Двумерная модель радиационной электромагнитной наводки в кабельной линии
Разработка математической модели формирования электромагнитной наводки в коаксиальной кабельной линии импульсом радиационного излучения. Численный метод расчета нагрузки кабельной линии, базирующийся на неявной конечно-разностной схеме Кранка-Николсона.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 28.10.2018 |
Размер файла | 140,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Российская Академия Наук
Ордена Ленина Институт прикладной математики
им. М.В. Келдыша
Двумерная модель радиационной электромагнитной наводки в кабельной линии
А.В. Сысенко
МОСКВА 2006
АННОТАЦИЯ
ДВУМЕРНАЯ МОДЕЛЬ РАДИАЦИОННОЙ ЭЛЕКТРОМАГНИТНОЙ НАВОДКИ В КАБЕЛЬНОЙ ЛИНИИ
Представлена математическая модель формирования электромагнитной наводки в коаксиальной кабельной линии импульсом радиационного излучения. Модель построена в рамках телеграфного приближения. Предложен численный метод расчёта, базирующийся на неявной конечно-разностной схеме Кранка-Николсона. Учтена нестационарная концевая нагрузка кабельной линии, которая задается функцией времени. Представлены результаты тестирования и пример расчёта.
ABSTRACT
THE 2D MODEL OF RADIATIONAL ELECTROMAGNETIC INDUCING IN THE CABLE LINE
The mathematical model of electromagnetic inducing formation in coaxial cable line by the ionizing radiation pulse is represented. The model is constructed within the limits of telegraphic approximation. A numerical method of calculations, which is based on the implicit finite difference Crank-Nicholson scheme, is represented. The transitional load on the cable line, which is determined by the function of the time variable, is taken into account. The test's results and the example of numerical experiment are represented.
ВВЕДЕНИЕ
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
При воздействии импульса ионизирующего излучения в материалах кабельной линии (металл, диэлектрики) происходит генерация потока заряженных частиц (электронов, позитронов) [1]. Наличие материалов с различными физическими свойствами (см. рис. 1) обуславливает формирование некомпенсированных электрических зарядов вблизи границ раздела "диэлектрик-металл" (на длине свободного пробега заряженных частиц в материале). Вследствие этого между оплёткой и жилой кабеля образуется разность потенциалов, что и приводит к генерации в линии паразитных электрических токов. Для получения параметров электромагнитной наводки необходимо знать характер распределения электрических зарядов в материалах кабельной линии. Получение такого распределения является самостоятельной подзадачей, решаемой в рамках физики переноса ионизирующих излучений [1].
1. ПОСТАНОВКА ЗАДАЧИ
Рассмотрим участок кабельной линии (см. рис. 2). Запишем второе уравнение Максвелла в интегральной форме [2]:
(1)
где S - поверхность, ограниченная замкнутым контуром С;
Es - касательная составляющая вектора электрического поля;
Bn - нормальная составляющая вектора магнитной индукции;
сэл - скорость распространения электромагнитных возмущений.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Используем его для замкнутого прямоугольного контура abcda. Циркуляция электрического поля вдоль сторон замкнутого контура равна:
(2)
где Ezжил, Ezопл - касательные составляющие электрического поля на жиле и оплётке соответственно;
U(z) - напряжение между жилой и оплёткой кабеля в сечении z
Полагая, что Ezжил=RжилI и Ezопл=-RоплI, получаем:
(3)
где R=(Rжил+Rопл) - погонный внутренний импеданс кабеля.
Поток вектора магнитной индукции через контур abcda можно представить в виде:
(4)
где - магнитный поток между жилой и оплёткой на единицу длины кабеля.
Таким образом, уравнение (1) для контура abcda принимает вид:
радиационный электромагнитный наводка кабельный
(5)
Запишем уравнение непрерывности в интегральной форме [2]:
(6)
где - плотность заряда в объёме, ограниченном замкнутой поверхностью S;
jn - нормальная составляющая вектора плотности тока на поверхности S.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Применим его к отрезку z, z+dz жилы (см. рис. 3). Интеграл определяет заряд на отрезке жилы и поэтому равен произведению погонной плотности заряда qжил на элемент длины dz. Поверхностный интеграл разложим на сумму интегралов по поперечным сечениям z, z+dz и боковой поверхности провода S0 на участке (z, z+dz):
(7)
где 0, 0 - проводимость и диэлектрическая постоянная изоляции между жилой и оплёткой;
Dn - нормальная составляющая вектора электрической индукции.
