Измерение оптического отношения сигнал/шум в когерентных системах с использованием передачи с поляризационным мультиплексированием

Анализ спектральной корреляции компонентов сигнала. Изучение влияния фильтрации на профиль шума в среде, использующей перестраиваемые оптические мультиплексоры ввода-вывода. Сопоставление результатов измерения при использовании найквистовских импульсов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 17.01.2022
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Институт «Приборостроения, автоматизации и информационных технологий» Орловский государственный университет им. И. С. Тургенева

Измерение оптического отношения сигнал/шум в когерентных системах с использованием передачи с поляризационным мультиплексированием

Якубовский В.Л., студент магистратуры 2 курс

Батенков А.А., доктор технических наук, доцент Профессор кафедры «Электроника, радиотехника и системы связи»

Россия, Орел

Аннотация

Статья посвящена измерению оптического отношения сигнал/шум OSNR в работающих системах DWDM, где не просто применяется высокоплотное мультиплексирование по длине волны, а используется передача с поляризационным мультиплексированием, представляет собой сложную задачу. В этой статье предлагается новый метод определения OSNR на основе анализа корреляционной зависимости между спектральными компонентами сигнала в оптическом диапазоне.

Ключевые слова: измерение оптического отношения сигнал/шум OSNR, системы DWDM, поляризационное мультиплексирование, оптический мультиплексор, когерентное детектирование с цифровой обработкой сигнала.

Annotation

The article is devoted to the measurement of the optical signal- to-noise ratio OSNR in operating DWDM systems, where not only high-density wavelength multiplexing is used, but also transmission with polarization multiplexing is used. In this paper, we propose a new methodfor determining OSNR based on the analysis of the correlation between the spectral components of the signal in the optical range.

Key words: optical signal-to-noise ratio measurement OSNR, DWDM systems, polarizing multiplexing, optical multiplexer, coherent detection with digital signal processing.

В современных высокоскоростных системах DWDM когерентное детектирование с цифровой обработкой сигнала и использование поляризационного мультиплексирования POL-MUX стали стандартным решением. Качество модулированных оптических сигналов, передаваемых в волоконно-оптических системах на большие расстояния, обычно характеризуют параметром OSNR - оптическим отношением сигнал/шум.

Телекоммуникационные стандарты описывают несколько методов измерения OSNR в системах DWDM, однако до сего момента для систем, использующих в сетевой топологии поляризационное мультиплексирование POL-MUX и перестраиваемые оптические мультиплексоры ввода-вывода ROADM, не существовало универсального метода измерения внутриполостного значения OSNR в работающих системах, без перерыва связи. 100-гигабитные и более производительные системы передачи задействуют при кодировании сигналов все возможные физические параметры - длину волны, амплитуду, фазу, состояние поляризации. Для выделения шума и расчета значения OSNR не остается какого-либо независимого физического показателя.

Определение OSNR дополнительно осложняется тем, что передаваемые сигналы могут в значительной степени искажаться из-за хроматической дисперсии CD (Chromatic Dispersion) и поляризационной модовой дисперсии PMD (Polarization Mode Dispersion). В этой статье мы рассмотрим метод, предложенный компанией Viavi. Он основан на измерении спектральной корреляции, который позволяет определять внутриполосное значение OSNR в когерентных системах прямо в ходе работы систем [1].

Значение OSNR измеряется оптическими анализаторами спектра OSA (Optical Spectrum Analyzer). По определению оптическое отношение сигнал/шум - это частное от деления оптической мощности цифрового информационного сигнала Рщгншш на мощность оптического шума Рщума, вносимого в сигналы оптическими усилителями EDFA. В значении Рсигнала учтена полная мощность сигнала, передаваемого внутри полосы пропускания канала Вканала (ширина полосы обычно составляет 50 ГГц). Мощность шума нормируется относительно измерительной полосы Вщума = 0.1 нм. Расчет значения OSNR производится по формуле:

Чаще всего для определения отношения OSNR используется интерполяция или внеполосный метод, описанный в стандарте IEC 61280 -2-9. Эта методика предусматривает измерение мощности шума за пределами оптического канала и основывается на предположении о том, что сигнал имеет ограниченную оптическую полосу пропускания, в то время как для шума характерно широкополосное распределение.

