей далеко зашедшей дифференциации науки это приводит к тому, что достижения одной науки зачастую становятся недоступными вниманию и тем более пониманию представителей других наук. В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции сисистем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели. Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки и переносить результаты одной науки на, казалось бы, чужеродную почву. Следует особо подчеркнуть, что синергетика отнюдь не является одной из пограничных наук типа физической химии или математической биологии, возникающих на стыке двух наук. По замыслу своего создателя профессора Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучающей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий характер по отношению к частным наукам. Физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики. Как и всякое научное направление, родившееся во второй половине ХХ века, синергетика возникла не на пустом месте. Ее можно рассматривать как преемницу и продолжательницу многих разделов точного естествознания, в первую очередь теории колебаний и качественной теории дифференциальных уравнений. Именно теория колебаний с ее "интернациональным языком", а впоследствии и "нелинейным мышлением" (Л.И. Мандельштам) стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата.

11. Синергетическая концепция самоорганизации

1) Объектами исследования являются открытые системы в неравновесном состоянии, характеризуемые интенсивным обменом веществом и энергией между подсистемами и между системой с ее окружением.

2) Среда - совокупность составляющих ее объектов, находящихся в динамике. Взаимодействие исследуемых объектов в среде характеризуется как близкодействие - контактное взаимодействие. Среда объектов может быть реализована в физической, биологической и другой среде более низкого уровня, характеризуемой как газо-подобная, однородная или сплошная.

3) Различаются процессы организации и самоорганизации. Общим признаком для них является возрастание порядка вследствие протекания процессов, противоположных установлению термодинамического равновесия независимо взаимодействующих элементов среды. Организация, в отличие от самоорганизации, может характеризоваться, например, образованием однородных стабильных статических структур.

4) Результатом самоорганизации становится возникновение, взаимодействие, также взаимосодействие и, возможно, регенерация динамических объектов более сложных в информационном смысле, чем элементы среды, из которых они возникают. Система и ее составляющие являются существенно - динамическими образованиями.

5) Направленность процессов самоорганизации обусловлена внутренними свойствами объектов в их индивидуальном и коллективном проявлении, а также воздействиями со стороны среды, в которую "погружена" система.

6) Поведение элементов и системы в целом, существенным образом характеризуется спонтанностью - акты поведения не являются строго детерминированными.

7) Процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними, так и уступать им. При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду.

12. Механизм самоорганизации в природе

Фундаментальным принципом самоорганизации является возникновение и усиление порядка через флуктуации, т. е. случайные отклонения от некоторого характерного для данного состояния системы среднего положения. Это свидетельствует о том, что случайность является неотъемлемым атрибутом эволюции, она вмонтирована в ее механизм. Роль флуктуаций состоит в усилении неравновесности, своеобразном раскачивании системы, приводящем ее в неустойчивое состояние. Естественно, что с точки зрения самоорганизации полезными являются флуктуации, направленные в сторону от состояния равновесия. В силу равновероятности флуктуаций для приведения системы в неустойчивое состояние нужен некий механизм усиления флуктуаций. Речь идет о механизме положительной обратной связи, срабатывающем в процессе раскачивания системы таким образом, что случайно возникающие отклонения накапливаются и усиливаются.

Процесс нарастания упорядоченности системы имеет две качественно различные фазы:

- стадия плавного эволюционного развития, носящего практически линейный характер, подводящая систему к неустойчивому критическому состоянию, называемому точкой бифуркации;

- скачкообразный переход системы в другое устойчивое состояние с более высокой степенью упорядоченности.

Здесь следует обратить внимание на два существенных обстоятельства. Переход системы в новое устойчивое состояние из точки бифуркации неоднозначен: в силу нелинейности подобных процессов существует несколько возможных вариантов развития в виде различных устойчивых состояний с более высокой сложностью. Считается, что в точке бифуркации путь эволюции системы разветвляется, и выбор одного из возможных дальнейших путей происходит опять случайным образом. На этой стадии выбор пути развития однозначно не определен, т. е. непредсказуем, а состоявшийся скачок - необратим. Существенно, что переход из одного устойчивого состояния в другое происходит через состояние неупорядоченности: начальная упорядоченность разрушается, и лишь затем возникает новая, т. е. на этой стадии развитие идет через хаос.

Следующая эволюционная стадия плавного развития стартует с момента случайного перехода системы в новое состояние. Таким образом, случайность проявляется в этом процессе на двух уровнях: вначале на уровне флуктуаций, а затем на уровне скачка из точки бифуркации.

