Применение электронных измерительных приборов
Классификация электронных измерительных приборов. Использование указателей напряжения и индикаторов для определения наличия или отсутствия тока в сети. Способы применения вольтметра, амперметра и омметра. Анализ измерения частоты электрических колебаний.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 08.11.2015 |
Размер файла | 240,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Классификация электронных измерительных приборов
2. Указатели напряжения и индикаторы
3. Вольтметр, амперметр, омметр
4. Частотомер, осциллограф, фазометр, ваттметр
Заключение
Введение
Электронные измерительные приборы обладают повышенным быстродействием, высокой чувствительностью и достаточно широким частотным диапазоном. Применяются они для измерения определенных электрических величин - напряжения, тока, сопротивления и других параметров. Данные приборы делят на аналоговые и цифровые модели. Отличаются эти модели друг от друга тем, что у них разная форма воспроизведения информации - с помощью цифрового монитора или стрелочки. На сегодняшний день наибольшей популярностью пользуются электронные цифровые измерительные приборы, поскольку механические варианты проигрывают в правильности отображаемой информации. Впрочем, доступная стоимость многих склоняет к покупке именно механических приборов.
1. Классификация электронных измерительных приборов
По способу отображения измерительной информации электронные приборы подразделяется на аналоговые (со стрелочным отсчетом, с электроннолучевой трубкой и др.) и цифровые (приборы дискретного типа) с цифровым отсчетом показаний.
По роду измерительные величины ЭИП делятся на: вольтметры, амперметры, омметры, фазометр, указатели напряжения, индикаторы, частотомеры, осциллографы и т. д.
По характеру применения - стационарные или переносные.
По степени защищенности - водозащищенные, герметичные, пылезащищенные и обычные.
2. Указатели напряжения и индикаторы
Используются для определения наличия или отсутствия тока в сети для электроприборов, мощность которых не более 1000 В. Принцип действия - преобразование электрических сигналов в световые сигналы. На приборе имеется шкала и светоиндикатор, при помощи которых можно просто понять, есть ли в сети напряжение. Если свечение отсутствует, то это говорит об ее обрыве или отсутствии. Также индикаторами можно измерять фазы тока переменного и полярность тока постоянного.
3. Вольтметр, амперметр, омметр
Амперметр - прибор для измерений силы постоянного и переменного тока в амперах (А). Шкалу Амперметра градуируют в килоамперах, миллиамперах или микроамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно; для увеличения предела измерений - с шунтом или через трансформатор. Под действием тока подвижная часть прибора поворачивается; угол поворота связанной с ней стрелки пропорционален силе тока. Существуют амперметры, в которых применены магнитоэлектрическая, электромагнитная, электродинамическая (ферромагнитная), термоэлектрическая и выпрямительная системы.
Вольтметр - электрический прибор для измерения эдс или напряжений в электрических цепях. Вольтметр включается параллельно нагрузке или источнику электрической энергии.
Наиболее просты в изготовлении, дёшевы и надёжны в эксплуатации вольтметры электромагнитные. Они применяются главным образом как стационарные на распределительных щитах электростанций и промышленных предприятий и более редко в качестве лабораторных приборов. Недостатки таких вольтметров - относительно большое собственное потребление энергии (3-7 Вт) и большая индуктивность обмотки, приводящая к существенной зависимости показаний вольтметра от частоты. электронный измерительный вольтметр колебание
Наиболее чувствительны и точны вольтметры магнитоэлектрические, пригодные, однако, для измерений только в цепях постоянного тока. В комплекте с термоэлектрическими, полупроводниковыми или электронно-ламповыми преобразователями переменного тока в постоянный они применяются для измерения напряжения в цепях переменного тока.
Омметр - прибор непосредственного отсчёта для измерения электрических активных (омических) сопротивлений. Разновидности омметра: мегомметры, тераомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений. Изготовляют омметры с магнитоэлектрическими измерителем и омметры с магнитоэлектрическим логометром.
Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен Ом до нескольких МОм измеритель и измеряемое сопротивление включают последовательно. При малых значениях сопротивления (до нескольких Ом) измеритель и rx включают параллельно. При постоянных U и С отклонение зависит от rx и потому для облегчения измерений шкала измерителя может быть проградуирована в Омах. Погрешность такого омметра 5-10% от длины рабочей части шкалы.
Часто омметр является частью комбинированного прибора - ампервольтомметра. При необходимости более точных измерений в омметре используется мостовой метод измерения. Для повышения чувствительности измерителя и точности измерений в таких омметрах применяют электронные усилители.
