Демаскирующие признаки защиты

Понятие и классификация демаскирующих признаков объектов защиты: опознавательные и признаки деятельности. Характеристика видовых демаскирующих признаков (параметров полей и электрических сигналов). Основные демаскирующие признаки сигналов и веществ.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид лекция
Язык русский
Дата добавления 05.02.2017
Размер файла 30,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Дисциплина: «Инженерно-техническая защита информации»

Тема: Демаскирующие признаки защиты

Задача защиты признаковой информации решается, прежде всего, путем предотвращения обнаружения и распознавания признаков объектов, по которым можно обнаружить и распознать объекты, т. е. найти эти объекты среди других объектов, определить их назначение, задачи, функции и характеристики. Признак объекта, позволяющий обнаруживать и распознавать объект, которому принадлежит признак, среди других объектов, называется демаскирующим.

Классификация демаскирующих признаков объектов защиты

В зависимости от состояния объекта его демаскирующие признаки разделяются на опознавательные признаки и признаки деятельности.

Опознавательные признаки описывают объекты в статическом состоянии: его внешний вид, излучения, физические и химические свойства и др. демаскирующий защита сигнал

Признаки деятельности объектов характеризуют этапы и режимы функционирования объектов. Например, этапы создания новой продукции включают: научные исследования, подготовку к производству, изготовление новой продукции, ее испытания и т. д. Признаки деятельности представляют собой последовательность во времени событий или действий составных элементов рассматриваемого объекта и взаимодействующих с ним объектов, а также значения статистических характеристик событий и действий. Например, по активности посещения студентами библиотек и их количеству в читальном зале можно спрогнозировать время сдачи курсового проекта, зачета или экзамена

Демаскирующие признаки объекта можно разделить на три группы:

видовые признаки;

признаки сигналов;

признаки веществ.

К видовым признакам относятся форма объекта, его размера, детали объекта, тон, цвет и структура его поверхности и др.

Признаки сигналов описывают параметры полей и электрических сигналов, генерируемых объектом: их мощность, частоту; вид (аналоговый, импульсный), ширину спектра и т. д.

Признаки веществ определяют физический и химический состав, структуру и свойства веществ материального объекта.

Таким образом, совокупность демаскирующих признаков рассмотренных трех групп представляет собой модель объекта, описывающую его внешний вид, излучаемые им поля, внутреннюю структуру и химический состав содержащихся в нем веществ.

Важнейшим показателем признака является его информативность. Информативность признака оценивается мерой в интервале [0--1], характеризующей его индивидуальность. Чем признак более индивидуален, т. е. принадлежит меньшему числу объектов, тем он более информативен. Величину информативности можно определить как

Ik = (N - Nk) / N,

где Nk -- количество объектов, содержащих признак «к», из «N» рассматриваемых.

Если признак принадлежит одному объекту, то информативность максимальная и приближается к 1; если признак принадлежит всем объектам выборки, то информативность нулевая. Информативность конкретного k-го признака можно характеризовать вероятностью Рк обнаружения конкретного объекта по этому признаку среди других рассматриваемых объектов.

Наиболее информативен именной признак, присущий одному конкретному объекту. Такими признаками являются фамилия, имя, отчество человека, папиллярный рисунок его пальцев, инвентарный номер прибора или образца мебели. Факты, например, о совпадении папиллярных узоров пальцев хотя бы двух разных людей не известны. Информативность остальных демаскирующих признаков, принадлежащих рассматриваемому объекту и называемых прямыми, колеблется в пределах [0-1]. Признаки, непосредственно не принадлежащие объекту, но отражающие его свойства и состояние, называются косвенными. Эти признаки являются, как правило, результатом взаимодействия рассматриваемого объекта с окружающей средой. К ним относятся, например, следы ног или рук человека, автомобиля и других движущихся объектов. Информативность косвенных признаков в общем случае ниже информативности прямых. Однако если в результате взаимодействия объектов на одном из них появляются именные признаки другого объекта, то информативность косвенного признака может приближаться к 1, например, четкие отпечатки пальцев на предметах, следы обуви, протектора шин машины и др.