Интеграл с Dn можно преобразовать, используя теорему Гаусса:
(8)
где жил, жил - проводимость и диэлектрическая постоянная жилы кабеля.
Таким образом, получаем:
(9)
Учитывая, что 0 жил (проводимость диэлектрической изоляции гораздо меньше проводимости металлической жилы), получаем:
(10)
Проведя аналогичные рассуждения для оплётки, получим:
(11)
До этого момента для построения уравнений использовались только уравнения Максвелла, поэтому все полученные соотношения носят фундаментальный характер. Теперь же сделаем предположение о локальном характере электромагнитных полей внутри кабеля, т.е. магнитное поле в поперечном сечении z=const кабеля определяется исключительно током I, текущем по жиле и оплётке в этом сечении; электрическое поле в поперечном сечении z=const кабеля определяется исключительно погонной плотностью зарядов на жиле и оплётке кабеля (qжил, qопл), а также распределением электрического заряда внутри диэлектрической изоляции (t,r,z).
Предположение о локальности магнитного поля позволяет легко связать магнитный поток между жилой и оплёткой на единицу длины кабеля с током текущем в кабеле I:
(12)
где - погонная индуктивность кабеля;
cэл = 2.99791010 см/c - скорость распространения электромагнитных возмущений в вакууме;
0 - магнитная проницаемость диэлектрической изоляции.
Используя эту связь, получаем:
(13)
Предположение о локальности электрического поля используем для получения связи между параметрами погонной плотности зарядов на жиле и оплётке кабеля (qжил, qопл) и напряжением U (вполне очевидно, что это соотношение будет зависеть и от распределения электрического заряда внутри диэлектрической изоляции (t,r,z)).
Пусть в момент времени t в поперечном сечении z=const кабеля сложилось следующее распределение электрических зарядов (см. рис. 4):
qжил - погонный заряд жилы кабеля;
qопл - погонный заряд оплётки кабеля;
(t,r,z) - распределения электрического заряда внутри диэлектрической изоляции.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Рассматривая кабель как бесконечный коаксиальный цилиндрический конденсатор, обкладками которого являются жила (r1 = rжил) и оплётка (r2 = rопл), с объёмно распределённым электрическим зарядом в диэлектрической изоляции получим выражение для напряжения между обкладками. Учитывая, что потенциал бесконечно длинной тонкой цилиндрической поверхности радиуса a с погонной плотностью электрического заряда q равен:
(14)
получаем:
(15)
В выражении (15) в фигурных скобках представлены алгебраические суммы потенциалов всех зарядов системы (в жиле, оплётке и диэлектрической изоляции) соответственно на жиле и оплётке. Считая не зависящей от r, выражение (15) после интегрирования приведётся к виду:
(16)
Выразив из (16) qжил и подставив в (10), окончательно получим:
(17)
где - погонная ёмкость кабельной линии;
- погонный коэффициент утечки;
;
.
Таким образом, проводя совместное интегрирование уравнений (13) и (17) с использованием граничных условий:
, (18)
где L - длина кабельной линии;
R0(t) - нагрузка на левом конце кабельной линии;
RL(t) - нагрузка на правом конце кабельной линии, мы получаем параметры паразитной наводки, возбуждаемой в кабельной линии при импульсном радиационном воздействии.
2. ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ ЗАДАЧИ
Численное решение задачи
Для совместного интегрирования уравнений (13), (17) с граничными условиями (18) и начальными условиями:
(19)
используем метод характеристик [3], полагая, что Lкаб = const, R = const и C = const.
Определим уравнений характеристик как
(20)
где = 45;
v - скорость распространения электромагнитной волны.
Система уравнений (13), (17) примет вид:
(21)
где .