Из этого предположения следует, что внеполосное измерение шума, выполненное на частотах вне оптических каналов (P ж для левой точки и Рщ. для правой, Рисунок 1), можно интерполировать и таким путем рассчитать мощность шума Ршнутри оптического канала.

Для типовых систем с простыми оптическими сегментами от точки к точке, обслуживающими приложения до 10 Гбит/с, описанный метод дает вполне точные значения OSNR.

Если сетевая топология усложняется и становится динамически переконфигурируемой, построенной на ячеистой архитектуре, стандартным решением будет использование перестраиваемых оптических мультиплексоров ввода-вывода ROADM. Для разделения индивидуальных каналов ввода и вывода мультиплексоры ROADM используют демультиплексирование.

Рисунок 1. Метод определения OSNR по стандарту IEC 61280 -2-9

Демультиплексорные схемы построены на оптических фильтрах, которые пропускают оптический сигнал, относящийся к конкретному каналу, но подавляют оптическую мощность на частотах за его пределами. В результате в среде, использующей мультиплексоры ROADM, нет широкополосного шума от усилителей EDFA (Рисунок 2). Характеристики шума на разных частотах меняются в зависимости от работы фильтров, поэтому параметры шума за пределами и внутри оптического канала в этом случае нельзя считать связанными общей зависимостью. Использованная ранее формула перестает быть корректной.

Приведенный далее график иллюстрирует эффекты, накладываемые на параметры шума в результате фильтрации, выполняемой устройствами ROADM.

В системах, основанных на перестраиваемых мультиплексорах ROADM, внеполосное измерение мощности шума по стандарту IEC на частотах между оптическими каналами не позволит получить корректное значение OSNR. В таких системах для определения отношения OSNR необходимо измерять опорное значение шума внутри спектрального диапазона сигнала - нужно проводить внутриполосное измерение OSNR.

Рисунок 2. Влияние фильтрации на профиль шума в среде, использующей перестраиваемые оптические мультиплексоры ввода-вывода ROADM

Для общепринятых оптических сигналов, использующих одиночную поляризацию - амплитудную или OOK-модуляцию (On-Off-Key, бинарный формат модуляции с двумя значениями амплитуды сигнала, соответствующими включенному и выключенному состоянию передатчика) - и обеспечивающих пропускную способность 2.5 Гбит/с, 10 Гбит/с, а иногда и 40 Гбит/с, применяются методы поляризационного подавления. Если исходить из того, что передаваемый сигнал поляризован, а шум - нет, то поляризационный фильтр позволит подавить поляризованный сигнал и измерить неполяризованный шум внутри оптического канала, чтобы получить таким путем внутриполосное значение OSNR [2].

В когерентных системах, обеспечивающих 100-гигабитную пропускную способность и выше, используется передача с поляризационным мультиплексированием POL-MUX. Эта технология предусматривает одновременную передачу сигналов на одной и той же длине волны во встречных направлениях, однако излучение отличается поляризацией - волны используют взаимно ортогональные плоскости поляризации. Измерительным прибором (например, оптическим анализатором спектра) такое излучение воспринимается как неполяризованное. Поэтому для отделения сигнала от шума и определения внутриполостного значения OSNR в этом случае нельзя применить поляризационный фильтр и технологию поляризационного подавления.

Хотя для определения внутриполостного OSNR в сигналах POL -MUX было предложено несколько методов, на практике они работают только в том случае, если оптические сигналы подаются с заранее известной битовой скоростью, типом модуляции и/или формой сигнала. Следовательно, такие методы могут быть пригодны для мониторинга параметра OSNR только в части телекоммуникационных систем. Их нельзя использовать как общую методику тестирования, пригодную для любых случаев. Более того, часть методов заведомо непригодна для определения внутриполостного значения OSNR в сигналах, которые существенно искажены вследствие хроматической дисперсии CD и поляризационной модовой дисперсии PMD [3].