По времени проявления признаки могут быть:

постоянными, не изменяющимися или медленно меняющимися в течение жизненного цикла объекта;

периодическими, например следы на снегу;

эпизодическими, проявляющимися при определенных условиях, например случайно появившееся на поверхности объекта пятно краски.

Каждый k-й признак обеспечивает возможность обнаружения объекта с вероятностью Рк, при увеличении количества используемых признаков вероятность обнаружения и распознавания повышается. Если признаковая структура содержит «n» независимых признаков, то вероятность обнаружения объектов с помощью этих признаков повышается до величины

.

Например если Р1 = 0,05, Р2 = 0,1, Р3 - 0,15, Р4 = 0,2 и Р5 = 0,25, то вероятность обнаружения объекта хотя бы по одному из этих признаков существенно выше -- более 0,56.

Если признаки зависимы, т. е. проявление какого-либо признака статистически связано с проявлением другого, то вероятность обнаружения объекта уменьшается по сравнению с вариантом независимых признаков. Например, значения признака «тень» при наблюдении объекта зависят от значения признака «размеры» и от взаимного пространственного положения объекта и внешнего источника света.

В общем случае признаковая структура представляет собой набор независимых или зависимых признаков, о которых достоверно известно, что они относятся к рассматриваемому объекту.

Структуры с наиболее достоверными априорными признаками объекта называются эталонными, а структуры с полученными в момент наблюдения и измерения признаками -- текущими. Эталонные структуры периодически корректируются путем замены их недостаточно достоверных признаков более достоверными и информативными текущими признаками. Например, фотография в паспорте как эталонная признаковая структура видовых признаков лица владельца заменяется на новую при изменении информативных значений признаков в результате старения, отпускания бороды и усов, вживления волос на облысевшую часть головы, изменения черт лица после пластической операции.

Видовые демаскирующие признаки

Видовые демаскирующие признаки описывают внешний вид объекта. Они объективно ему присущи, но выявляются в результате анализа внешнего вида модели объекта-- его изображения на экране оптического приемника (сетчатки глаза человека, фотоснимке, экрана телевизионного приемника, прибора ночного видения и т. д.). Так как модель в общем случае отличается от оригинала, то состав и значения видовых демаскирующих признаков зависят не только от объекта, но и от условий наблюдения и характеристик оптического приемника.

Наибольшее количество информативных видовых демаскирующих признаков добывается при визуально-оптическом наблюдении объектов в видимом диапазоне.

Основными видовыми демаскирующими признаками объектов в видимом свете являются:

фотометрические и геометрические характеристики объектов (форма, размеры объекта, цвет, структура, рисунок и детали его поверхности);

тени, дым, пыль, следы на грунте, снеге, воде;

взаимное расположение элементов группового (сложного) объекта;

расположение защищаемого объекта относительно других известных объектов.

Геометрические и фотометрические характеристики объектов образуют наиболее устойчивую и информативную информационную структуру, так как они присущи объекту и относятся к прямым признакам.

Размеры объекта наблюдения определяются по максимальному и минимальному линейным размерам, площади и периметру проекции объекта и его тени на плоскость, перпендикулярную к линии визирования (наблюдения), высоте объекта и др. Размеры приобретают значение основного демаскирующего признака для объектов примерно одинаковой формы.

Форма -- один из основных демаскирующих признаков, прежде всего искусственных объектов, поскольку для них, как правило, характерны правильные геометрические формы.

Детали объектов, их количество, характер расположения дают представление о сложном объекте и позволяют отличить его от подобных по форме.

Тени объектов возникают в условиях прямого солнечного освещения и являются важными демаскирующими признаками объекта при наблюдении его сверху. Некоторые объекты (например, линии электропередачи, антенные мачты, ограждения и т. д.) часто распознают только по тени. Различают два вида тени: собственную, от элементов объектов, которая ложится на поверхность самого объекта, и падающую, отбрасываемую объектом на фон. По падающей тени можно обнаружить объект, определить его боковые размеры, высоту, а также в ряде случаев и форму.

