Конструкция и принцип действия измерительных элементов автоматики

Способы измерения и преобразования сигналов. Особенности автоматических систем с программным управлением. Принцип действия командоаппаратов. Схема устройства электромагнитного соленоида. Назначение и функции усилителей. Диаграмма токов работы тиристора.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид лекция
Язык русский
Дата добавления 17.11.2019
Размер файла 130,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Лекция

Тема: Конструкция и принцип действия измерительных элементов автоматики

Содержание

Введение

1. Изучение конструкции и принципа действия измерительных элементов автоматики

2. Изучение конструкции и принципа действия задающих устройств и устройств сравнения

3. Изучение конструкции и принципа действия усилителей

4. Изучение конструкции и принципа действия реле

5. Изучение конструкции и принципа действия исполнительных устройств

6. Тестовые задания по теме

Введение

Любое автоматическое устройство состоит из связанных между собой элементов, задачей которых является качественное или количественное преобразование полученного ими сигнала.

Элемент автоматики -- это часть устройства автоматической системы управления, в которой происходят качественные или количественные преобразования физических величин. Помимо преобразования физических величин элемент автоматики служит для передачи сигнала от предыдущего элемента к последующему.

Элементы, входящие в автоматические системы, выполняют различные функции и в зависимости от функционального назначения подразделяются на воспринимающие, преобразующие, исполнительные, задающие и корректирующие органы (элементы), а также на элементы сложения и вычитания сигналов.

Воспринимающие органы (чувствительные элементы) предназначаются для измерения и преобразования контролируемой или управляемой величины объекта управления в сигнал, удобный для передачи и дальнейшей обработки.

Примеры: датчики для измерения температуры (термопары, терморезисторы), влажности, частоты вращения, силы и т. д.

Усилительные органы (элементы), усилители -- устройства, которые, не изменяя физической природы сигнала, производят лишь усиление, т.е. увеличение его до требуемого значения. В автоматических системах применяются механические, гидравлические, электронные, магнитные, электромеханические (электромагнитные реле, магнитные пускатели), электромашинные усилители и т. и.

Преобразующие органы (элементы) преобразуют сигналы одной физической природы в сигналы другой физической природы для удобства дальнейшей передачи и обработки.

Примеры: преобразователи неэлектрических величин в электрические.

Исполнительные органы (элементы) предназначаются для изменения значения управляющего воздействия на объекте управления, если объект представляет собой единое целое с управляющим органом, либо для изменения входных величин (координаты) регулирующего органа, который также следует рассматривать как элемент автоматичсеких систем. По принципу работы и конструкции исполнительные и регулирующие элементы многообразны.

Примеры: нагревательные элементы в системах управления температурой, вентили и клапаны с электрическим приводом в системах регулирования расхода жидкости и газа и т. д.

Задающие органы (элементы) предназначены для задания требуемого значения управляемой величины.

Корректирующие органы (элементы) служат для коррекции автоматических систем с целью улучшения их работы.

В зависимости от функций, выполняемых элементами автоматики, их можно разделить на датчики, усилители, стабилизаторы, реле, распределители, двигатели и др.

1. Изучение конструкции и принципа действия измерительных элементов автоматики

Функцией измерительного элемента является измерение регулируемой или какой-либо другой величины, дающей необходимую для управления информацию.

Одновременно измерительный элемент осуществляет преобразование измеренной величины в величину другого вида, удобную для передачи сигналов в данной автоматической системе. В большинстве систем автоматического управления для передачи и обработки сигналов, несущих информацию об управляемом процессе, используются электрические величины, т.е. большинство датчиков автоматически преобразуют измеряемые величины любой физической природы (скорость, давление, перемещение и др.) в электрические.

Измеряемая величина является входной величиной датчика.

Выходная электрическая величина может представлять собой один из параметров электрической цепи или ЭДС.

Датчики, преобразующие входную величину в ЭДС, называются генераторными, а датчики, преобразующие входную величину в изменение параметра электрической цепи, -- параметрическими.

По характеру представления выходной величины датчики подразделяются на измерительные и релейные. Измерительные датчики имеют линейную статическую характеристику и выдают значение измеряемой величины в непрерывной (аналоговой) форме. Релейные датчики имеют релейную характеристику и выдают дискретный по уровню сигнал, соответствующий некоторому предельному значению измеряемой величины.

2. Изучение конструкции и принципа действия задающих устройств и устройств сравнения

Назначением задающего устройства является ввод в систему автоматического управления задающего воздействия, которое в том или ином виде содержит информацию о желаемом течении управляемого процесса.