Для проведения измерений внутриполостного OSNR при помощи типового спектрального анализа мощности оптических сигналов был разработан метод сравнения спектральных форм. К сожалению, для таких измерений характерны большие ошибки, в которые вносят свой вклад и спектральные фильтры мультиплексоров ROADM, и пульсация при передаче, и уровень воспроизводимости результатов, который может обеспечить оптический анализатор спектра OSA. Методы измерений во временной области требуют применения высокоскоростных фотоприемников, охватывающих всю полосу пропускания, используемую при передаче на скорости 100 Гбит/с или выше. На практике такое решение применить невозможно, поскольку точки мониторинга не могут обеспечить мощность, достаточную для таких высокоскоростных фотоприемников. Единственный известный в телекоммуникационной отрасли метод для измерения внутриполостного значения OSNR предусматривает временное отключение канала - метод ON/OFF. Этот метод нельзя применять «по живому», в ходе работы системы, поскольку для измерения шума в канале полезный сигнал приходится отключать.

В итоге можно констатировать, что до сего момента в телекоммуникационной отрасли не существовало коммерчески доступного способа измерения внутриполостного оптического отношения сигнал/шум в когерентных системах с использованием поляризационного мультиплексирования POL-MUX - метода, который можно было бы применять в работающих системах.

Компания Viavi разработала новый метод спектральной корреляции, его сокращенное обозначение - SCorM, на него в США выдан патент US20160164599 A1. Метод применяется в частотной области, для его реализации нет нужды использовать высокоскоростные фотоприемники и функцию CDR (CLOCK AND DATA RECOVERY) для корректной синхронизации и распознавания сигналов. Методика основана на оценке корреляционной зависимости между компонентами сигнала в пределах оптического спектра канала передачи и том факте, что спектральные компоненты модулированных сигналов демонстрируют высокую корреляцию, в то время как для спектральных компонентов шума никакой корреляции нет. Значение OSNR можно рассчитать на основе оценки корреляционных зависимостей между спектральными компонентами на предварительно заданных парах отстоящих друг от друга длин волн. Компоненты имеют зависимость от времени, анализ охватывает оптический амплитудный спектр сигнала, и определенная сложность состоит в том, чтобы проанализировать и сравнить между собой весьма узкие интервалы частот в оптическом канале, причем в сигнале содержатся как компоненты сигнала, демонстрирующие высокую корреляцию, так и компоненты шума с нулевым уровнем корреляции. Ширина полосы при измерении должна быть гораздо меньше, чем при передаче целевого сигнала. В стандартных системах DWDM ширина обычно не превышает 50 ГГц. Для оценки корреляции спектральных компонентов необходимо использовать два независимо настраиваемых фотоприемника, обладающих сверхвысокой разрешающей способностью в диапазоне менее 50 МГц. Такая чувствительность более чем в 100 раз выше, чем у наиболее продвинутых оптических анализаторов спектра, основанных на технологиях оптики свободного пространства FSO (FREE SPACE OPTICS). Столь высокого разрешения можно добиться только при использовании схем на основе когерентных детекторов, по принципам работы сходных с высокоскоростными когерентными фотоприемниками.

На рисунке 3 показан спектр 100-гигабитного сигнала с поляризационным мультиплексированием POL-MUX (квадратурная фазовая манипуляция PM-QPSK). Спектральные плотности SPL и SPR отображают измерения спектральных компонентов внутри оптического канала, содержащих как целевой сигнал, так и шум.

Рисунок 3. Анализ спектральной корреляции компонентов сигнала

Коэффициент корреляции Согг можно выразить в виде функции от параметров SpL и SpR; он может принимать значения между 0 и 1.

Согг = f(SpL,SpR). (4)

Через коэффициент корреляции Согг может быть рассчитано внутриполосное значение отношения OSNR (OSNRC):

OSNRC = ^Согг). (5)

Близкие к нулю значения коэффициента корреляции Согг приводят к низким значениям отношения OSNR, близкие к единице - к высоким.

Оптический анализатор спектра OSA-710 компании Viavi для сетей с поляризационным мультиплексированием POL -MUX, основанный на применении метода SCorM [4].

Оптический анализатор спектра Viavi Pol -Mux OSA-710 (Рисунок 4) - это первый измерительный прибор, основанный на методике SCorM. Он позволяет определять внутриполосное отношение OSNR в работающих системах при передаче сигналов с использованием как одиночной поляризации - амплитудной или OOK -модуляции (On-Off-Key) - так и сигналов с когерентной фазовой модуляцией xPSK и квадратурной амплитудной модуляцией xQAM в сетях с поляризационным мультиплексированием Pol-Mux на основе топологии ROADM. Метод нечувствителен к значительным искажениям сигнала из-за хроматической дисперсии CD и поляризационной модовой дисперсии PMD, не требует предварительной калибровки с использованием эталонного оптического сигнала, свободного от шумов.