Важнейшим свойством поверхности объекта, определяющим его цвет и яркость, является коэффициент отражения поверхности для различных длин волн и частот: в видимом, инфракрасном и радиодиапазоне.

Объекты по-разному отражают падающие на них лучи света. Например, коэффициент отражения листвы летом в ближнем инфракрасном диапазоне в 3-5 раз выше, чем в видимом, а у бетонных и асфальтовых покрытий отличаются незначительно.

Отражательные свойства объектов описываются коэффициентами (спектральными и интегральным) и индикатрисой отражения. Индикатриса отражения характеризует распределение силы отраженного света в пространстве. Интегральный коэффициент отражения определяется в результате усреднения спектральных (на одной длине волны) коэффициентов отражения в рассматриваемом диапазоне длин волн.

В зависимости от характера поверхности различают направленное (зеркальное), рассеянное (диффузное) и смешанное отражения. Граница между ними условная и определяется соотношением величин неровностей поверхности и длины падающей волны. Поверхность считается гладкой и отражение от нее зеркальное, если отношение среднеквадратичного значения высоты неровностей h к длине волны X менее единицы, шероховатой с диффузным отражением, если более двух. Следовательно, шероховатая поверхность в видимом свете может в ИК-диапазоне выглядеть как гладкая. Диффузное отражение присуще мелкоструктурным элементам, таким как песок, свежевыпавший снег. Большинство объектов земной поверхности имеют смешанную индикатрису отражения.

Яркость объекта, определяемая не только коэффициентами отражения объекта, но и яркостью внешнего источника освещения, относится к косвенным признакам, таким как дым, пыль, его следы на различных поверхностях.

Видовые признаки электромагнитных волн в ИК - диапазоне

Любые тела излучают электромагнитные волны в ИК - диапазоне. Величина энергии, излучаемая любым телом с температурой Т, пропорциональна в соответствии с формулой Стефана-- Больцмана величине Т4. В ближней (0,75-1,3 мкм) и средней (1,2-3,0 мкм) зонах ИК-излучения мощность теплового (собственного) излучения объектов значительно меньше мощности отраженного от объекта потока солнечной энергии. С переходом в длинноволновую область ИК-диапазона мощность собственного излучения нагретых Солнцем объектов становится соизмеримой с мощностью отраженной ими солнечной энергии. Максимум энергии ИК- излучения тел при температуре воздуха летом находится в диапазоне 3-5 и 8-14 мкм. Чем выше температура тела, тем больше излучаемая энергия, а ее максимум смещается в сторону более коротких волн. Поэтому нагретые тела с помощью соответствующих приборов могут наблюдаться в полной, с точки зрения человека-наблюдателя, темноте.

При оценке излучений в инфракрасном диапазоне необходимо учитывать теплопроводность материалов объектов наблюдения. Нагреваясь от солнечных лучей, они к отраженному свету добавляют повышающуюся с ростом температуры долю собственных излучений. В связи с этими свойствами в инфракрасном диапазоне появляется дополнительный признак-- температура различных участков поверхности объекта по отношению к температуре фона.

Зрительный анализатор человека не воспринимает лучи в инфракрасном диапазоне. Поэтому видовые демаскирующие признаки в этом диапазоне добываются с помощью специальных приборов (ночного видения, тепловизоров), имеющих худшее разрешение, чем глаз человека. Кроме того, видимое изображение на экранах этих приборов одноцветное. Но изображение в инфракрасном диапазоне может быть получено при малой освещенности объекта или даже в полной темноте, а к демаскирующим признакам добавляются признаки, характеризующие температуру поверхности объекта.

В общем случае к демаскирующим признакам объекта в ИК - диапазоне относятся:

геометрические характеристики внешнего вида объекта (форма, размеры, детали поверхности);

температура поверхности.