4. Частотомер, осциллограф, фазометр, ваттметр
Частотомер - прибор для измерения частоты периодических процессов (колебаний). Для измерения частоты электрических колебаний применяют электромеханические, электродинамические, электронные, электромагнитные, магнитоэлектрические частотомеры. Простейший электромеханический частотомер вибрационного типа состоит из электромагнита и ряда упругих пластин (как в механическом частотомере) на общем основании, соединённом с якорем электромагнита. Измеряемые электрические колебания подают в обмотку электромагнита; возникающие при этом колебания якоря передаются пластинам, по вибрации которых определяют значение измеряемой частоты. В электродинамических частотомерах основным элементом является логометр, в одну из ветвей которого включен колебательный контур, постоянно настроенный на среднюю для диапазона измерений данного прибора частоту. При подключении такого частотомера к электрической цепи переменного тока измеряемой частоты подвижная часть логометра отклоняется на угол, пропорциональный сдвигу фаз между токами в катушках логометра, который зависит от соотношения измеряемой частоты и резонансной частоты колебательного контура
Осциллограф (от лат. oscillo - качаюсь) электроннолучевой - прибор для наблюдения функциональной связи между двумя или несколькими величинами (параметрами и функциями; электрическими или преобразованными в электрические). Для этой цели сигналы параметра и функции подают на взаимно перпендикулярные отклоняющие пластины осциллографической электроннолучевой трубки и наблюдают, измеряют и фотографируют графическое изображение зависимости на экране трубки. Это изображение называют осциллограммой. Чаще всего осциллограмма изображает форму электрического сигнала во времени. По ней можно определить полярность, амплитуду и длительность сигнала.
Рисунок - Осциллограф
Фазометр - прибор для измерения косинуса угла сдвига фаз (или коэффициента мощности) между напряжением и током в электрических цепях переменного тока промышленной частоты или для измерения разности фаз электрических колебаний. Измерение косинуса угла сдвига фаз на промышленной частоте производят электромеханическими фазометрами с непосредственным отсчётом, в которых измерительным механизмом служит логометр (электродинамический, ферродинамический, электромагнитный или индукционный); отклонение подвижной части логометра зависит от сдвига фаз соотносимых напряжения и тока.
Ваттметр - прибор для измерения мощности электрического тока в ваттах. Наиболее распространены электродинамические ваттметры, механизм которых состоит из неподвижной катушки, включенной последовательно с нагрузкой (цепь тока), и подвижной катушки, включенной через большое добавочное сопротивление R параллельно нагрузке (цепь напряжения). Работа ваттметра основана на взаимодействии магнитных полей подвижной и неподвижной катушек при прохождении по ним электрического тока. При этом вращающий момент, вызывающий отклонение подвижной части прибора и соединённой с ней стрелки (указателя), при постоянном токе пропорционален произведению силы тока на напряжение, а при переменном токе - также косинусу угла сдвига фаз между током и напряжением. Применяются также ферродинамические ваттметры, реже индукционные, термоэлектрические и электростатические
Заключение
Электронные измерительные приборы широко применяются в энергетике, связи, промышленности,на транспорте,в научных исследованиях, медицине, а также в быту -- для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.
Размещено на Allbest.ru
Подобные документы
Принципы действия приборов для измерения электрического тока, напряжения и сопротивления; расчет параметров многопредельного амперметра магнитоэлектрической системы и четырехплечего уравновешенного моста постоянного тока; метрологические характеристики.
курсовая работа [2,2 M], добавлен 18.06.2012Характеристика электромеханических приборов для измерения постоянного, переменного тока и напряжения. Их конструкция, принцип действия, область применения, достоинства и недостатки. Определение и классификация электронных вольтметров, схемы приборов.
курсовая работа [1,1 M], добавлен 26.03.2010Анализ измерительных устройств для измерения электрического тока, напряжения и сопротивления. Расчёт параметров четырехплечего уравновешенного моста постоянного тока. Оценивание характеристик погрешности и вычисление неопределенности измерений.
курсовая работа [1,8 M], добавлен 19.06.2012Проектирование измерительных приборов. Параметры цифрового вольтметра. Принцип время-импульсного преобразования. Области применения микроконтроллеров. Алгоритм приложения для цифрового милливольтметра постоянного тока. Сборка элементов на печатной плате.
дипломная работа [891,7 K], добавлен 17.06.2013Принципы измерения напряжения посредством аналоговых электронных вольтметров. Описание структурной схемы цифрового вольтметра постоянного тока. Понятие об амплитудном значении напряжения. Особенности использования амплитудных детекторов в вольтметрах.
контрольная работа [404,7 K], добавлен 08.07.2014Структурная схема аналогового электронного вольтметра. Коэффициент усиления операционного усилителя К140УД2А при разомкнутой цепи обратной связи. Схема прецизионного выпрямителя. Выпрямление измеряемых переменных сигналов в приборе. Расчет трансформатора.
курсовая работа [755,1 K], добавлен 07.01.2015Сущность назначения измерительных приборов, их основные виды. Понятие чувствительности и класса точности средств измерений, порядок отсчета величин. Особенности принципа работы амперметра, вольтметра, ваттметра, осциллографа и анализатора спектра частот.
реферат [38,5 K], добавлен 02.05.2012Составление расчетной электрической схемы. Расчет токов в исследуемой электрической цепи. Проверка выполнения законов Кирхгоффа. Выбор измерительных приборов и схема включения электроизмерительных приборов. Схемы амперметров выпрямительной системы.
курсовая работа [989,1 K], добавлен 24.01.2016Технические характеристики цифровых измерительных приборов. Сравнительная характеристика аналоговых и цифровых приборов. Современные цифровые универсальные приборы контроля геометрических параметров. Измерение среднеквадратического значения напряжения.
реферат [774,0 K], добавлен 29.11.2011Физические принципы функционирования электронных приборов. Дефекты реальных кристаллов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Принцип работы биполярных транзисторов. Поверхностные явления в полупроводниках.
контрольная работа [3,1 M], добавлен 04.10.2010