В замкнутых системах, где осуществляется регулирование по отклонению, задающее устройство вводит заданное значение регулируемой координаты.

В разомкнутых системах, где осуществляется регулирование по возмущению, задающее устройство как отдельный элемент отсутствует, и заданное значение регулируемой координаты вводится начальной настройкой системы.

В замкнутых и разомкнутых системах автоматического управления с логическими программами рабочую программу вводит задающее устройство.

В системах регулирования задающее воздействие содержит информацию количественного характера, выраженную в дискретной или непрерывной форме.

В системах с логическими программами наряду с информацией количественного характера используются команды типа включить, выключить, вперед, назад и т. п.

Характер задающего воздействия и объем содержащейся в нем информации определяют конструкцию задающего устройства. Простейшими задающими устройствами являются потенциометры, в которых входной величиной является перемещение, а выходной -- электрический сигнал (ток, напряжение).

Например, потенциометр, движок которого в начале процесса установлен в определенное положение, т.е. с выхода которого подается в САР определенное напряжение, может служить простейшим задающим устройством для стабилизирующей системы.

Если же движок потенциометра связан с механизмом, осуществляющим его перемещение в течение рабочего процесса, это будет задающее устройство с переменным задающим воздействием.

Автоматические системы с программным управлением, используемые в промышленности, весьма разнообразны и имеют задающие устройства различной степени сложности.

Наиболее простые автоматические системы с постоянной программой без информационных звеньев обратной связи обычно работают с периодической повторяемостью рабочих циклов, т.е. по окончании одного цикла автоматически начинается следующий, и т.д.

В качестве задающих устройств в таких системах используют командоаппараты, которые могут быть механическими, электрическими, гидравлическими, а также комбинированными.

По виду выходной величины различают командоаппараты непрерывного и дискретного действия.

Принцип действия командоаппаратов всех типов одинаков: распределительный вал вращается с постоянной скоростью от синхронного двигателя или привода самого автоматизированного

За один оборот вала все кулачки и рычаги формируют один цикл задающих команд, посылаемых в автоматическую систему. При этом фактическое выполнение команд не влияет на ход задающего устройства (разумеется, кроме аварийных режимов, когда приборы защиты выключают всю систему).

3. Изучение конструкции и принципа действия усилителей

Выходные сигналы датчиков и других элементов, как правило, очень слабые и не могут использоваться непосредственно для приведения в действие элементов систем автоматики.

Выходная мощность датчиков в большинстве случаев составляет сотые, тысячные доли ватта, тогда как мощность, необходимая для управляющего органа, может достигать десятков и даже сотен киловатт.

Поэтому в современных автоматических системах управления широко применяют усилительные элементы (усилители), которые нередко наряду с основным назначением усиливать мощность сигнала выполняют и функцию его преобразования в вид, более удобный для работы системы.

Усилителем называется устройство, предназначенное для увеличения мощности сигнала за счет энергии дополнительного источника питания, при этом выходная (усиленная) величина является функцией входного сигнала и имеет одинаковую с ним физическую природу.

Усилители различают по выходной мощности, виду подводимой вспомогательной энергии, коэффициенту усиления, принципу действия, по форме характеристики, выражающей зависимость между выходной и входной величинами, и по ряду иных признаков.

Для достижения таких значений необходимо включить последовательно несколько усилителей автоматики.

Единицы измерения входных и выходных сигналов усилителей одинаковые. автоматический усилитель тиристор соленоид

Ими могут быть единицы мощности (Вт; кВт), напряжения (В), тока (А), скорости (м/с), давления (Па), силы (Н) и т.д. Соответственно единицам измерения величин коэффициент усиления может быть назван коэффициентом усиления по току, напряжению, давлению, но основным считают коэффициент усиления по мощности.

Коэффициент усиления усилителей достигает тысяч, сотен тысяч и даже более раз. В электрических усилителях различают усиление по мощности, напряжению и току.

Коэффициент усиления по мощности в зависимости от принципа действия и конструкции усилителя может составлять от 1 до 107.

Усилению могут подвергаться не только электрические параметры, но и другие входные величины (перемещение, скорость, усиление, давление и т. п.). Усилительный элемент совместно с резисторами, конденсаторами и другими элементами схемы называют усилительным каскадом. Если усиления сигнала одним каскадом недостаточно, применяют соединение нескольких каскадов, выполняющих роль предварительного усиления и обеспечивающих работу мощного выходного каскада. Поэтому различают однокаскадные и многокаскадные усилители, при этом в многокаскадном усилителе первый каскад от входа называется входным, а последний выходным.