Видовые признаки в радиодиапазоне.

В радиодиапазоне наблюдается более сложная картина, чем при отражении света. Отражательные возможности поверхности в этом диапазоне определяются, кроме указанных для света, ее электропроводностью и конфигурацией относительно направления падающей волны. Большая часть суши отражает электромагнитную волну в радиодиапазоне диффузно, спокойная водная поверхность -- зеркально.

Радиолокационное изображение объектов сложной формы (автомобиль, самолет и др.) формируется совокупностью отдельных пятен различной яркости, соответствующих так называемым «блестящим точкам»» объектов, отражающих сигнал в направлении радиолокационной станции (РЛС). «Блестящие точки» на экране локатора создают элементы поверхности объектов, расположенные перпендикулярно направлению облучения, а также элементы конструкции, которые после переотражений радиоволн внутри конструкции возвращают их к радиолокатору.

Наибольшей отражающей способностью в направлении антенны радиолокационной станции обладают конструкции в виде 2-4 жестко связанных между собой взаимно перпендикулярных металлических или металлизированных плоскостей. Такие конструкции называются уголковыми радиоотражателями, применяемыми для имитации ложных объектов.

Конкретный вид радиолокационного изображения зависит от положения объекта относительно направления облучения, так как при изменении ориентации меняется количество и взаимное положение «блестящих точек». Обобщенные результаты анализа радиолокационных изображений местности и объектов приведены в табл. 3,1 и 3.2

Отражательная способность объекта в радиодиапазоне характеризуется эффективной поверхностью (площадью) рассеяния (ЭПР). Эффективная поверхность рассеяния (отражения) соответствует площади металлической поверхности гипотетическое го объекта, который равномерно отражает во все стороны электромагнитную волну радиолокационной станции, а размещенный в месте нахождения реального объекта создает у приемной антенны радиолокационной станции такую же плотность потока мощности, как и реальный объект. Следовательно, реальный объект заменяется моделью с определенной поверхностью рассеяния, интегральные отражательные свойства которой соответствуют реальному объекту. Так как энергия отраженной волны зависит от конфигурации поверхности облучаемого объекта, то значения его ЭПР имеют для одного и того же объекта большой разброс, зависящий от положения объекта относительно направления на радиолокационную станцию. Эффективная поверхность рассеяния человека составляет около 0,1-0,5 м2, легкового автомобиля около 1-5 м2, грузового автомобиля 3-10 м2.

Так как частота колебаний электромагнитного поля радиолокационной станции велика (в 3-см диапазоне составляет около 10 ГГц), то в силу поверхностного эффекта в отражении электромагнитной волны принимает участие тонкий слой (порядка 0,01 мм) металлической поверхности объекта. Чем хуже электрическая проводимость объекта отражения, тем ниже коэффициент отражения и глубже проникает электромагнитная волна. Проникающая способность в дециметровом диапазоне для сухой почвы, например, может составлять 1-2 м. Отражение радиоволн сантиметрового диапазона от бетона слабее, чем от металла, в 3-5 раз, а от кирпичной кладки -- в 8-10 раз.

Отражающая способность земной поверхности изменяется в широких пределах в зависимости от ее шероховатости, диэлектрической проницаемости материала и длины волны. Средняя удельная (деленная на геометрическую площадь облучаемой поверхности) ЭПР песчаной почвы составляет 0,003, луга летом -- 0,01, кустарника -- 0,03, лесного массива -- 0,05.

К основным видовым демаскирующим признакам объектов радиолокационного наблюдения относятся:

эффективная поверхность рассеяния;

геометрические и яркостные характеристики (форма, размеры, яркость, детали);

электропроводность поверхности.

Видовые демаскирующие признаки в радиодиапазоне добываются также с помощью тепловой радиолокации, приемники которой способны принимать сигналы собственных электромагнитных излучений и формировать на их основе изображения объектов. Так как возможности радиолокаторов, в особенности тепловых, весьма ограничены по разрешению, то в радиодиапазоне выявляется меньший, чем в видимом диапазоне набор демаскирующих признаков.

