Представление синусоидальных величин с помощью векторов и комплексных чисел

Характерные особенности цепей с изменяющимися переменными токами по сравнению с цепями постоянного тока. Действующее значение переменного тока. Изображение синусоидальных ЭДС, напряжений и токов комплексными числами и на плоскости декартовых координат.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 30.03.2017
Размер файла 199,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Представление синусоидальных величин с помощью векторов и комплексных чисел

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися - переменными - токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.) называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, - периодом Т. Для периодического тока имеем

, (1)

Величина, обратная периоду, есть частота, измеряемая в герцах (Гц):

, (2)

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01ё10 Гц - в системах автоматического регулирования, в аналоговой вычислительной технике) - до сверхвысоких (3000 ё 300000 МГц - миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц.

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i - мгновенное значение тока ;

u - мгновенное значение напряжения ;

е - мгновенное значение ЭДС ;

р- мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m).

- амплитуда тока;

- амплитуда напряжения;

- амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

, (3)

Синусоидально изменяющийся ток. Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:

.

синусоидальный вектор комплексный число

Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени (t=0): и - начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Тизменяется на рад., то угловая частота есть , где f- частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.

Для синусоидальных ЭДС е1 и е2 угол сдвига фаз:

.

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w. Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t=0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w. Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токов и двух ветвей:

.

Каждый из этих токов синусоидален и может быть представлен уравнением

и .

Результирующий ток также будет синусоидален:

.

Определение амплитуды и начальной фазы этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы.

На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов для t=0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

.

Построение векторной диаграммы в масштабе позволяет определить значения и из диаграммы, после чего может быть записано решение для мгновенного значения путем формального учета угловой частоты: .

Представление синусоидальных ЭДС, напряжений и токов комплексными числами

Геометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов.

Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в :

показательной

тригонометрической или

алгебраической - формах.

Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число

.

Фазовый угол определяется по проекциям вектора на оси “+1” и “+j” системы координат, как

.

В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:

,(4)

Комплексное число удобно представить в виде произведения двух комплексных чисел:

, (5)

Параметр , соответствующий положению вектора для t=0 (или на вращающейся со скоростью w комплексной плоскости), называют комплексной амплитудой: , а параметр - комплексом мгновенного значения.

Параметр является оператором поворота вектора на угол wt относительно начального положения вектора.

Вообще говоря, умножение вектора на оператор поворота есть его поворот относительно первоначального положения на угол ±a.

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “j” произведения комплекса амплитуды и оператора поворота :

.

Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:

, (6)

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме:

,

- то для записи ее в показательной форме, необходимо найти начальную фазу , т.е. угол, который образует вектор с положительной полуосью +1:

.

Тогда мгновенное значение напряжения:

,

где .

При записи выражения для определенности было принято, что , т.е. что изображающий вектор находится в первом или четвертом квадрантах. Если , то при (второй квадрант)

, (7)

а при (третий квадрант)

(8)

(9)

Если задано мгновенное значение тока в виде , то комплексную амплитуду записывают сначала в показательной форме, а затем (при необходимости) по формуле Эйлера переходят к алгебраической форме:

.

Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма.

Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока по рис. 5 получим:

;

.

Действующее значение синусоидальных ЭДС, напряжений и токов

В соответствии с выражением (3) для действующего значения синусоидального тока запишем:

.

Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Таким образом, действующие значения синусоидальных тока, ЭДС и напряжения меньше своих амплитудных значений в раз:

. (10)

Поскольку, как будет показано далее, энергетический расчет цепей переменного тока обычно проводится с использованием действующих значений величин, по аналогии с предыдущим введем понятие комплекса действующего значения

.

Литература

1. Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Размещено на Allbest.ru


Подобные документы

  • Преобразователи тока и напряжения, их свойства и применение. Понятие коэффициента трансформации, реакторы и трансреакторы. Фазоповоротные и частотно-зависимые схемы. Насыщающиеся трансформаторы тока, преобразователи синусоидальных токов и напряжений.

    курсовая работа [2,6 M], добавлен 11.08.2009

  • Расчет линейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Определение токов во всех ветвях схемы на основании законов Кирхгофа. Метод контурных токов. Баланс мощностей цепи.

    курсовая работа [876,2 K], добавлен 27.01.2013

  • Краткий обзор коммутационных устройств ручного управления. Разработка кнопки для коммутации электрических цепей постоянного и переменного тока низкой частоты: определение контактного усилия, переходного сопротивления и температур локального перегрева.

    контрольная работа [39,8 K], добавлен 29.08.2010

  • Составление баланса мощностей для электрической схемы. Расчет сложных электрических цепей постоянного тока методом наложения токов и методом контурных токов. Особенности второго закона Кирхгофа. Определение реальных токов в ветвях электрической цепи.

    лабораторная работа [271,5 K], добавлен 12.01.2010

  • Общая характеристика способов представления и параметров. Элементы R,L,C в цепи синусоидального тока. Специфика алгебры комплексных чисел, формы их представления. Особенности символического метода, его применение. Законы цепей в символической форме.

    реферат [389,1 K], добавлен 03.12.2010

  • Экспериментальное и расчетное определение эквивалентных параметров цепей переменного тока, состоящих из различных соединений активных, реактивных и индуктивно связанных элементов. Применение символического метода расчета цепей синусоидального тока.

    курсовая работа [1,5 M], добавлен 07.02.2013

  • Изучение общей методики расчета линейной электрической цепи постоянного тока, содержащей независимый источник электродвижущей силы. Описательная характеристика разветвленных электрических цепей однофазного синусоидального и несинусоидального тока.

    методичка [342,2 K], добавлен 01.12.2015

  • Анализ основных методов расчёта линейных электрических цепей постоянного тока. Определение параметров четырёхполюсников различных схем и их свойства. Расчет электрической цепи синусоидального тока сосредоточенными параметрами при установившемся режиме.

    курсовая работа [432,3 K], добавлен 03.08.2017

  • Параметры переменного тока. Промышленная, звуковая, высокая и сверхвысокая частоты. Активное, индуктивное и емкостное сопротивления в цепи тока. Получение электромагнитных колебаний в колебательном контуре. Резонанс напряжений и резонанс токов.

    контрольная работа [151,1 K], добавлен 03.12.2010

  • Разработка и проектирование принципиальной схемы вторичного источника питания. Расчет вторичного источника питания, питающегося от сети переменного тока, для получения напряжений постоянного и переменного тока. Анализ спроектированного устройства на ЭВМ.

    курсовая работа [137,3 K], добавлен 27.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.