Электронные усилители (ЭУ) широко применяются в системах автоматики для предварительного усиления сигналов, получаемых от датчиков. Предварительная выходная мощность усилителей на превышает 100 Вт (Ватт). К ним относятся усилители постоянного и переменного тока: ламповые, полупроводниковые, операционные, электромашинные, электромеханические и магнитные.

Полупроводниковые усилители характеризуются незначительной мощностью потребления, достаточной надежностью, высоким быстродействием, сравнительно большим коэффициентом усиления, малыми размерами и поэтому вытеснили ламповые усилители из многих сфер применения. Они могут работать на постоянном и переменном токе. По способу включения полупроводниковых триодов эти усилители делятся на три основных вида: с общей базой, с общим коллектором и с общим эмиттером.

Тиристорный усилитель. В качестве его основного усиливающего элемента используется тиристор, который в зависимости от числа выводов и назначения называется динистором, тринистором и семистором.

Динистор - это тиристор с двумя выводами (рис. 1). Для его включения необходимо, чтобы напряжение на нем превысило так называемое напряжение включения. Отключение динисторов происходит при снятии напряжения питания или уменьшении тока нагрузки до уровня тока выключения.

Рисунок 1. Схема включения тиристоров.

Тринистор - это тиристор с тремя выводами (рис. 2). Он включается при подаче напряжения включения или тока управления Iу на специальный управляющий электрод. Тринистор включается током управления Iу, сдвинутым по фазе относительно тока нагрузки Iн, с помощью специального фазосдвигающего устройства (ФСУ).

Рисунок 2. Статическая деформация тиристоров.

Рисунок 3. Диаграмма токов работы тиристора.

Отключение тринистора происходит при изменении полярности его напряжения питания или уменьшении тока нагрузки Iн до значения тока выключения. При питании тринистора переменным током (рис. 3) напряжение питания в течение каждого полупериода проходит через нуль, что создает естественные условия для отключения тиристора.

Семистор - это тиристор с четырьмя выводами. В нем предусмотрена возможность управлять переключением цепи переменного тока в течение положительного и отрицательного полупериодов переменного напряжения.

4. Изучение конструкции и принципа действия реле

Реле - коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока.

Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием.

Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник.

Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается.

При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая Рисунок 1. Схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

5. Изучение конструкции и принципа действия исполнительных устройств

Исполнительные устройства осуществляют через рабочие органы определенные воздействия на объект регулирования при поступлении на его вход сигналов управления. К ним относятся электродвигатели, муфты, тяговые электромагниты, реле.

Рабочие органы обеспечивают при выполнении технологической операции соответствующее воздействие на среду, изменяя ее температуру, состав, давление, скорость, расход и т. п.

Рабочими органами могут быть различного рода заслонки, клапаны, задвижки, шиберы, направляющие аппараты, электрические нагреватели (трубчатые-, СВЧ-, ИК-излучатели) и другие устройства, так или иначе непосредственно влияющие на протекание технологической операции.

Исполнительное устройство обычно состоит из двигателя, передаточного или преобразующего узла (например, редуктора), а также систем защиты, контроля и сигнализации положения выходного элемента, блокировки и отключения.

Различают гидравлические, пневматические, электродвигательные и электромагнитные исполнительные устройства.

Электрические исполнительные устройства можно разделить на электромагнитные и электродвигательные.

К электромагнитным исполнительным устройствам относятся прежде всего соленоидные электроприводы,предназначенные для управления различного рода регулирующими и запорными вентилями, золотниками и т. п. (рис. 12.83).

Необходимое для перемещения рабочего органа усилие в них создается с помощью электромагнита, являющегося неотъемлемой частью подобного исполнительного устройства.

Исполнительное устройство с электромагнитным соленоидным приводом состоит из электромагнита с ярмом 1 и якорем 3,

С якорем соединен рабочий орган 5 -- заслонки, задвижки, клапаны, рычаги и т. п., который необходимо переместить на расстояние 1/2.

При подаче на электромагнит питающего напряжения U под действием возникающего при этом электромагнитного усилия якорь 3поднимается вверх на величину воздушного зазора Л.

Электромагниты подразделяются на электромагниты постоянного и переменного тока, удерживающие и притягивающие, длин- ноходные (ход якоря до 150 мм) и короткоходные (ход якоря 2...5 мм); с поступательным движением якоря и с поворотным якорем.