Таким образом, максимальное количество признаков внешнего вида объектов добывают в видимом оптическом диапазоне фотоприемники с высоким разрешением, к которым в первую очередь относятся глаз человека и фотопленка.

В инфракрасном и радиодиапазонах отсутствует такой информативный признак как цвет. С увеличением длины волны ухудшается разрешение значений признаков, например точность оценки размеров объекта и его деталей. Если в инфракрасном диапазоне по изображению можно измерять объекты на местности с точностью до долей мм, то максимальное разрешение радиолокационных станций составляет единицы метров. Поэтому на радиолокационном изображении будут отсутствовать многие детали объекта, наблюдаемые на его изображении в оптическом диапазоне. Однако в инфракрасном и радиодиапазонах проявляются дополнительные признаки, которые в видимом диапазоне отсутствуют.

Следовательно, видовые демаскирующие признаки объектов образуют признаковые структуры, отличающиеся в различных диапазонах длин электромагнитных волн. Эти свойства видовых демаскирующих признаков используются при комплексном добывании информации и их необходимо учитывать при организации защиты.

Демаскирующие признаки сигналов

Понятие «сигнал» достаточно емкое и в общем случае обозначает изменяющуюся физическую величину, однозначно отображающую сообщение.

Часто люди для передачи конфиденциальной информации обмениваются условными сигналами, используя для этого различные предметы, надписи, слова, звуки. Например, незнакомые люди при встрече обмениваются условными фразами. В радиоэлектронике под сигналом понимается изменяющаяся физическая величина.

По существу сигнал представляет распространяющийся в пространстве носитель с информацией, содержащейся в значениях его физических параметров. К сигналам относятся: собственные (обусловленные тепловым движением электронов, радиоактивные) излучения объектов, отраженные от объектов поля и волны, электромагнитные поля и электрический ток от созданных человеком источников сигналов. Информация, содержащая в любом сигнале, представлена значениями его информационных параметров.

К аналоговым сигналам относятся сигналы, уровень (амплитуда) которых может принимать произвольные значения в определенном для сигнала интервале.

Амплитуда простого и достаточно распространенного в природе гармонического сигнала изменяется по синусоидальному закону:

,

где А - амплитуда, щ = 2рf - круговая частота колебания, ц - фаза колебания.

Большинство аналоговых сигналов имеют более сложную форму. Периодические (повторяющиеся через время Тn - период) сигналы произвольной формы могут быть представлены в соответствии с формулой Фурье в виде суммы гармонических колебаний:

,

где Сo - постоянная составляющая сигнала;

Сk - амплитуда k-ой гармоники сигнала (k=1,2,…,n);

kщ и цk - частота и фаза k-ой гармоники сигнала.

Ряд Фурье представляет собой математическую модель периодического сигнала, также как любой цвет может быть разложен на составляющие красного, зеленого и синего цветов.

Совокупность гармонических составляющих сигнала образуют его спектр.

Амплитуда каждой спектральной составляющей характеризует энергию соответствующей гармоники основной частоты сигнала. Чем выше скорость изменения амплитуды сигнала, тем больше в его спектре высокочастотных гармоник. Разность между максимальной и минимальной частотами спектра сигнала, между которыми сосредоточена основная часть, например, 95% энергии, называется шириной спектра ДF.

В соответствии с изменением амплитуды аналогового сигнала меняется его энергия или мощность, пропорциональная квадрату амплитуды. В зависимости от времени измерения энергии сигнала различают среднюю и мгновенную мощность. Десятичный логарифм отношения максимальной мгновенной мощности сигнала к минимальной называется динамическим диапазоном сигнала. Динамический диапазон речи диктора радио и телевидения составляет 25-30 дБ, вокального ансамбля -- 45-65 дБ, а симфонического оркестра достигает 70-95 дБ.