Рисунок 4. Принципиальная схема анализатора OSA-710, тестовая платформа MTS/T-BERD-8000 с анализатором OSA-710

Оптический анализатор спектра OSA включает в себя два независимо настраиваемых когерентных приемника, обладающих продвинутыми возможностями цифровой обработки сигналов. Это позволяет работать со всеми параметрами сигнала, включая амплитуду, частоту, фазу и поляризацию, независимо от используемого вида модуляции. Настройки прибора позволяют анализировать символьную или битовую скорость передачи, измерять в работающих системах хроматическую дисперсию в каждом канале. Стандартные измерения спектра выполняются со сверхвысоким разрешением - ширина полосы в C-диапазоне составляет 20 МГц.

Далее приведены результаты измерений, выполненных прибором Viavi Pol-Mux OSA-710: внутриполосное оптическое отношение сигнал/шум OSNR было определено в работающих системах, передающих 100 - и 200-гигабитные когерентные сигналы. Для сравнения также было выполнено измерение OSNR с отключением канала - применялся метод ON/OFF.

Рисунок 5. Сопоставление результатов определения OSNR разными методами в 100-гигабитной системе

На рисунке 5 показано соотношение между внутриполосными значениями OSNR (шкала OSNRC), определенными по методу SCorM, разработанному компанией Viavi, и используемыми для сопоставления измерениями OSNR по методу ON/OFF (шкала OSNRON/OFF). Измерения проводились в оптическом сегменте длиной 400 км, по которому передавался 100-гигабитный сигнал с символьной скоростью 28 ГБод (использовалось поляризационное мультиплексирование, квадратурная фазовая манипуляция PM-QPSK).

Анализ показывает, что полученные по разным методикам значения отличаются не более чем на ±1 дБ - столь высокая воспроизводимость результатов обеспечена в диапазоне измерения OSNR между 10 и 22 дБ.

Методика SCorM, разработанная компанией Viavi, может применяться также для найквистовских импульсов - измерения обеспечивают получение корректных результатов.

На рисунке 6 показано сопоставление результатов измерения OSNR, полученных в 200-гигабитной системе с передачей сигналов по Найквисту, квадратурная амплитудная модуляция 16 QAM (шкала OSNRC), и значений OSNR, определенных по методу ON/OFF (шкала OSNRON/OFF).

Рисунок 6. Сопоставление результатов измерения OSNR разными методами при использовании найквистовских импульсов

Оптическое отношение сигнал/шум OSNR по-прежнему остается основным параметром, характеризующим качество передачи модулированных оптических сигналов. В данной статье показано, что обычно используемые методики измерения OSNR нельзя применять в высокоскоростных когерентных системах, основанных на сетевой топологии ROADM. Разработанный компанией Viavi прибор Pol -Mux OSA-710 -оптический анализатор спектра, основанный на методике определения спектральной корреляции и ее применении для получения внутриполостного значения OSNR. Данная методика позволяет оценивать хроматическую дисперсию для каждого канала при передаче когерентных сигналов со скоростями 40, 100, 200 и 400 Гбит/с в сетях, использующих мультиплексирование POL -MUX, причем измерения производятся в работающих системах, без отключения. Разработанный компанией Viavi метод может применяться независимо от вида модуляции и скорости передачи данных. На его использование не влияют значительные искажения сигналов из-за хроматической и поляризационной модовой дисперсии, ему не препятствует спектральная фильтрация, выполняемая мультиплексорами ROADM. спектральный шум мультиплексор найквистовский

Метод SCorM, предложенный компанией Viavi, представляет собой единственный бюджетный на данный момент способ измерения внутриполосного значения OSNR в работающих когерентных системах с поляризационным мультиплексированием Pol-Mux. Оптический анализатор спектра Viavi Pol-Mux OSA-710 существенно упростит выполнение измерений в оптических системах при их монтаже, вводе в эксплуатацию и обслуживании, позволит свести к минимуму периоды простоя и количество человеко-часов, затрачиваемых на устранение неисправностей.

