Алгоритмы фильтрации сигналов биоэлектрической природы
Метод представления в базисе Габора. Параметры фильтра при экстремальном значении функционала. Разбиение интервала на независимые сегменты, определяемые спадом гауссианы. Синтез эффективных фильтров, основанных на дискретном вейвлет-преобразовании.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 260,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Алгоритмы фильтрации сигналов биоэлектрической природы
И.А. Тарасова1, А.В. Леонова2, С.А. Синютин2
1Волгоградский государственный технический университет, г. Волгоград
2Южный федеральный университет, факультет электроники и приборостроения, г. Таганрог
Для выявления событий в электрофизиологических сигналах применяют различные формы их представления. Так, например, в [1] для исследования вызванных потенциалов предлагалась аппроксимация ЭЭГ синусоидальной функцией, умноженной на экспоненциально затухающий множитель. Однако данный подход приводит к расхождению ряда при отрицательных значениях аргумента (времени). Кроме того, необходимо точно знать момент начала события.
В настоящее время специалистами [2, 3] был предложен более адекватный метод представления сигналов, называемый представлением в базисе функций Габора:
.
фильтр интервал гауссиана дискретный
Метод представления в базисе Габора рассматривается как перспективный, для задач электрофизиологии, особенно электроэнцефалографии. Кроме того, базис Габора активно используется при анализе изображений.
Рассмотрим синтез эффективных фильтров, основанных на дискретномвейвлет-преобразовании (ДВП). На примере удаления низкочастотной (НЧ) и высокочастотных (ВЧ) составляющих для тестовых сигналов ЭКГ и ЭЭГ синтезированы соответствующие фильтры.
Рассмотрим синтез полосового фильтра для ЭЭГ на основе ДВП. Эталонный сигнал аддитивно смешаем с помехами низкой и высокой частоты, соответственно, и :
Параметры фильтра при экстремальном значении функционала:
.
В результате можно получить параметры полосовых фильтров для вейвлетов Добеши, симплетов и койфлетов:
Аналогично для ФНЧ:
Для полосового фильтра, применяемого при фильтрации ЭКГ набор параметров:
Оптимальный набор для сигнала ЭКГ ФНЧ для вейвлетаДобеши выглядит так:
Аналогично для симплетов и койфлетов:
Для полосовых фильтров выигрыш от использования фильтров ДВП по сравнению с КИХ-фильтрами, основанных на вейвлетахДобеши и симплетов:
, (6)
для фильтров, основанных на койфлетах:
. (7)
Для разложения по функциям Габора в рамках быстрого алгоритма воспользуемся следующими соображениями.
В рамках реального времени полный перебор приводит к существенным вычислительным затратам, потому необходима редукция вычислительной сложности алгоритма разложения.
Предлагаемые методы уменьшения времени работы алгоритма:
1) свертка сигнала с функцией Габора методом быстрой корреляции;
2) разбиение интервала на независимые сегменты, определяемые спадом гауссианы;
3) учет ограниченности спектра и потому отсутствие необходимости полного рассмотрения на отрезке (как на всем отрезке, так и в пределах отдельных гауссиан).
Для разложения по функциям Габора применяют модифицированный алгоритм «Поиска совпадений» MatchingPursuit (MP), который сводится к шагам, показанным на блок-схеме (Рисунок 1). Прекращаем разложение в момент достижения энергетической «выборки» сигнала на некоторую заданную величину , т.е. проверяем условие . Если условие не выполнено, то возвращаемся на шаг поиска максимума свертки. В противном случае вычисления прекращаем.
Рисунок 1 - Применение алгоритма MatchingPursuit для разложения по функциям Габора
В результате получаем решение в виде
,
где.
Имеем следующее допустимое пространство определения функций Габора, которое является сеточным и определяет вычислительные затраты при прямом переборе всех точек:
.
Естественная предельная алгоритмическая сложность разложения сигнала методом MP (поиск одной функции), определяемая параметрами АЦП по операциям умножения для всего временного отрезка получается порядка , эквивалентно .