Аналоговый сигнал описывается набором параметров, являющихся его признаками. К ним относятся:

частота или диапазон частот;

амплитуда или мощность сигнала;

фаза сигнала;

длительность сигнала;

вид модуляции;

ширина спектра сигнала;

динамический диапазон сигнала.

У дискретных сигналов амплитуда имеет конечный, заранее определенный набор значений. Наиболее широко применяется двоичный (бинарный) дискретный сигнал: в ЭВМ, в телеграфии, при передаче данных. Информационные сигналы, циркулирующие в ЭВМ IBM PC, имеют два уровня амплитуды: низкий (L-уровень -- 0 В) и высокий (Н-уровень -- 5 В).

Дискретный сигнал характеризуется следующими параметрами::

· амплитудой А;

· мощностью Р,

· длительностью импульса ти,

· периодом Тп или частотой Fn = 1/Тп повторения импульсов (для периодических дискретных сигналов),

· шириной спектра сигнала AFc,

· скважностью импульсов а = Тпи. Спектр дискретного периодического сигнала содержит бесконечное количество убывающих по амплитуде гармоник. Он характеризуется следующими свойствами:

форма огибающей спектра описывается функцией sinf/f);

амплитуда гармоник Ск имеет нулевое значение в точках к / ти, К = 1, Z, ...',

в области частот спектра (0-1/ти) располагаются а-1 гармоник;

постоянная составляющая сигнала равна А/а.

Учитывая, что большая часть энергии сигнала сосредоточена в области частот 0-1/ти, ширина спектра бинарного периодического сигнала приблизительно оценивается по формуле: AFH ~ 1/ти. Ширина спектра телеграфного сигнала в виде двоичной последовательности, ограниченного третьей гармоникой, оценивается величиной AFT ~ 1,5 у, где v -- скорость передачи в бодах (двоичных символах в секунду). Например, ширина спектра телеграфного сигнала, передаваемого со скоростью 50 Бод, приблизительно равна 75 Гц.

При прохождении дискретных сигналов по реальным электрическим цепям радиотехнических средств в силу их частотно-избирательных свойств и ограниченной полосы пропускания спектр сигналов изменяется, в результате чего искажается их форма и уменьшается крутизна импульсов. Прямоугольный импульс приобретает колоколообразную форму. В результате этого размывается граница между формами аналогового и дискретного сигналов. Искажения формы и уменьшение амплитуды импульсных сигналов в проводах кабелей ограничивают дальность их передачи, например, для обеспечения межмашинного обмена данными в локальных сетях.

По физической природе сигналы могут быть акустическими, электрическими, магнитными, электромагнитными (в радиодиапазоне -- радиосигналы), корпускулярными (в виде потоков элементарных частиц) и вещественными, например, пахучие добавки в газ подают сигнал об его утечке.

Сигналы по виду передаваемой информации делятся на речевые, телеграфные, телекодовые, факсимильные, телевизионные, о радиоактивных излучениях и условные. Телеграфные и телекодовые сигналы используются для передачи буквенно-цифровой информации с низкой и высокой скоростью соответственно. Факсимильные и телевизионные сигналы обеспечивают передачу неподвижных и подвижных изображений. Сигналы радиоактивных излучений являются демаскирующими признаками радиоактивных веществ. Условные сигналы несут информацию, содержание которой предварительно определено между ее источником и получателем, например горшок с цветком на подоконнике в литературных произведениях о разведчиках -- о провале явки.

Вид информации, содержащейся в сигнале, изменяет его демаскирующие признаки: форму, ширину спектра, частотный и динамический диапазон. Например, стандартный речевой сигнал, передаваемый по телефонной линии, имеет ширину спектра 300-3400 Гц, звуковой -- 16-20000 Гц, телевизионный -- 6-8 МГц и т. д. Произведение В = ?Fc Т. называется базой сигнала. Если В ~ 1, то сигнал узкополосный, при В > 1 -- сигнал широкополосный.

