Радиоволновый контроль. Радиоволновой дефектоскоп
Проверка, контроль, оценка надежности параметров и свойств конструкций, оборудования. Применение радиоволнового контроля в строительстве для поиска и исследования металлических включений в материалах. Выбор оптимального метода неразрушающего контроля.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 07.12.2016 |
Размер файла | 121,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ «ГОРНЫЙ»
Кафедра Приборостроения
реферат
по дисциплине «Приборы и методы радиоволнового контроля»
на тему «Радиоволновый контроль. Радиоволновой дефектоскоп»
Автор
Тихонов К.А.
Санкт-Петербург
Введение
Неразрушающий контроль (в переводе с английского - NDT, nondestructive testing) - это проверка, контроль, оценка надежности параметров и свойств конструкций, оборудования либо отдельных узлов, без вывода из строя (эксплуатации) всего объекта. Основным отличием, и безусловным преимуществом, неразрушающего контроля (НК) от других видов диагностики является возможность оценить параметры и рабочие свойства объекта, используя способы контроля, которые не предусматривают остановку работы всей системы, демонтажа, вырезки образцов. Исследование проводится непосредственно в условиях эксплуатации. Это позволяет частично исключить материальные и временные затраты, повысить надежность контролируемого объекта.
Благодаря неразрушающему контролю выявляются опасные и мелкие дефекты: заводские браки, внутренние напряжения, трещины, микропоры, пустоты, расслоения, включения и многие другие, вызванные, в том числе, процессами коррозии.
1. Радиоволновый контроль
Радиоволновый контроль применяется главным образом в строительстве для поиска и исследования металлических включений в неметаллических материалах (например, арматура в железобетоне или трассировка скрытой электропроводки в стене здания, если ее схема утеряна). Этот вид контроля может быть реализован двумя методами: сквозным (радиотеневым) и радиолокационным. Радиоволновый контроль основан на том, что все металлы являются препятствием для радиоволн, отражая либо поглощая их (поглощение радиоволн происходит путем их преобразования в электрический ток в металле, если этот металл надежно заземлен). Сквозной (радиотеневой) метод относится к классу методов прохождения. Он состоит в том, что сквозь исследуемый объект пропускают поток радиоволн. Если на пути потока в объекте имеется металлическое включение, оно оттеняет часть волнового потока и амплитуда А сигнала на приеме падает относительно значения А0, полученного на свободном участке, что и является признаком присутствия металлического включения
Среди достоинств сквозного метода можно отметить следующие:
- может быть реализован в непрерывном режиме излучения радиоволн, что существенно упрощает радиоаппаратуру;
- некритичен к заземлению исследуемых металлических включений. Недостатки сквозного метода:
- требует двустороннего доступа к объекту с максимально соосным расположением антенн излучателя и приемника;
- не дает возможности определять глубину залегания металлических включений.
Радиолокационный метод относится к классу методов отражения. Он состоит в том, что в исследуемый объект запускают импульсы радиоволн. Если на пути потока в объекте имеется незаземленное металлическое включение, оно отражает часть волнового потока, и совмещенная по излучению и приему антенна прибора принимает радиоэхо от металлического включения.
Достоинства радиолокационного метода:
- не требует двустороннего доступа к объекту;
- позволяет автоматически определять глубину залегания металлических включений: h = 0,5C · t - n, (где C - скорость распространения радиоволн (скорость света); t - время между посылкой импульса и приемом его отражения (измеряется в наносекундах); n - фиксированная величина зазора между поверхностью объекта и антенной. Недостатком радиолокационного метода является то, что заземленные металлические включения дают слабое отражение радиоволн.
Выбор оптимального метода неразрушающего контроля
Выбор оптимального метода неразрушающего контроля следует осуществлять исходя из его:
· реальных особенностей;
· физических основ;
· степени разработки;
· области применения;
· чувствительности;
· разрешающей способности;
· технических условий отбраковки;
· технических характеристик аппаратуры.
Измерительная система средств неразрушающего контроля должна быть скомплектована из прибора, преобразователя и контрольного образца. Раскомплектовка измерительной системы недопустима и ведёт к изменению метрологических характеристик. Важной характеристикой любых методов неразрушающего контроля является их чувствительность. Чувствительность - выявление наименьшего по размерам дефекта; зависит от особенностей метода неразрушающего контроля, условий проведения контроля, материала изделий. Удовлетворительная чувствительность для выявления одних дефектов может быть совершенно непригодной для выявления дефектов другого характера. Чувствительность методов неразрушающего контроля к выявлению одного и того же по характеру дефекта различна. При определении предельно допустимой погрешности выбранного метода неразрушающего контроля следует обязательно учитывать дополнительные погрешности, возникающие от влияющих факторов:
· минимального радиуса кривизны вогнутой и выпуклой поверхностей;
· шероховатости контролируемой поверхности;
· структуры материала;
· геометрических размеров зоны контроля;
· других влияющих факторов, указанных в инструкциях для конкретных приборов.
