Опыт применения электромагнитных расходомеров
Метрологические и технологические характеристики электромагнитных расходомеров: динамического диапазона, погрешности измерений, межповерочного интервала. Специфика опыта внедрения ЭМР в России для технических целей и коммерческого учета энергоносителей.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2017 |
Размер файла | 17,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Статья
на тему: Опыт применения электромагнитных расходомеров
Выполонил:
В.С. Коптев
Метрологические характеристики.
Типичный динамический диапазон измерений расхода электромагнитными (индукционными) расходомерами (ЭМР) в несколько раз превышает динамические диапазоны ультразвуковых, вихревых и тахометрических расходомеров. При этом для осесимметричных потоков показания ЭМР не зависят от характера движения, что позволяет измерять очень низкие скорости, соответствующие ламинарному режиму. м Диапазон измеряемых скоростей потока ЭМР простирается от единиц миллиметров в секунду 2 до 10-15 м/с, однако некоторые производители :-- ограничивают этот диапазон из технологических а или метрологических соображений. Например, к фирма Foxboro рекомендует измерять расход 1 при скорости потока в диапазоне 0,9-4,6 м/с, g при возможности эрозии канала первичного 31 преобразователя расхода (ППР) ограничивать о верхний предел скорости (0,9-1,8 м/с), при возможности выпадения осадков - нижний предел скорости (1,8-4,6 м/с).
Типичная погрешность измерений находится в пределах ±0,5% от измеряемой величины. Многие производители предлагают в качестве опции калибровку ЭМР с погрешностью ±0,2% и/или по более, чем 3-м точкам задаваемого расхода. Динамический диапазон измерения расхода многими западными производителями не указывается, а если указывается, то обычно он охватывает скорости потока, при которых относительная погрешность составляет 5% и более.
Воспроизводимость показаний ЭМР, изготовленных в дальнем зарубежье, обычно не превышает ±0,1% от текущего значения расхода, производители ЭМР в России и ближнем зарубежье обычно не нормируют этот метрологический параметр.
ЭМР давно стали основой поверочных расходоизмерительных установок сличения [1], обеспечивая в сравнительно узком диапазоне расходов и эталонных условиях предельную точность в пределах относительной погрешности ±0,15%. Принимая во внимание, что большинство западных ЭМР имеет воспроизводимость показаний на уровне ±0,1 %, то, видимо, этот уровень и определяет предел погрешности для настоящего уровня развития ЭМР.
Технологические характеристики.
Диапазон температур рабочей среды составляет от криогенных (-100 ОС) до перегретой воды (+200 ОС), при давлениях от вакуума (10-2 мм рт. ст.) до высоких скважинных (40 МПа).
Диаметры ППР для полнопроходных ЭМР находятся в пределах от 3 до 3000 мм, а для погружных ЭМР с локальными измерителями скорости от 300 до 4000 мм.
Проведение натурной калибровки полнопроходных ЭМР с диаметрами более 1000 мм требует совершенно уникальных поверочных установок, которых в мире единицы. В этом случае использование имитационных средств для поверки является разумной альтернативой более точным, но дорогостоящим натурным методам.
Требуемые прямолинейные участки без гидравлических сопротивлений различны у разных производителей и составляют от 3-5 Ду до и 1-3 Ду после места установки ППР. Для расходомеров с прямоугольным каналом прямолинейные участки трубопровода не требуются.
Как хорошо известно, ЭМР практически нечувствительны к характеру движения жидкости, т.е. ламинарному, переходному или турбулентному, при условии симметричности профиля скоростей относительно оси трубопровода, а также к давлению, температуре и вязкости измеряемой среды. В случае осаждения на электродах осадков различной природы (накипь, заиливание) предусматривается периодическая чистка электродов без снятия ППР с трубопровода с помощью источника постоянного и переменного тока, подключаемого к ним и обеспечивающего пробой или выжигание этих осадков.
Опыт внедрения ЭМР в России.
