Возбуждение полем плоской электромагнитной волны проводящего цилиндра в слоистой земле

Приведение приближенного решения задачи о расчете вторичного поля от проводящего бесконечно-длинного цилиндра, расположенного в плоскослоистой земле. Применение методов криволинейных координат и функции источника в виде двойных рядов по функциям Бесселя.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 04.11.2018
Размер файла 380,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сибирский физико-технический институт (СФТИ) при Томском государственном университете

ВОЗБУЖДЕНИЕ ПОЛЕМ ПЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ПРОВОДЯЩЕГО ЦИЛИНДРА В СЛОИСТОЙ ЗЕМЛЕ

В.С. Семенов

А.В. Неведомский

В.Г. Дыбовский

В настоящей статье приведено приближенное решение задачи о расчете вторичного поля от проводящего бесконечно-длинного цилиндра, расположенного в плоскослоистой земле. Решение получено с использованием методов криволинейных координат и функции источника в виде двойных рядов по функциям Бесселя. Результаты численных расчетов структуры рассеянных полей получены с учетом влияния границ раздела, электрических параметров слоев и частоты.

Электромагнитные поля находят широкое применение при разработке дистанционных методов зондирования земли и земных покровов. В прикладном плане эта проблема связана в частности с разработкой технических средств обнаружения подземных инженерных коммуникаций типа электрических кабелей и различных трубопроводов. Эффективность разрабатываемой аппаратуры в значительной степени зависит от знания качественных и количественных характеристик вторичных (рассеянных) электромагнитных полей от скрытых протяженных и локальных неоднородностей (кабели, трубопроводы, пожарные гидранты и т.д.)

В настоящей статье приведено решение задачи о расчете вторичного поля от проводящего бесконечно-длинного круглого цилиндра, расположенного в одном из слоев плоскослоистой земли. Рассматриваемая электродинамическая задача имеет непосредственное отношение к электромагнитному зондированию земли и относится к теории дифракции электромагнитных волн, представляющих собой, по сути дела, совокупность методов решения уравнений Максвелла.

Работы посвященные задачам дифракции электромагнитных волн на цилиндрических телах, расположенных в проводящем полупространстве или в горизонтально-слоистой проводящей среде, можно условно разделить на две группы. К первой, наиболее многочисленной группе, относятся работы, в которых задачи дифракции электромагнитных волн на цилиндрических телах рассматриваются в строгой постановке[1-5]. Такие задачи решаются при помощи метода интегральных уравнений численным путем. Недостатком метода интегральных уравнений, кроме трудности быстрого и достаточно точного вычисления функции Грина, является довольно сложный путь численного решения.

Ко второй группе относятся работы, в которых в явном виде получены приближенные выражения для составляющих электромагнитного поля цилиндра, расположенного в проводящем полупространстве [6-10]. К этой же группе работ относится и настоящая статья, в которой получены относительно простые выражения для компонент поля цилиндра в слоистой среде в явном виде, что позволило значительно расширить возможности анализа теоретических моделей.

Постановка задачи и решение интегрального уравнения.

Электродинамическая задача формулируется следующим образом: в нижнем слое среды на расстоянии z=-z1 от верхней границы находится идеально проводящий цилиндр радиуса a с образующей параллельно оси x (Рис.1). Под воздействием падающей плоской электромагнитной волны ТМ - типа на поверхности цилиндра будут индуцироватся продольные токи. Требуется определить рассеянное поле цилиндра в воздухе [9,10]. Полное поле будет складываться из первичного и дифрагированного. Дифрагированное поле цилиндра можно выразить через x-ю составляющую векторного потенциала:

, , ,

- абсолютная магнитная проницаемость слоя j.

Выражение для векторного потенциала ищется с помощью метода функции источника, сущность которого заключается в том, что под действием падающей плоской волны на поверхности цилиндра наводятся индуцированные токи плотностью в направлении образующей цилиндра (оси x). Электромагнитное поле цилиндра будет складываться из полей, создаваемых отдельными линейными токами.