Учитывая, что ( - волновое сопротивление линии) и , преобразуем систему (21) к виду:
(22)
Введём новые функции и :
(23)
Тогда система (22) примет вид:
(24)
где ,
.
Для решения системы (24) применим неявную конечно-разностную схему Кранка-Николсона [4], шаблон которой представлен на рис. 5.
Имеем:
(25)
где (z - шаг по пространству);
- шаг по времени;
- значения соответствующих функций в момент времени в точке с координатой .
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Систему (25) можно представить в следующем виде:
(26)
где
.
Разрешая систему (26) относительно , получаем:
(27)
Из соотношения (18) следует, что на левом и правом концах линии в любой момент времени выполняются следующие соотношения:
(28)
где ;
.
Используя соотношения (26) и (28), получаем выражения для искомых функций на концах линии:
(29а)
(29б)
Таким образом, используя соотношения (27), (29а), (29б), (23) и учитывая, что для всех n, можно определить значения U и I в любой точке линии в любой момент времени. Условие устойчивости для данной конечно-разностной схемы выглядит следующим образом:
, (30)
где - шаг по пространству;
- шаг по времени;
v - скорость распространения электромагнитной волны в линии
.
3. ЗАДАНИЕ ИСХОДНЫХ ДАННЫХ ДЛЯ РАСЧЕТА
Для расчета параметров электромагнитной наводки в коаксиальной кабельной линии при воздействии импульса ионизирующего излучения необходимо задание следующих исходных данных.
Параметры и характеристики кабельной линии:
радиус жилы (см);
радиус оплётки (см);
длина (см);
погонное сопротивление жилы и оплётки (с/см);
электрическая проводимость материала изоляции (1/с);
относительная диэлектрическая проницаемость изоляции;
относительная магнитная проницаемость изоляции.
Параметры и характеристики воздействия:
амплитудное значение погонного радиационно-стороннего тока, натекающего на жилу кабеля ;
объёмная плотность заряда в диэлектрической изоляции между оплёткой и жилой ;
временная зависимость погонного радиационно-стороннего тока, натекающего на жилу кабеля.
Требуемые параметры расчета:
количество ячеек по длине кабеля;
временной шаг записи результатов расчета на диск;
шаг записи результатов расчета по длине кабеля.
4. ТЕСТИРОВАНИЕ ЧИСЛЕННОЙ МЕТОДИКИ
Тестирование методики производилось на решении модельных задач электродинамики. Были проведены расчёты задач зарядки и разрядки кабельных линий, результаты сопоставлялись с аналитическими решениями.
Зарядка кабельной линии неравномерным потоком ионизирующего излучения. Кабель (длина 100 см, радиус жилы 0.04 см, радиус оплётки 0.2 см, относительная диэлектрическая проницаемость изоляции 2.5, концы разомкнуты) облучается неравномерным по длине потоком ионизирующего излучения, который создаёт следующий погонный ток, натекающий на жилу кабеля:
,
где = 8.85410-12 Ф/м;
o =2.5;
rопл = 0.2 см;
rжил = 0.04 см;
;
Lкаб = 100 см.
Результаты расчёта показали, что течение процесса зарядки кабеля полностью соответствует классическим представлениям [5], выход на стационарный режим завершает процесс перезарядки кабеля, в результате которой напряжение между жилой и оплёткой становится одинаковым по всей длине кабеля. Присутствуют колебания, обусловленные резонансом, вызванным переотражением электромагнитной волны от разомкнутых концов кабеля (полупериод колебаний соответствует времени прохождения волны по кабельной линии).
Разрядка кабельной линии на согласованную нагрузку. Кабель (длина 100 см, радиус жилы 0.04 см, радиус оплётки 0.2 см, относительная диэлектрическая проницаемость изоляции 2.5, концы разомкнуты) имеет разность потенциалов между жилой и оплёткой 1 В. В момент времени t = 0 правый конец кабеля замыкается на активную нагрузку 61 Ом, равную волновому сопротивлению кабеля. Процесс разрядки кабеля полностью совпадает с классическим аналитическим решением [6].