Если продвижение в России ЭМР для технических целей проходило достаточно спокойно, то для коммерческого учета энергоносителей носило поистине драматический характер, и было сопряжено со значительными трудностями. Несмотря на то, что электромагнитный принцип измерения расхода обладает рядом неоспоримых достоинств, таких как: высокая достижимая точность, широкий диапазон измерений скоростей, инвариантность к физико-химическим параметрам среды и характеру течения жидкости, применение ЭМР в системах теплоснабжения находило сопротивление. Так, под видом «опыта», родились некие мифы и ложные представления, которые надолго овладели умами некоторых весьма авторитетных специалистов.
Начало этому было положено статьей [2], в которой исследовался опыт специалистов Danfoss использования ЭМР в системах теплоснабжения Дании и делался вывод об их непригодности в указанных целях. Вместо ЭМР рекомендовались ультразвуковые расходомеры (УЗР) Sonoflo этой же фирмы. Эта статья быстро была «разобрана на цитаты» и ужасающие своей безысходностью цифры появлялись то в одном, эксплуатации, постепенно, через 6-12 мес., их (ЭМР - прим. авт.) показания становятся на 30-40% ниже действительных значений…» [3], «…они (ЭМР-прим. авт.) не способны с необходимой точностью измерять расход при незначительных скоростях потока», поэтому «вынуждает… выполнять местное сужение… что неизбежно приводит к дополнительным потерям давления…» [4].
На самом деле, были, а может, и остаются, совершенно объективные и субъективные причины для тревоги по поводу использования ЭМР в системах теплоснабжения Дании. Во-первых, теплоноситель в Дании имеет весьма низкую электропроводность, что может являться проблемой для измерения расхода ЭМР, во-вторых, возможно в системах теплоснабжения Дании находится значительное количество магнетита. Магнетит (Fe3O4) - это обычная окалина, черного цвета, образующаяся при сварке, резке стальных конструкций и при контакте стали с водяным паром, например, в паровых котлах. В Российских системах теплоснабжения чаще встречается гидроксид железа III (Fe(OH)3) - это ржавчина, цветом от оранжевого до красно-коричневого, преимущественно состоящей из немагнитной формы бFe2O3(3-H2O), т.к. магнитная форма гFe2O3(3-H2O) имеет меньшее значение энергии Гиббса, а значит менее стабильна [5]. В-третьих, схемотехнические решения расходомера Magflo с целью снижения стоимости имеют однополярное питание катушек индуктора, что приводит к постоянной составляющей магнитного поля и теоретической возможности осаждения магнетита или других ферромагнитных частиц на футеровку канала ППР и короткого замыкания электродов.
С другой стороны, данные эксплуатации Magflo в г. Санкт-Петербурге, опубликованные в [6] представителем Danfoss, наоборот, подчеркивают отличия российских условий применения от датских: «…средняя суточная погрешность измерения массового расхода за этот период (267 дней отопительного сезона 1994-1995 гг.) составила ±0,09%, а максимальная ±0,25%...». электромагнитный расходомер энергоноситель
Скорее всего, основная задача публикации исходила из субъективной причины: цены Magflo (кстати, одного из самых лучших ЭМР на мировом рынке) совершенно неконкурентны по сравнению с УЗР и, тем более, отечественными приборами. Это подтверждается заключением экспертов ведущего института НИИтеплоприбор [7]: «…Тем не менее, делаются попытки изыскать доводы, ограничивающие применение электромагнитного метода измерения расхода в указанных целях. Такие попытки носят сугубо конъюнктурный характер и направлены на рекламирование других методов измерения расхода…» И, наконец, длительный успешный опыт эксплуатации ЭМР в различных регионах России подтверждается в [8].