В свою очередь распределение линейных токов индукции на поверхности цилиндра находится в результате использования приближенного выражения для вектор - потенциала линейного тока в слоистой среде [11]:

при , , при

где

волновое число j слоя среды,

Здесь F1 и F2 -функции, приближенно учитывающие влияние границ раздела.

K0 - функция Макдональда нулевого порядка.

Приближенное выражение (2) находятся методом криволинейных координат [12].

Используя эти выражения, потенциал поля цилиндра при помощи функции распределения линейных токов индукции можно представить в виде:

Применением граничного условия на поверхности цилиндра решение сводится к линейному интегральному уравнению Фредгольма первого рода относительно плотности тока:

- коэффициент прохождения.

Здесь , ,

- комплексная диэлектрическая проницаемость слоя,

- координаты точки наблюдения (М);

- координаты линейного тока (М0);

- элемент длины контура L в точке М0 (y0 , z0).

Применяя теорему сложения цилиндрических функций для и разлагая функцию плотности тока в ряд Фурье, интегральное уравнение (6) в цилиндрической системе координат с центром на оси цилиндра (рис.1) можно записать в виде:

В выражении (7) введены обозначения:

, , ,

,

;

- - коэффициенты в разложении плотности тока в ряд Фурье.

Интеграл, стоящий в левой части выражения (7), представляет собой условие ортогональности экспоненциальных функций для полученного двойного ряда

Таким образом, члены двойного ряда при равны нулю, а в (7) останется только один член ряда с индексом

Применяя еще раз свойство ортогональности экспоненциальных функций и выполняя несложные преобразования, получим выражение для коэффициента ? n:

Теперь можно записать выражение для плотности тока на поверхности цилиндра:

,

Зная распределение тока на цилиндре, можно найти вектор - потенциал поля цилиндра в воздухе, в виде двойного ряда по модифицированным функциям Бесселя:

- число Неймана.

Используя соотношения (1), можно записать выражение для составляющих поля цилиндра в воздухе:

Результаты численных исследований.

На рис. 2-9 приведены результаты численных расчетов структуры электромагнитного поля цилиндра с учетом влияния границ раздела, электрических параметров слоев и частоты. Вид кривых на этих рисунках характеризуют структуру поля при перемещении точки наблюдения в плоскости перпендикулярной оси цилиндра на высоте z от поверхности земли. По оси абсцисс отложено относительное расстояние (y/h) вдоль поверхности земли, где рис.1.

На рис.2 - 4 показано поведение составляющих поля с изменением проводимости среды, окружающей цилиндр. При увеличении проводимости максимальные значения модулей компонент поля резко убывают. Менее интенсивно уменьшается вертикальная составляющая магнитного поля. Местоположение максимумов смещается к центру. О глубине залегания цилиндра можно судить по расстоянию между минимумом и максимумом при невысокой проводимости среды (рис.2). С увеличением проводимости среды необходимо вносить поправки на найденное значение глубины залегания. плоскослоистый земля криволинейный координата

Значения фазы вертикальной компоненты магнитного поля также приведены на рис. 2. При переходе через ось цилиндра происходит скачок фазы на 180 ? , далее фаза плавно изменяется с расстоянием.

Фаза горизонтальной составляющей поля плавно меняется при удалении от цилиндра (рис. 3). Более сильные фазовые изменения компонент происходят с увеличением проводимости среды.

На рис. 4 показано поведение горизонтальной электрической составляющей поля цилиндра. Для нее характерно еще более плавное изменение амплитудно - фазовых характеристик при перемещении над цилиндром, чем для Hy.По максимуму можно определить местоположение оси цилиндра.