При применении алгоритмов быстрой корреляции для поиска алгоритмическая сложность снижается до , что может быть использовано при оптимизации вычислительных операций и зачастую позволяет уложить время обработки сигналов в рамки реального.
Обработка электрокардиосигнала, полученного в результате холтеровскогомониторирования, заключается в фильтрации, прореживании и вычисления ЧСС (вычисление ЧСС основано на алгоритме выделения R-зубца). Поскольку в общем случае на снимаемый с пациента электрокардиосигнал могут влиять различные электрические факторы (сетевая помеха 50 Гц, импульсные помехи), то существует необходимость снизить их влияние на сигнал, используемый для анализа алгоритмом выделения R-зубца. Общий алгоритм выделения R-зубца представлен на рисунке 1, в него не входят цифровые фильтры, т.к. их реализация зависит от разрядности и вычислительной мощности используемой аппаратной платформы.
Фильтрация НЧ и ВЧ компонент производится достаточно традиционно, а именно, с помощью цифровых рекурсивных или нерекурсивных фильтров. Такие фильтры можно синтезировать с помощью FilterDesingToolBox пакета MatLab [4]. Интерес представляет нелинейный фильтр, используемый для выделения зоны QRS комплекса и подчеркивания R зубца. Этот фильтр одновременно уменьшает амплитуду сетевой помехи 50Гц. Выражения для фильтра имеют следующий вид:
, (1)
, (2)
. (3)
где X -входные отсчеты кардио-сигнала, индекс w - является константой, w - коэффициент указывающий на смещение отсчета кардио-сигнала относительно 0-го элемента, нулевым считается центральный отсчет во временном окне из последних (2w+3) отсчетов, данный коэффициент зависит от частоты дискретизации сигнала, например для частоты съема ЭКГ 500 Гц, коэффициент w равен 10.
Рисунок 1 - Общий алгоритм выделения R-зубца
Вычисление переменной Pi производится по следующей формуле:
; (4)
где inBuffer - массив отсчетов электрокардиосигнала, индексы c, w - являются константами, c - центральный элемент массива, w - коэффициент, зависящий от частоты дискретизации сигнала, для частоты съема ЭКГ 500 Гц, коэффициент w равен 10 (это необходимо для эффективной режекции частоты 50 Гц).
Блок фиксирования R-зубца содержит пользовательскую процедуру, в которой может выполняться измерение RR-интервалов, расчет ЧСС (частота сердечных сокращений) и статистических параметров ЭКГ для анализа ВСР (вариабельности сердечного ритма).
Подстройка граничных параметров заключается в динамической корректировке порогового значения threshold отражающего порог фиксации R-зубца. Такая подстройка необходима для адаптации алгоритма к различным амплитудам электрокардиосигнала, так как сложно и невозможно установить среднее значение размаха сигнала ЭКГ для различных пациентов. Кроме того амплитуда сигнала может изменяться и у одного и того же пациента с течением времени. На основании проведенных расчетов, разработан алгоритм подстройки амплитуды порога для выделения R-зубца. Суть алгоритма заключается в определении величины фронта (оценки производной) входного сигнала, и установки граничного значения порога для фиксации R-зубца в процентах от этого значения, в данном случае порог установлен на 20% от максимальной величины фронта [5]. Описанные алгоритмы позволяют устройствам для проведения холтеровского мониторирования удовлетворять требованиям к встраиваемому программному обеспечению, к которому в свою очередь предъявляются жесткие требования ко времени выполнения, а их нарушение может привести к нарушению функционирования устройства в целом.
Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг., мероприятие 1.4, соглашение от 14.11.2012 г. № 14.A18.21.2081.
Литература
1. Жадин М. Н. Биофизические механизмы формирования электроэнцефалограммы / М. Н. Жадин. - М.: Наука, 1984. - 197 с.