Часто нечеткие формулировки приводят к смешению понятий и возникают казусы. Так, в работе Шорникова Е.А. [9] в одном классе оказались и ЭМР, и вихревые расходомеры с электромагнитным съемом информации и был сделан обобщающий вывод «…стоимость эксплуатации ЭМР выше, чем УЗР, по следующим причинам. В процессе эксплуатации ЭМР периодически необходимо изнутри датчики прочищать иногда часто (при «плохой» воде, содержащей много осаждающих примесей, влияющих на работу)…». Если для вихревых расходомеров с постоянным магнитом накопление магнитных осадков действительно крайне важно, то для ЭМР с двуполярным импульсным магнитным полем это мало актуально. Например, известен факт использования ранних модификаций теплосчетчиков SA-94 на базе ЭМР в г. Мурманске, где действительно пришлось отказаться от их применения вследствие осаждения магнитных частиц из-за постоянной составляющей магнитного поля индуктора. В то же время другие теплосчетчики (СТЭМ) на базе ЭМР с двуполярным магнитным полем успешно работали в тех же самых трубопроводах.
Интересно, что в 2-х российских мегаполисах по-разному складывалось формирование парка теплосчетчиков для узлов коммерческого учета. Если в «первопрестольной» внедрение теплосчетчиков на базе ЭМР велось активно, благодаря усилиям филиала «Тепловые сети» ОАО «Мосэнерго» и МУП «Мосгортепло», в первую очередь, за счет поставок теплосчетчиков ТС-01 на базе расходомера ИПРЭ-1 Арзамасского приборостроительного завода (г. Арзамас) и теплосчетчиков ТС-45 на базе расходомера ИР-45, а впоследствии AS 2000A/45 и SA-94 производства «таллиннской» фирмы (бывший ПО «Промприбор», ставший АО Aswega), а также ряда других теплосчетчиков, в основном московских производителей, то в «культурной столице» доминировали акустические расходомеры (ультразвуковые и корреляционные). И только когда ЗАО «Взлет» освоило производство расходомера MP400 чешской фирмы «EESA» и разработало собственный ЭМР, а затем и другой петербургский производитель «Теплоком» начал производство ЭМР, то ситуация стала меняться в пользу ЭМР.
Некоторые эксперты полагают, что широкий динамический диапазон, низкая погрешность измерений, а также длительный межповерочный интервал, декларируемый в нормативно-технической документации многих отечественных производителей расходомеров (в том числе и электромагнитных) не обеспечивается не только в течение межповерочного интервала, но и при их выпуске из производства [10, 11].
В настоящее время ЭМР и теплосчетчики на их основе являются самыми перспективными в России и СНГ средствами коммерческого учета воды и тепловой энергии не только в высшем и среднем, но и даже низшем ценовом диапазоне и успешно конкурируют с тахометрическими расходомерами и счетчиками.
Литература
1. Kinghorn F.C.and MacLean E.A. The use of electromagnetic meters as transfer standards. National Engineering Laboratory, UK and J.Eberle and H.G.Kalkhof, Physikalisch-Technische Bundesanstalt, Braunschweig, Federal Republic of Germany. FLOMEKO'85 Melbourne, Australia.
2. Петерсен, Алекс. Расходомеры, измеряющие со скоростью звука // Специальный выпуск журнала АВОК, М.: АВОК, 1993.
3. Разумов С.В., Чипулис В. П. Обзор рынка приборов учета тепловой энергии и тенденции его развития в России // Организация коммерческого учета энергоносителей. СПб.:МЦЭНТ, 1995.
4.Лупей А.Г. Об особенностях применения электромагнитных расходомеров и счетчиков в узлах учета тепловой энергии // Внедрение коммерческого учета энергоносителей. СПб.:МЦЭНТ, 1996. С. 150-158.
5.Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней.: Пер. с англ., под ред. А.М. Сухотина. Л.: Химия, 1989. С. 99-100.
6. Козлов А.И. Опыт внедрения и эксплуатации промышленной контрольно-измерительной аппаратуры компании Данфосс (Дания) для коммерческого учета тепловой энергии на объектах потребителей // Внедрение коммерческого учета энергоносителей. СПб.: МЦЭНТ, 1996. С. 175-177.