Перейдем к исследованию частотной зависимости магнитного поля цилиндра. Величина уменьшается и местоположение max. смещается к центру с ростом частоты (рис. 5). Фаза Hz имеет скачок на 180 ? над осью цилиндра и далее почти постоянна с изменением расстояния. Амплитуда горизонтальной компоненты магнитного поля цилиндра также уменьшается с ростом частоты, а фазовые кривые почти сохраняют свой вид для любой частоты. Как видно из рис. 5-6 с увеличением частоты возрастает погрешность определения глубины залегания цилиндра и более сильно для горизонтальной составляющей.

На рис. 7-9 показаны зависимости составляющих электромагнитного поля цилиндра от его радиуса. Как видно из этих рисунков, увеличение радиуса цилиндра приводит, в основном, к возрастанию амплитуды составляющих. При этом фаза изменяется весьма незначительно. Каких либо характерных изменений в структуре компонент поля, по которым можно было бы осуществить классификацию цилиндров в зависимости от величины их радиуса, не наблюдается. Если цилиндр заменить линейным переменным током соответствующей амплитуды, расположенным на его оси, то увеличение радиуса цилиндра будет эквивалентно не только увеличению амплитуды переменного тока, но и перемещению его местоположения вверх от геометрической оси цилиндра. Данный эффект объясняется неравномерностью распределения тока по поверхности цилиндра. Действительно, при больших радиусах цилиндра со стороны падения возбуждающего поля будут наводится индукционные токи большей амплитуды, чем на противоположной «теневой »стороне, где токи наводятся за счет дифракции первичного поля. В результате, электрическая ось цилиндра смещается вверх от его геометрической оси.

Выводы

1. Разработана методика приближенного решения задачи дифракции плоской электромагнитной волны на проводящем цилиндре в горизонтально слоистой среде, которая представляет собой сочетание метода криволинейных координат и метода функции источника. Применение этой методики позволило получить в явном виде выражения для составляющих поля цилиндра.

2. На основе полученного решения проведены численные расчеты структуры вторичных электромагнитных полей с учетом влияния границ раздела, электрических параметров слоев и частоты.

3. В результате анализа электромагнитного поля цилиндра отмечено, что увеличение проводимости слоев и частоты приводит к деформации составляющих поля цилиндра, при этом в меньшей степени подвержена изменениям вертикальная компонента.

4. Показано, что определение координат цилиндра с использованием вертикальной составляющей его магнитное поле является наиболее точным и простым способом.

5. Осуществить классификацию цилиндров в зависимости от величины их радиуса не представляется возможным, так как в структуре электромагнитного поля цилиндра не происходит при этом каких либо характерных изменений.

Литература

1. Дмитриев В.И. Дифракция произвольного электромагнитного поля на цилиндрических телах. В сб. Вычислительные методы и программирование. Изд-во ВЦ МГУ, 1966, вып. 5, с. 253-259.

2. Захаров Е.В. К дифракции плоского электромагнитного поля на однородном цилиндрическом теле, погруженном в слоистую среду. Изв. АН СССР, Физика земли, 1969, №1, с. 57-62

3. Кауфман А.А., Табаровский Л.А., Терентьев С.А. Электромагнитное поле эллиптического цилиндра в горизонтально-слоистой среде. Изд-во СО АН СССР, институт геологии и геофизики, 1971, с. 110

4. Кауфман А.А., Табаровский Л.А., Терентьев С.А. К теории индуктивной рудной электроразведки в горизонтально неоднородных средах. Изд-во СО АН СССР, Геология и геофизика, 1972, №10, с. 96-104.

5. Табаровский Л.А. Применение метода интегральных уравнений в задачах геоэлектрики. Изд-во СО АН СССР, Наука, институт геологии и геофизики, 1975, вып.260, с.142.

6. Никитина В.Н. Об аномалиях переменных магнитных полей над цилиндрическими неоднородностями. Изд-во СО АН СССР, труды геофизического, 1956, №32, с.62-93.

7. Сикорский В.А. Плоская электромагнитная волна над цилиндром в проводящем полупространстве. Изв. вузов, Геология и разведка, 1969, №1, с. 106-111.