2. Durka P. Matching Pursuit and Unification in EEG Analysis/ P. Durka -Norwood:Artech House, 2007. - 204 p.
3. Акулов Л.Г. Алгоритмические особенности представления электрофизиологических временных рядов в базисе функций Габора / Л.Г. Акулов, И.А. Тарасова, Ю.П. Муха // Биомедицинская радиоэлектроника. - 2010. - № 6. - C. 31-37.
4. А.Б.Сергиенко. Цифровая обработка сигналов [Текст] // СПб, Изд-во: Питер, 2002. -- 608 с.
5. Синютин С.А. Анализ RR интервального ряда водителя в условиях сильных помех с помощью Wavelet преобразования [Текст] // Инженерный вестник Дона. - 2012. - №3 (16.08.12).
Размещено на Allbest.ru
Подобные документы
Жесткий и гибкий пороги фильтрации речевого сигнала. Графики вейвлет-разложения речевого сигнала. Блок схема алгоритма фильтрации с гибким порогом. Статистический метод фильтрации речевого сигнала. Оценка качества восстановленного речевого сигнала.
реферат [440,2 K], добавлен 01.12.2008Исходные данные для расчета пассивных RC-фильтров. Расчет параметров элемента фильтра. Частотные фильтры электрических сигналов предназначены для повышения помехоустойчивости различных электронных устройств и систем. Параметры реальных фильтров.
контрольная работа [52,9 K], добавлен 04.10.2008Проблема помехоустойчивости связи, использование фильтров для ее решения. Значение емкости и индуктивности линейного фильтра, его параметры и характеристики. Моделирование фильтра и сигналов в среде Electronics Workbench. Прохождение сигнала через фильтр.
курсовая работа [442,8 K], добавлен 20.12.2012Субполосное кодирование и преобразование Габора. Дискретное косинусное и ортогональное перекрывающееся преобразования. Преимущество преобразования при помощи блоков фильтров перед преобразованием Фурье. Синтез фильтров в трансверсальной реализации.
курсовая работа [2,9 M], добавлен 28.08.2013Ознакомление с основными характеристиками каскадного и некаскадного полосовых фильтров. Определение ФНЧ прототипа с целью оценки полосы пропускания и неравномерности каскадного фильтра. Рассмотрение методики синтеза некаскадного полосового фильтра.
реферат [1,5 M], добавлен 09.11.2013Моделирование пассивных фильтров низкой частоты: однозвенных и двухзвенных. Пассивные и активные высокочастотные фильтры. Параметры элементов трехконтурного режекторного фильтра. Описание полосового фильтра активного типа. Электрическая схема фильтра.
лабораторная работа [1,1 M], добавлен 29.11.2010Характеристика основных требований к методам и алгоритмам фильтрации. Предпосылки возникновения помех и искажений. Особенности фильтров на основе ортогональных и дискретного косинусного преобразований. Применение фильтра со сменным размером окна.
курсовая работа [5,8 M], добавлен 08.12.2011Основная идея адаптивной обработки сигнала. Алгоритмы адаптивной фильтрации. Детерминированная задача оптимальной фильтрации. Адаптивные фильтры в идентификации систем. Алгоритм RLS с экспоненциальным забыванием. Реализация моделей адаптивных фильтров.
курсовая работа [1,0 M], добавлен 11.03.2015Анализ свойств R-фильтров второго порядка. Особенность схемотехники звеньев R-фильтров нижних частот. Характеристика синтеза структур R-звеньев с дополнительными частотнозависимыми цепями. Синтез фильтра третьего порядка с дополнительными RC-цепями.
курсовая работа [1,0 M], добавлен 05.03.2011Ослабление вредного действия помехи в радиотехнической системе с помощью линейной фильтрации, основанной на использовании линейных частотных фильтров. Условия физической реализуемости фильтра. Расчет амплитудного и фазового спектров заданного сигнала.
курсовая работа [1,4 M], добавлен 04.03.2011