По времени проявления сигналы могут быть регулярными, время появления которых получателю информации известно, например сигналы точного времени, и случайные, когда это время неизвестно. Статистические характеристики проявления случайных сигналов во времени могут представлять собой достаточно информативные демаскирующие признаки источников, прежде всего, об их принадлежности и режимах функционирования. Например, появление в помещении радиосигнала во время ведения в нем разговоров может с достаточно высокой вероятностью служить демаскирующим признаком закладного устройства с акустическим автоматом.

По аналогии с демаскирующим объектом и с такой же целью целесообразно ввести понятие демаскирующий сигнал, факт обнаружения которого может служить информативным признаком объекта защиты. Например, побочные излучения на определенной частоте конкретной радиостанции могут служить в качестве ее прямого, а иногда именного признака. Во время войны по «почерку» работы на ключе опознавали радиста и выявляли радиоигру, затеянную противником.

Демаскирующие признаки веществ

Потребительские свойства продукции зависят не только от конструктивных и схемотехнических решений, но и от свойств материалов (веществ), из которых она создается. Поэтому состав, свойства и технология получения веществ с этими свойствами вызывают большой интерес у специалистов, а информация о них может быть чрезвычайно дорогой.

Веществом называют материальные объекты в твердом, жидком или газообразном состоянии, состоящие из частиц одного или нескольких химических элементов, имеющие массу и объем.

Вещества делятся на простые и химические соединения (сложные). Простые вещества состоят из атомов одного химического элемента, химические соединения -- из разных элементов. Химический элемент образуют атомы с одинаковым положительным зарядом ядра (с одинаковым порядковым номером в периодической системе Д. И. Менделеева). Атомы химических элементов могут существовать в свободном состоянии при очень высокой температуре или в составе простых веществ. Свойства химических соединений не совпадают со свойствами образующих его химических элементов.

По свойствам химические элементы условно делятся на металлы и неметаллы. К металлам относятся простые вещества, имеющие в обычных условиях кристаллическую структуру (кроме ртути), хорошую теплопроводность и электропроводность. В свою очередь металлы по плотности делятся на легкие (с плотностью до 5 г/см3) и тяжелые, по температуре плавления -- на легкоплавкие (с температурой плавления до 1000° С) и тугоплавкие, по химической стойкости к кислотам -- благородные (серебро, золото) и неблагородные. Простые вещества, не обладающие признаками металлов, относятся к неметаллам.

Для обеспечения безопасности информации о веществах с новыми свойствами важно представлять признаки, по которым злоумышленник может воссоздать вещество с новыми свойствами. По физическому составу вещества могут быть однородными твердыми (кусковыми, порошковыми), жидкими, газообразными и неоднородными, в виде взвесей, эмульсий и т. п.

По химическому составу вещества делятся на органические и неорганические. В свою очередь органические вещества -- на углеводороды, кислородсодержащие и азотсодержащие, неорганические -- на оксиды, кислоты, основания и соли.

Строение веществ описывают на макроскопическом, микроскопическом и субмикроскопическом уровнях. Оно может представлять собой кристаллическую решетку, набор макромолекул, молекул, субатомных частиц и атомов.

Механические свойства веществ характеризуют их прочность на сжатие и растяжение, твердость, вязкость, плотность, пористость, пластичность, смачиваемость, непроницаемость и т. д.

Химические свойства вещества определяются по результатам взаимодействия его с другими веществами.

Акустические свойства определяют скорость передачи и поглощения звука в веществе.

Тепловые свойства оцениваются по температуре фазовых переходов из одного состояния в другое, теплопроводности, теплоемкости и др.

Лучистые (оптические, рентгеновские и др.) свойства вещества описываются коэффициентами и спектральными характеристиками пропускания, отражения, преломления, возможностями по дифракции, поляризации и интерференции лучей света в инфракрасном, видимом и ультрафиолетовом диапазонах, а также гамма-излучений.

Электропроводность, величины термо-ЭДС, окислительно-восстановительные потенциалы, потенциалы ионизации, диэлектрическая и магнитная проницаемость и т. п. характеризуют электрические и магнитные свойства вещества.