8. Дьконов Б.П. Дифракция электромагнитных волн на круглом цилиндре в однородном полупространстве. Изв. АН СССР, сер. геофизическая, 1959, №9, с. 1332-1343.

9. Неведомский А.В. Дифракция плоской электромагнитной волны на проводящем цилиндре в горизонтально-слоистой среде. Изв. вузов, Физика, деп., 1978, №11, с. 118.

10. Семенов В.С. Электромагнитное зондирование подстилающей поверхности и верхнего слоя грунта с целью их контроля и диагностики. Изв. вузов, Физика, 1998, №8 с. 62-75.

11. Неведомский А.В. О приближенном расчете поля линейного переменного тока в слоистой среде. Изв. вузов, Физика, деп., 1978, №10, с. 159.

12. Кулько В.Ф., Михайловский В.П. Электромагнитное поле в слоистых проводящих средах. Киев, Наукова думка, 1967, с. 125-142.

Литература

Рис. 1

Относительное расстояние y/h

a=0,2 m; z1=2,0 m; z=0,5 m; d=0 m; f= 0,3 МГц.

Рис. 2. Поведение вертикальной составляющей магнитного поля цилиндра при изменении электрических параметров среды.

1 - ? 1,2 = 10; ? 1,2 = 10-3 См/м;

2 - ? 1,2 = 20; ? 1,2 = 10-2 См/м;

3 - ? 1,2 = 30; ? 1,2 = 10-1 См/м;

Относительное расстояние y/h

a=0,2 м; z1=2,0 м; z=0,5 м; d=0,0 м; f= 0,3 МГц.

Рис. 3. Поведение горизонтальной составляющей магнитного поля цилиндра при изменении электрических параметров среды.

1 - ? 1,2 = 10; ? 1,2 = 10-3 См/м;

2 - ? 1,2 = 20; ? 1,2 = 10-2 См/м;

3 - ? 1,2 = 30; ? 1,2 = 10-1 См/м;

Относительное расстояние y/h

a=0,2 м; z1=2,0 м; z=0,5 м; d=0,0 м; f= 0,3 МГц.

Рис. 4. Поведение электрической составляющей поля цилиндра при изменении электрических параметров среды.

1 - ? 1,2 = 10; ? 1,2 = 10-3 См/м;

2 - ? 1,2 = 20; ? 1,2 = 10-2 См/м;

3 - ? 1,2 = 30; ? 1,2 = 10-1 См/м;

Относительное расстояние y/h

a=0,1 м; z1=2,0 м ; z=0,5 м; d=1,0 м;

? 1 = 30; ? 1= 10-1 См/м; ? 2 = 20; ? 2 = 10-2 См/м;

Рис. 5. Частотная зависимость вертикальной составляющей магнитного поля цилиндра.

1 - f = 0,15 МГц

2 - f = 0,3 МГц

3 - f = 0,5 МГц

Относительное расстояние y/h

a=0,1 м; z1=2,0 м ; z=0,5 м; d=1,0 м;

? 1 = 30; ? 1= 10-1 См/м; ? 2 = 20; ? 2 = 10-2 См/м;

Рис. 6. Частотная зависимость горизонтальной составляющей магнитного поля цилиндра.

1 - f = 0,15 МГц

2 - f = 0,3 МГц

3 - f = 0,5 МГц

Относительное расстояние y/h

z1=2,0 м; z=0,5 м ; d=1,0 м; f = 0,5 МГц;

? 1 = 30; ? 1= 10-1 См/м; ? 2 = 20; ? 2 = 10-2 См/м;

Рис. 7. Поведение вертикальной составляющей магнитного поля с изменением радиуса цилиндра.