В этой связи можно говорить о взаимодействии закономерности и случайности в процессе эволюции систем. При этом следует обратить внимание на то, что понятие эволюции при описании самоорганизации используется в двух смыслах: для характеристики периодов плавного развития, сменяемых резкими, революционными скачками, и для обозначения совокупного процесса развития, включающего обе эти фазы.

Важным и пока еще мало изученным фактором самоорганизации является неизменно подчеркиваемая информативность, способность эволюционирующей системы получать, хранить и использовать для своего развития информацию, в том числе информацию о направлении этого развития. Пожалуй, только наличием такой информативности можно объяснить функционирование механизма направленного, восходящего развития Вселенной и всех ее подсистем. Современной науке удалось выяснить принцип хранения и передачи информации в природе пока лишь для одного случая - при реализации генного механизма наследственности. Есть все основания ожидать, что подобные механизмы должны существовать и в других природных системах для управления программами их эволюции.

Эволюция систем неизменно ассоциируется с возрастанием их упорядоченности, которая в основном может быть сведена к усложнению структуры и разветвлению связей между подсистемами различных иерархических уровней. В этом и состоит нарастание информативности системы. Очевидно, что эволюционный процесс протекает вопреки действию фундаментального закона увеличения энтропии. Следовательно, эволюционные механизмы возможны исключительно благодаря флуктуациям параметров систем, случайным отклонениям их от средних, равновесных значений. Поэтому каждый последующий уровень возрастания упорядоченности реализуется со всё уменьшающейся вероятностью.

Подтверждением тому служит эволюция Вселенной как результат последовательных флуктуаций вследствие нарушения симметрии. Благодаря флуктуации относительной плотности частиц и античастиц Вселенная смогла избежать вырождения в море остывающих фотонов, при том что фотонов насчитывается на девять порядков больше, чем частиц. Флуктуации плотности водородно-гелиевого дозвездного вещества не позволили Вселенной остаться водородно-гелиевой. Однако звезды в пространстве Метагалактики - явление достаточно редкое, а температура свободного космоса - это температура реликтового излучения. Подобно тому, как "горячие" молекулы равновесного макроскопического тела не могут совершить чуда создания вечного двигателя, горячие звезды не могут остановить остывание расширяющейся Вселенной, но в своей окрестности способны послужить долгоживущим источником энергии для биосферы своей планеты.

В глобальном масштабе программа эволюции определяется совокупностью значений фундаментальных физических констант, характерных для нынешней реализацией очередного цикла движения несотворимой и неуничтожимой материи Вселенной.

13. Школы синергетики

Существуют несколько школ, в рамках которых развивается синергетический подход:

· Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте. В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта.

· Физико-химическая и математико-физическая Брюссельская школа Ильи Пригожина, в русле которой формулировались первые теоремы (1947 г), разрабатывалась математическая теория поведения диссипативных структур, раскрывались исторические предпосылки и провозглашались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма. Эта школа, основные представители которой работают теперь в США, не пользуется термином "синергетика", а предпочитает называть разработанную ими методологию "теорией диссипативных структур" или просто "неравновесной термодинамикой", подчёркивая преемственность своей школы пионерским работам Ларса Онзагера в области необратимых химических реакций.

14. Критика синергетики и синергетиков

Г. Хакена и его последователей иногда обвиняют в честолюбивых замыслах, в умышленном введении легковерных в заблуждение. Синергетика напрочь лишена элементов новизны. Даже если бы новацией было только название, появление синергетики было бы оправдано. Предложенное Хакеном выразительное название нового междисциплинарного направления привлекало к этому новому направлению гораздо больше внимания, чем любое правильное и понятное лишь в узкому кругу специалистов, название. Уже нет необходимости доказывать полезность синергетического подхода и неправильно настаивать на непременном использовании названия "синергетика" всеми, чьи достижения, текущие результаты или методы сторонники синергетики склонны считать синергетическими. Явления самоорганизации, излучение сложности, богатство режимов, порождаемых необязательно сложными системами, оставляют простор для всех желающих. Каждый может найти свою рабочую площадку и спокойно трудиться в меру желания, сил и возможностей. Однако нельзя не отметить, что перенос синергетических методов из области точного естествознания в области, традиционно считавшиеся безраздельными владениями далеких от математики гуманитариев, вскрыли один из наиболее плодотворных аспектов синергетики и существенно углубили её понимание.