Использованные источники

1. Rasmussen J.C., Hoshida T., Nakashima H. Digital Coherent Reciever Technology for 100Gb/s Optical Transport Systems // Fuitsu Sci. Tech. J. 2010. vol. 46. p. 63-71.

2. Zhu B., Fini J.M., Yan M.F., Liu X., Chandrasekhar S., Taunay T.F., Fishteyn M., Monberg E.M., Dimarcello F.V. High-Capacity Space-Division- Multiplexed DWDM Transmissions Using Multicore Fiber // Journal of Lightwave Technology. 2012. Vol. 30. P. 486-492.

3. Eugen Lach, Wilfried Idler. Modulation formats for 100G and beyond // Optical Fiber Technology. 2011. Vol. 17. P. 377 -386. [Электронный ресурс]. URL: http: //www.ece.queensu .ca/Current - Students/ELEC863_Winter2011 OFT_2011 a.pdf

4. Viavi Pol-Mux OSA-710. Модуль анализатора спектра OSA-710 in-band Pol-Mux OSNR: сайт компании Viavi. [Электронный ресурс]. URL: https://www.tecnous.com/productos/osa-710-en/ (дата обращения: 05.06.2021).

Размещено на Allbest.ru


Подобные документы

  • Характеристики суммарного процесса на входе и на выходе амплитудного детектора. Амплитудно-частотная характеристика усилителя промежуточной частоты. Спектральная плотность сигнала. Корреляционная функция сигнала. Время корреляции огибающей шума.

    курсовая работа [314,9 K], добавлен 09.12.2015

  • Вероятность битовой ошибки в релеевском канале в системе с разнесенным приемом. Использование искусственного шума и пропускная способность. Соотношение амплитуд полезного сигнала и искусственного шума. Влияние шума на секретность передачи информации.

    лабораторная работа [913,8 K], добавлен 20.09.2014

  • Анализ работы мультиплексоров Е1, процедур мультиплексирования и демультиплексирования. Методы стрессового тестирования мультиплексора. Характеристика регенераторов, используемых в системах передачи Е1 для восстановления и усиления цифрового сигнала.

    реферат [677,8 K], добавлен 11.11.2010

  • Жесткий и гибкий пороги фильтрации речевого сигнала. Графики вейвлет-разложения речевого сигнала. Блок схема алгоритма фильтрации с гибким порогом. Статистический метод фильтрации речевого сигнала. Оценка качества восстановленного речевого сигнала.

    реферат [440,2 K], добавлен 01.12.2008

  • Сущность, условия решения и критерий оптимальности задачи измерения параметров сигнала. Постановка задачи измерения параметров сигнала. Классификация измерителей. Следящий режим измерения. Автоматические измерители работающие без участия человека.

    реферат [382,0 K], добавлен 29.01.2009

  • Разработка специализированного вычислителя для обработки аналогового сигнала для: реализации его ввода, отображения результата на индикаторе, накопления по каждому каналу с усреднением по времени на интервале, вывода результатов по стандартному протоколу.

    курсовая работа [518,8 K], добавлен 07.06.2011

  • Устройство для измерения абсолютных комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием. Структурная схема блока опорных частот. Смеситель сигналов 140 МГц. Фильтр нижних частот для сигнала. Система фазовой автоподстройки.

    дипломная работа [2,8 M], добавлен 20.12.2013

  • Структурная схема цифровых систем передачи и оборудования ввода-вывода сигнала. Методы кодирования речи. Характеристика методов аналого-цифрового и цифро-аналогового преобразования. Способы передачи низкоскоростных цифровых сигналов по цифровым каналам.

    презентация [692,5 K], добавлен 18.11.2013

  • Разработка радиотехнической системы детектирования многопозиционного цифрового кода Баркера на фоне гауссовского шума. Формирование фазово-манипулируемого сигнала и принцип его согласованной фильтрации. Разработка радиотехнических систем в среде OrCAD.

    курсовая работа [1,2 M], добавлен 18.02.2011

  • Формирование кодовой таблицы аналогового сигнала. Общая характеристика микроконтроллера P83C51RB+. Дискретизация заданного сигнала генератора. Организация памяти и программная модель, регистры SFR микроконтроллера. Параллельные порты ввода/вывода.

    курсовая работа [1005,6 K], добавлен 07.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.