В зависимости от физических явлений, положенных в основу методов неразрушающего контроля, они подразделяются на девять основных видов: акустический, магнитный, вихретоковый, проникающими веществами, радиоволновый, радиационный, оптический, тепловой и электрический. На практике наиболее широкое распространение нашли первые четыре метода.
2. Радиоволновой дефектоскоп
Дефектоскоп -- устройство для обнаружения дефектов в изделиях из различных металлических и неметаллических материалов методами неразрушающего контроля. К дефектам относятся нарушения сплошности или однородности структуры, зоны коррозионного поражения, отклонения химического состава и размеров и др. Область техники и технологии, занимающаяся разработкой и использованием дефектоскопов называется дефектоскопия. К дефектоскопам относят также течеискатели (водородные течеискатели игелиевые течеискатели), толщиномеры, твердомеры, структуроскоп, интроскопы, стилоскопы и др.
Радиоволновые дефектоскопы основаны на проникающих свойствах радиоволн сантиметрового и миллиметрового диапазонов (микрорадиоволн), позволяет обнаруживать дефекты главным образом на поверхности изделий обычно из неметаллических материалов. Радиодефектоскопия металлических изделий из-за малой проникающей способности микрорадиоволн ограничена. Этим методом определяют дефекты в стальных изделиях, а также измеряют их толщину или диаметр, толщину диэлектрических покрытий и т.д. От генератора, работающего в непрерывном или импульсном режиме, микрорадиоволны через рупорные антенны дефектоскопа проникают в изделие и, пройдя усилитель принятых сигналов, регистрируются приёмным устройством.
радиоволновой контроль металлический строительство
Заключение
В заключение можно сказать, что метод радиоволновой дефектоскопии нашел свое применение в поиске дефектов материала. Этим методом определяют дефекты в стальных изделиях, а также измеряют их толщину или диаметр, толщину диэлектрических покрытий и т.д. К его преимуществам относится, то что он не разрушает и не повреждает исследуемый образец. Кроме того, можно выделить высокую скорость исследования при низкой стоимости и опасности для человека (по сравнению с рентгеновской дефектоскопией) и высокую мобильность радиоволнового дефектоскопа.
Размещено на Allbest.ru
Подобные документы
Электромагнитные методы неразрушающего контроля. Особенности вихретокового метода неразрушающего контроля. Основные методы возбуждения вихревых токов в объекте. Дефектоскопы многоцелевого назначения. Использование тепловых метода неразрушающего контроля.
реферат [782,1 K], добавлен 03.02.2009Необходимое условие применения СВЧ-методов. Варианты схем расположения антенн преобразователя по отношению к объекту контроля. Три группы методов радиоволновой дефектоскопии: на прохождение, отражение и на рассеяние. Аппаратура радиоволнового метода.
реферат [2,8 M], добавлен 03.02.2009Классификация методов радиоволнового контроля диэлектрических изделий и материалов. Измеряемые параметры и принципы измерений РВК. Возможности метода модулированного отражения при технологическом контроле. Элементы и устройства волноводных трактов.
дипломная работа [1,9 M], добавлен 07.03.2011Определения в области испытаний и контроля качества продукции, понятие и контроль. Проверка показателей качества технических устройств. Цель технического контроля. Классификация видов и методов неразрушающего контроля. Электромагнитные излучения.
реферат [552,7 K], добавлен 03.02.2009Разработка автоматизированного дефектоскопа для сдаточного ультразвукового контроля бесшовных стальных труб. Методы и аппаратура контроля. Способ ввода ультразвука в изделие. Тип преобразователя и материала пьезоэлемента. Функциональная схема устройства.
курсовая работа [1,3 M], добавлен 14.01.2015Исследование сети и оценка необходимости статической маршрутизации. Настройка статических маршрутов и маршрутов по умолчанию. Планирование реализации списка контроля доступа. Настройка, применение и проверка стандартных списков контроля доступа.
курсовая работа [4,3 M], добавлен 29.05.2019Функции и особенности схемы средств предупреждения критических режимов полета. Специфика эксплуатационного контроля БКСЦПНО. Системы ЦПНО как объекты контроля. Обеспечение надежности элементной базы и программного обеспечения цифрового оборудования.
курсовая работа [31,3 K], добавлен 10.12.2013Микропроцессорные системы автоматизированного контроля условий работы оборудования для метеостанций, микробиологии и фармацевтики, пищевой и химической промышленностей, лабораторий. Требования к сетям, надежности, метрологическое обеспечение разработки.
курсовая работа [871,6 K], добавлен 27.02.2009Способы контроля информационных слов и адресов в цифровых устройствах автоматики. Структурные и функциональные схемы контролирующих устройств. Обеспечение надежности устройств автоматики и вычислительной техники. Числовой аппаратурный контроль по модулю.
контрольная работа [5,0 M], добавлен 08.06.2009Выявление деталей с поверхностными и подповерхностными трещинами по вихретоковому методу контроля деталей. Приборы (дефектоскопы) для выявления поверхностных дефектов, их технические данные, устройство и работа, составные части, порог чувствительности.
лабораторная работа [1,9 M], добавлен 09.01.2011