7. Каргапольцев В.П., Порошин А.А. и др. О применении электромагнитных расходомеров для учета расхода теплоносителя // Внедрение коммерческого учета энергоносителей. СПб.: МЦЭНТ, 1996. С. 147-149.
8. Вельт И.Д. и др. Преимущества электромагнитных тепо-счетчиков при коммерческом учете тепловой энергии // Внедрение коммерческого учета энергоносителей. СПб.: МЦЭНТ, 1996. С. 125-130.
9. Шорников Е.А. Выбор расходомеров и гильз термометров для узлов учета //Коммерческий учет энергоносителей: Труды 19-й международной конференции. СПб.: Борей-Арт, 2004. С. 341-342.
10. Канев С.Н., Глухов А.П., Старовойтов А.А. Теплосчетчики: мифы и реальность. Труды 19-й международной конференции. СПб.: Борей-Арт, 2004. С. 361-369.
11. Милейковский Ю.С. Реальности коммерческого учета тепловой энергии и теплоносителя в России.
Размещено на Allbest.ru
Подобные документы
Метрология как наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Способы нормирования метрологических характеристик средств измерений, поверка электродинамических и электромагнитных приборов.
курсовая работа [178,5 K], добавлен 09.11.2012Понятие средства измерений, их виды и классификация погрешностей. Метрологические характеристики средств измерений, особенности норм на их значения. Частные динамические характеристики аналого-цифровых преобразователей и цифровых измерительных приборов.
курсовая работа [340,9 K], добавлен 03.01.2013Обзор принципа работы расходомеров переменного перепада давления, электромагнитных и переменного уровня. Измерение расхода и количества веществ с целью управления ими. Установление зависимости расхода вещества от перепада давления на сужающем устройстве.
реферат [49,3 K], добавлен 03.02.2013Измерительные приборы, при помощи которых можно измерить напряжение, ток, частоту и разность фаз. Метрологические характеристики приборов. Выбор ваттметра для измерения активной мощности, потребляемой нагрузкой. Относительные погрешности измерения.
задача [26,9 K], добавлен 07.06.2014Средства электрических измерений: меры, преобразователи, комплексные установки. Классификация измерительных устройств. Методы и погрешности измерений. Определение цены деления и предельного значения модуля основной и дополнительной погрешности вольтметра.
практическая работа [175,4 K], добавлен 03.05.2015Назначение, конструкция и принцип работы тепловых расходомеров. Расчёт чувствительного элемента датчика, преобразователей. Структурная схема измерительного устройства. Выбор аналогово-цифрового преобразователя и вторичных приборов, расчет погрешности.
курсовая работа [906,9 K], добавлен 24.05.2015Применение ЛБВ в радиолокационно-связной аппаратуре. Технические требования по реализации усилителя мощности, расчет основных узлов импульсного источника, обоснование проекта. Влияние на организм человека электромагнитных полей радиочастотного диапазона.
дипломная работа [564,7 K], добавлен 25.06.2010Разработка газодинамического стенда "Крокус" для создания многокомпонентных парогазовых смесей с задаваемыми уровнями концентраций каждого компонента. Управление блоками и устройствами стенда, схемы подключения. Принцип измерений тепловых расходомеров.
практическая работа [2,1 M], добавлен 25.11.2013Программа моделирования высокочастотных электромагнитных полей CST Microwave Studio. Проектирование основных узлов лампы бегущей волны (ЛБВ) W-диапазона. Замедляющая, электронно-оптическая, фокусирующая системы ЛБВ. Выводы энергии из замедляющей системы.
дипломная работа [3,3 M], добавлен 27.09.2016Современные тенденции развития источников сверхкоротких электромагнитных импульсов. Исследование электромагнитной обстановки в помещении, ее моделирование при воздействии сверхкоротких электромагнитных импульсов на цифровые электронные средства.
дипломная работа [3,1 M], добавлен 13.05.2012