1 - a = 10-2 м; 3 - a = 0,2 м;

2 - a = 2,5? 10-2 м; 4 - a = 0,4 м;

Относительное расстояние y/h

z1=2,0 м; z=0,5 м ; d=1,0 м; f = 0,5 МГц;

? 1 = 30; ? 1= 10-1 См/м; ? 2 = 20; ? 2 = 10-2 См/м;

Рис. 8. Поведение горизонтальной составляющей магнитного

поля с изменением радиуса цилиндра

1 - a = 10-2 м;

2 - a = 10-1 м;

3 - a = 0,4 м;

Относительное расстояние y/h

z1=2,0 м; z=0,5 м ; d=1,0 м; f = 0,5 МГц;

? 1 = 30; ? 1= 10-1 См/м; ? 2 = 20; ? 2 = 10-2 См/м;

Рис. 9. Зависимость электрической составляющей поля от радиуса цилиндра.

1 - a = 10-2 м;

2 - a = 10-1 м;

3 - a = 0,4 м;

Размещено на Allbest.ru


Подобные документы

  • Расширение сети радиовещания на метровых и дециметровых волнах, определение зон обслуживания станций и зон помех. Антенно-фидерные устройства для новых радиоканалов. Расчет параметров передающих антенн; анализ влияния прямоугольного проводящего экрана.

    курсовая работа [2,1 M], добавлен 03.03.2011

  • Плоские электромагнитные волны в однородной изотропной среде, их поляризация. Поток энергии в плоской волне. Закон сохранения электромагнитной энергии для однородной линейной непроводящей среды. Отражение и преломление волн на плоской границе раздела.

    реферат [95,9 K], добавлен 20.08.2015

  • Поляризация электромагнитной волны и исследование с помощью виртуальной лабораторной установки различных видов поляризации. Вектор напряжённости электрического поля. Однородная плоская волна с круговой поляризацией. Описание лабораторной установки.

    лабораторная работа [1,0 M], добавлен 22.03.2009

  • Открытые и волноводные (закрытые) линии передачи электромагнитной энергии. Процесс передачи энергии электромагнитной волны от источника к приемнику. Коаксиальные линии и их характеристики, конструкции волноводов. Классификация волн в волноводе.

    презентация [278,9 K], добавлен 13.08.2013

  • Экранирование электромагнитных полей. Процесс экранирования электромагнитного поля при падении плоской волны на бесконечно протяженую металлическую пластину. Экранирование узлов радиоэлектронной аппаратуры. Экранирование высокочастотных катушек, контуров.

    реферат [120,2 K], добавлен 19.11.2008

  • Анализ методов расчета источника вторичного электропитания, который является обязательным функциональным узлом практически любой электронной аппаратуры. Особенности работы магнитопровода силового трансформатора и схемы управления силовым транзистором.

    курсовая работа [1,5 M], добавлен 29.04.2010

  • Разработка и проектирование принципиальной схемы вторичного источника питания. Расчет вторичного источника питания, питающегося от сети переменного тока, для получения напряжений постоянного и переменного тока. Анализ спроектированного устройства на ЭВМ.

    курсовая работа [137,3 K], добавлен 27.08.2010

  • Падение плоской волны на границу раздела двух сред, соотношение волновых сопротивлений и компонентов поля. Распространение поляризованных волн в металлическом световоде, расчет глубины их проникновения. Определение поля внутри диэлектрического световода.

    курсовая работа [633,8 K], добавлен 07.06.2011

  • Проектирование источника вторичного электропитания. Работа структурной схемы источника вторичного электропитания. Выбор и расчёт трансформатора. Расчет элементов силовой части преобразователя. Расчёт сетевого выпрямителя. Перечень элементов схемы.

    курсовая работа [408,5 K], добавлен 30.03.2015

  • Определение комплексных амплитуд составляющих вектора; диапазон частот. Расчет и построение графиков зависимостей поля от координат x, y, z. Вычисление среднего за период потока энергии через поперечное сечение волновода. Коэффициент затухания волны.

    курсовая работа [831,3 K], добавлен 15.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.