Ядерные свойства вещества оцениваются по массе изотопов, массе и периоду полураспада радиоактивных частиц и др.

Признаки, по которым можно обнаружить и распознать вещество, т. е. определить его состав, структуру и свойства, в смеси других веществ, являются демаскирующими. Демаскирующие признаки нового вещества и технологии его изготовления содержатся не только в конечном продукте, но и в исходных и промежуточных продуктах технологического процесса, применяемых для получения этого вещества. Вещество, содержащее демаскирующие вещественные признаки объекта защиты или технологию его изготовления, называют демаскирующим веществом.

Потенциальные возможности обнаружения и распознавания демаскирующих веществ зависят от их концентрации в смеси добываемых веществ. Минимально допустимые значения концентрации демаскирующих веществ, исключающие получение злоумышленниками защищаемой информации, используются в качестве норм при обеспечении безопасности информации о признаках веществ.

Размещено на Allbest.ru


Подобные документы

  • Характеристика инженерно-технической защиты информации как одного из основных направлений информационной безопасности. Классификация демаскирующих признаков объектов защиты, способы их защиты и обнаружения. Сущность и средства процесса защиты объекта.

    реферат [37,0 K], добавлен 30.05.2012

  • Основные демаскирующие признаки и их классификация. Распространение и перехват сигнала. Основные классификационные признаки технических каналов утечки информации. Виды радиоэлектронных каналов утечки информации. Структуры каналов утечки информации.

    курсовая работа [666,9 K], добавлен 17.12.2013

  • Предназначение канала связи для передачи сигналов между удаленными устройствами. Способы защиты передаваемой информации. Нормированная амплитудно-частотная характеристика канала. Технические устройства усилителей электрических сигналов и кодирования.

    контрольная работа [337,1 K], добавлен 05.04.2017

  • Угрозы, существующие в процессе функционирования сетей с кодовым разделением каналов. Исследование методов защиты информации от радиоэлектронных угроз, анализ недостатков сигналов. Построение ансамблей дискретных ортогональных многоуровневых сигналов.

    курсовая работа [360,2 K], добавлен 09.11.2014

  • Лабораторный стенд. Расчет параметров элемента фильтра по исходным данным. Схемы исследования фильтра с указанием параметров элемента. Таблица экспериментальных данных. Возможность изменения цвета проводников. Пассивные фильтры электрических сигналов.

    лабораторная работа [1,2 M], добавлен 04.10.2008

  • Устройство первичной обработки сигналов как неотъемлемая часть системы, ее значение в процессе сопряжения датчиков с последующими электронными устройствами. Понятие и классификация сигналов, их функциональные особенности и основные критерии измерения.

    контрольная работа [39,9 K], добавлен 13.02.2015

  • Угрозы функционирования беспроводных систем передачи информации с кодовым разделением. Исследование стохастического формирования сигналов и методов защиты информации от радиоэлектронных угроз. Недостатки ансамблей дискретных ортогональных сигналов.

    курсовая работа [207,6 K], добавлен 14.11.2014

  • Понятие, сущность, размерность, виды, классификация, особенности преобразования и спектральное представление сигналов, их математическое описание и модели. Общая характеристика и графическое изображение аналогового, дискретного и цифрового сигналов.

    реферат [605,8 K], добавлен 29.04.2010

  • Обзор и краткие характеристики фотокамер и видеокамер. Демаскирующие признаки технических средств. Классификация средств по обнаружению скрытых видеокамер и фотокамер. Проектирование схемы устройства по обнаружению скрытых видеокамер и фотокамер.

    дипломная работа [3,1 M], добавлен 11.06.2012

  • Факторы, которыми обусловлены демаскирующие признаки взрывного устройства. Детектор нелинейных переходов для специальных применений. Методы обнаружения скрытых видеокамер. Обнаружение и подавления работы сотовых телефонов. Средства радиационного контроля.

    контрольная работа [980,4 K], добавлен 26.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.