7. Тестовые задания по теме

1. Часть устройства автоматической системы управления, в которой происходят качественные или количественные преобразования физических величин-это

А. Элемент автоматики

Б. Воспринимающие органы

В. Усилительные органы

2. Предназначаются для изменения значения управляющего воздействия на объекте управления, если объект представляет собой единое целое с управляющим органом, либо для изменения входных величин регулирующего органа, который также следует рассматривать как элемент автоматических систем

А. Усилительные органы

Б. Воспринимающие органы

В. Исполнительные органы

3. Коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока-это

А. Реле

Б. Элемент автоматики

В. Двигатель

4. Предназначаются для измерения и преобразования контролируемой или управляемой величины объекта управления в сигнал, удобный для передачи и дальнейшей обработки

А. Преобразующие органы

Б. Воспринимающие органы

В. Усилительные органы

5. Устройства, которые, не изменяя физической природы сигнала, производят лишь усиление, т.е. увеличение его до требуемого значения

А. Усилительные органы

Б. Воспринимающие органы

В. Задающие органы

6. Предназначены для задания требуемого значения управляемой величины.

А. Усилительные органы

Б. Преобразующие органы

В. Задающие органы

7. Служат для коррекции автоматических систем с целью улучшения их работы.

А. Усилительные органы

Б. Корректирующие органы

В. Задающие органы

8. Зависимость тока нагрузки от подмагничивающего постоянного тока- это

А. Проводимость магнитного усилителя

Б. Характеристики магнитного усилителя

В. Напряжение магнитного усилителя

9. Тиристор с двумя выводами-это

А. Динистор

Б. Семистор

В. Тиринистор

10. Усилители постоянного и переменного тока относятся к

А. Электронным усилителям

Б. Полупроводниковым усилителям

В. Тиристорным усилителям

Ключ к тесту.

1

2

3

4

5

6

7

8

9

10

А

В

А

Б

А

В

Б

Б

А

А

Размещено на Allbest.ru


Подобные документы

  • Понятие и структура, основные элементы и принцип действия широкополосных усилителей, особенности их практического использования. Методы исследования, расчета и проектирования широкополосных усилителей гармонических сигналов и импульсных сигналов.

    курсовая работа [179,1 K], добавлен 14.04.2011

  • Понятие и принцип работы датчиков, их назначение и функции. Классификация и разновидности датчиков, сферы и возможности их применения. Сущность и основные свойства регуляторов. Особенности использования и параметры усилителей, исполнительных устройств.

    реферат [17,8 K], добавлен 28.03.2010

  • Цифровой частотомер с программным управлением, его применение, принцип действия и технические характеристики. Функционирование основных блоков цифрового частотомера. Описание и расчёт основных элементов схемы электрической принципиальной частотомера.

    курсовая работа [998,4 K], добавлен 27.02.2009

  • Характеристика электромеханических систем, их классификация и использование в устройствах релейной защиты и автоматики систем электроснабжения. Принцип действия и выполнение электромагнитных измерительных, логических, индукционных, поляризационных реле.

    курсовая работа [3,3 M], добавлен 11.08.2009

  • Структурная схема и принцип работы средства измерений прямого и уравновешивающего преобразования. Назначение и сферы применения время-импульсного цифрового вольтметра. Нахождение результата и погрешности косвенного измерения частоты по данным измерения.

    контрольная работа [1,3 M], добавлен 17.01.2010

  • Метрологические, динамические и эксплуатационные характеристики измерительных систем, показатели их надежности, помехозащищенности и безопасности. Средства и методы проверки; схема, принцип устройства и действия типичной контрольно-измерительной системы.

    контрольная работа [418,2 K], добавлен 11.10.2010

  • Понятие и назначение измерительных преобразователей - датчиков, принцип их действия и выполняемые функции, возможности и основные элементы. Классификация источников первичной информации. Датчики измерения технологических переменных.

    курсовая работа [1,2 M], добавлен 04.05.2010

  • Назначение, принцип действия, каналы связи и сферы использования автоматических идентификационных систем. Отображение информации на мониторе и сравнение информации на экране радиолокационных станций. Отображение информации на электронной карте.

    дипломная работа [169,9 K], добавлен 09.06.2011

  • Устройство, эквивалентная схема биполярного транзистора. Назначение эмиттера и коллектора. Основные параметры, принцип действия и схемы включения n–p–n транзистора. Режимы его работы в зависимости от напряжения на переходах. Смещение эмиттерного перехода.

    реферат [266,3 K], добавлен 18.01.2017

  • Понятие и назначение цифрового вольтметра, его принципиальная и электрическая схема, основные части и их взаимодействие, принцип работы. Функции генератора шумовых сигналов. Схема и погрешности электронно-счетных частотомеров в режиме измерения частоты.

    контрольная работа [93,9 K], добавлен 01.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.