Заключение

Проблематика, содержание, методы исследований и результаты, относимые к синергетике, характеризуются неоднозначными оценками и неопределенностью. Вместе с тем, синергетика как научное направление исследований является востребованной обществом. Значительное количество результатов исследований в разных областях знания соотносится исследователями с синергетикой. Контекст синергетики дает возможность плодотворно взаимодействовать ученым разных специализаций на языке системного осмысления и поиска новых решений. Приведенные определения синергетики, полученные преемственным образом, могут конструктивно применяться при решении конкретных задач. Можно предположить, что в связи с существующими и грядущими результатами в кинетической химии, нейробиологии, транспьютерном нейрокомпьютинге и в других областях сформируется более определенный теоретический и аксиоматический базис синергетики, благодаря чему, в частности, и критика в ее адрес станет более конструктивной и продуктивной. Несомненно, при всем том, что синергетика полноценно работает сегодня как категория научного знания.

Литература

1. История и синергетика: Методология исследования. - М.: КомКнига, 2005.

2. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. - М., 1997.

3. Лоскутов А.Ю., Михайлов А.С. Введение в синергетику. - М.: Наука, 1990. - 272 с.

4. Хакен Г. Синергетика. - М.: Мир, 1980. - 406 с.

Ссылки:

5. http://otherreferats.allbest.ru.

6. http://ru.wikipedia.org.

7. http://inet-life.narod.ru/synergy_danil.html.

Размещено на Allbest.ru


Подобные документы

  • Понятие, суть синергетики. Ключевые положения синергетики. Синергетика и синергетики. Пути формирования синергетики. Синергетический тип мышления. Междисциплинарный характер синергетики позволяет построить на ее основе модель универсального эволюционизма.

    курсовая работа [36,7 K], добавлен 15.12.2008

  • Синергетический подход в современном познании, основные принципы. Ключевые положения синергетики, изучение нелинейных математических уравнений в синергетике. Истоки, выдвинутые Хакеном, которые приводят к образованию новых систем, точка бифуркации.

    реферат [18,9 K], добавлен 08.10.2009

  • Стратегічна мета та методи трансформації українського суспільства відповідно до теорії синергетики. Прогнозування соціального розвитку держави, шляхи його стабілізації. Соціальне партнерство й підвищення його ролі в соціально-трудових відносинах.

    реферат [31,7 K], добавлен 04.07.2009

  • Определение понятия общества, его анализ и характеристика как системы. Функции социальной системы. Факторы и формы социальных изменений. Проблема направленности истории. Цивилизационный анализ общества. Исторический процесс с точки зрения синергетики.

    курсовая работа [60,0 K], добавлен 25.05.2009

  • Демографический кризис РФ начала 1990-х годов и текущая статистика. Характеристика демографической ситуации в современной России путем анализа документа "Концепция демографической политики Российской Федерации на период до 2025 года", ее критика.

    лабораторная работа [29,5 K], добавлен 19.12.2014

  • Основные формы семьи, история ее эволюции. Сопоставление эволюции человека и эволюции семьи в исследованиях Ковалевского. Относительность понятий о семье в различных обществах. Процесс внутреннего построения семьи. Особенности матриархата и патриархата.

    эссе [21,3 K], добавлен 29.09.2012

  • Глобальные и локальные изменения, происходящие в мире и в российском обществе. Доктрины политического и экономического детерминизма. Исследование причин, факторов и механизмов эволюции жизненного мира в современной России. Анализ общества как системы.

    автореферат [111,0 K], добавлен 01.11.2008

  • Сущностные характеристики собственно терроризма, его структурные элементы как преступного деяния. Внутренняя структура современной террористической организации. Экономическая база современной террористической организации. Меры предупреждения терроризма.

    курсовая работа [96,0 K], добавлен 04.06.2011

  • Аспекты развития личности. Идентификация в психологии как процесс эмоционального и иного самоотождествления человека с другим человеком, группой, образцом. Роль идентификации в период предыстории человеческого общества. Взаимодействие индивида и общества.

    реферат [40,7 K], добавлен 11.03.2011

  • Синергетическая парадигма исследования социальных и природных процессов. Феномен самоорганизации общества. Генезис понятия "открытого общества" Поппера. Препятствия перехода России на путь модернизации и устойчивого развития. Понятие статической морали.

    реферат [39,3 K], добавлен 05.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.