ЛИТЕРАТУРА
1. А.М. Волощенко, С. В. Гуков, В. В. Шаховский «Исследование радиационного воздействия на коаксиальный антенный кабель», Сборник докладов Всероссийской конференции «Радиационная стойкость электронных систем - СТОЙКОСТЬ - 2002», г. Лыткарино Московской обл., 2002 г.
2. Л. Д. Ландау, Е.М. Лившиц «Теоретическая физика. Теория поля» - М.: «Наука», 1988 г.
3. А. Н. Тихонов, А. А. Самарский «Уравнения математической физики» - М.: «Наука», 1986 г.
4. Д. Поттер «Вычислительные методы в физике» М.: «Мир», 1975 г.
5. В. И. Вольман, Ю. В. Пименов «Техническая электродинамика» - М.: «Связь», 1971 г.
6. Г. В. Зевеке, П. А. Ионкин, А. В. Нетушил, С. В. Страхов «Основы теории цепей» - М.: «Энергоатомиздат», 1989 г.
Размещено на Allbest.ru
Подобные документы
Проектирование кабельной линии связи. Выбор аппаратуры связи, системы кабельной магистрали и распределение цепей по четверкам. Размещение усилительных и регенерационных пунктов на трассе. Расчет влияний тяговой сети постоянного тока на кабельную линию.
курсовая работа [806,7 K], добавлен 06.02.2013Выбор системы организации кабельной магистрали. Размещение усилительных, регенерационных пунктов и тяговых подстанций. Разработка скелетной схемы участка. Расчет переходных влияний между цепями кабельной линии связи. Распределение цепей по четверкам.
курсовая работа [1,8 M], добавлен 06.02.2013Описание трассы проектируемой кабельной линии связи. Выбор типов кабеля и аппаратуры. Размещение усилительных пунктов. Разработка скелетной схемы участка кабельной и волоконнооптической линии автоматики, телемеханики и связи на участке Иркутск-Слюдянка.
курсовая работа [1,8 M], добавлен 07.02.2013Характеристика оконечных пунктов Энгельс-Волгоград. Выбор оптимального варианта трассы линии связи. Определение числа каналов на магистрали. Расчет конструкции кабеля, параметров кабельной цепи. Необходимость защиты кабельной магистрали от удара молнии.
курсовая работа [2,7 M], добавлен 03.10.2011Описание проектируемого участка линии связи, сведения о сближении с железными дорогами и высоковольтными линиями. Выбор и обоснование кабельной системы. Размещение оконечных и промежуточных усилительных и регенерационных пунктов на трассе линии связи.
курсовая работа [177,5 K], добавлен 06.02.2013Проектирование междугородной линии связи для трассы Ижевск-Курган. Расчет каналов тональной частоты, первичных и вторичных параметров передачи кабельной цепи, выбор аппаратуры уплотнения. Мероприятия по защите кабельной магистрали от ударов молнии.
курсовая работа [1021,4 K], добавлен 10.05.2011Выбор трассы кабельной линии связи. Расчет параметров передачи кабельных цепей реконструируемой линии. Расчет параметров взаимных влияний между цепями. Проектирование волоконно-оптической линии передачи. Организация строительно-монтажных работ.
курсовая работа [1,2 M], добавлен 22.05.2012Выбор кабельной системы, типа кабеля и размещение цепей по четверкам. Размещение оконечных и промежуточных усилительных и регенерационных пунктов на трассе линии связи. Монтаж кабельной магистрали. Расчет симметричного кабеля и оптического волокна.
курсовая работа [837,8 K], добавлен 06.02.2013Физико-географические данные проектируемого участка линии связи. Выбор аппаратуры связи и системы кабельной магистрали. Размещение усилительных и регенерационных пунктов на трассе линии связи. Меры защиты кабельных линий от действующих на них влияний.
курсовая работа [768,2 K], добавлен 03.02.2013Выбор аппаратуры связи, системы кабельной магистрали и распределение цепей. Монтаж кабельной магистрали. Расчет длин кабелей ответвлений и мешающих влияний на кабельные цепи. Размещение усилительных и регенерационных пунктов на трассе линии связи.
курсовая работа [995,2 K], добавлен 05.02.2013