Повышение надежности технических систем

Понятие надежности изделий и основные требования к ней. Характеристика количественных характеристик безотказности. Рассмотрение способов расчета структурной надежности. Использование метода прямого перебора для расчета надежности мостиковых систем.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 13.09.2015
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

  • Введение
  • 1. Количественные характеристики безотказности
  • 2. Структурно-логический анализ технических систем
  • 3. Расчеты структурной надежности систем
  • 3.1 Системы с последовательным соединением элементов
  • 3.2 Системы с параллельным соединением элементов
  • 3.3 Система типа «m из n»
  • 3.4 Мостиковые системы
  • 3.5 Комбинированные системы
  • 4. Повышение надежности технических систем
  • 4.1 Методы повышения надежности
  • 4.2 Расчет надежности систем с резервированием
  • 5. Методические рекомендации
  • 6. Исходные данные к работе
  • 7. Пример расчета надежности
  • Выводы
  • Библиографический список
  • Приложение

Введение

Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки. Расширение условий эксплуатации, повышение ответственности выполняемых радиоэлектронными средствами (РЭС) функций, их усложнение приводит к повышению требований к надежности изделий.

Надежность является сложным свойством и формируется такими составляющими, как безотказность, долговечность, восстанавливаемость и сохраняемость. Основным здесь является свойство безотказности - способность изделия непрерывно сохранять работоспособное состояние в течение времени. Потому наиболее важным в обеспечении надежности РЭС является повышение их безотказности.

Особенностью проблемы надежности является ее связь со всеми этапами «жизненного цикла» РЭС от зарождения идеи создания до списания: при расчете и проектировании изделия его надежность закладывается в проект, при изготовлении надежность обеспечивается, при эксплуатации - реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор или разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности РЭС. Основным методом решения этой задачи являются расчеты надежности (в первую очередь - безотказности), в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта. Некоторые способы расчета структурной надежности рассматриваются в данном пособии.

1. Количественные характеристики безотказности

Безотказность (и другие составляющие свойства надежности) РЭС проявляется через случайные величины, наработку до очередного отказа и количество отказов за заданное время. Количественными характеристиками свойств здесь выступают вероятностные переменные.

Наработка - есть продолжительность или объем работы объекта. Для РЭС естественно исчисление наработки в единицах времени, тогда как для других технических средств могут быть удобнее иные средства измерения (например, наработка автомобиля - в километрах пробега). Для невосстанавливаемых и восстанавливаемых изделий понятие наработки различается, в первом случае подразумевается наработка до первого отказа (он же является и последним отказом), во втором - между двумя соседними во времени отказами (после каждого отказа производится восстановление работоспособного состояния). Математическое ожидание случайной наработки Т

(1.1)

является характеристикой безотказности и называется средней наработкой на отказ (между отказами). В (1.1) через t обозначено текущее значение наработки, а f(t) - плотность вероятности ее распределения.

Вероятность безотказной работы - вероятность того, что в пределах заданной наработки t отказ объекта не возникает:

(1.2)

Вероятность противоположного события называется вероятностью отказа и дополняет вероятность безотказной работы до единицы:

q(t)=Вер(T t) =1 - p(t) =F(t). (1.3)

В (1.2) и (1.3) F(t) есть интегральная функция распределения случайной наработки t. Плотность вероятности f(t) также является показателем надежности, называемым частотой отказов:

(1.4)

Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:

(1.5)

Функции f(t) и (t) измеряются в ч-1.

Интегрируя (1.5), легко получить:

(1.6)

Это выражение, называемое основным законом надежности, позволяет установить временное изменение вероятности безотказной работы при любом характере изменения интенсивности отказов во времени. В частном случае постоянства интенсивности отказов

(t) = = const (1.6)

переходит в известное в теории вероятностей экспоненциальное распределение:

(1.7)

Поток отказов при (t)=const называется простейшим и именно он реализуется для большинства РЭС в течение периода нормальной эксплуатации от окончания приработки до начала старения и износа.

Подставив выражение плотности вероятности f(t) экспоненциального распределения (1.7) в (1.1), получим

T0 =1/ ,(1.8)

т.е. при простейшем потоке отказов средняя наработка Т0 обратна интенсивности отказов . С помощью (1.7) можно показать, что за время средней наработки, t = Т0, вероятность безотказной работы изделия составляет 1/е. Часто используют характеристику, называемую -процентной наработкой, время, в течение которого отказ не наступит с вероятностью (%):

.(1.9)

Выбор параметра для количественной оценки надежности определяется назначением, режимами работы изделия, удобством применения в расчетах на стадии проектирования.

2. Структурно-логический анализ технических систем

Конечной целью расчета надежности технических устройств является оптимизация конструктивных решений и параметров, режимов эксплуатации, организация технического обслуживания и ремонтов. Поэтому уже на ранних стадиях проектирования важно оценить надежность объекта, выявить наиболее ненадежные узлы и детали, определить наиболее эффективные меры повышения показателей надежности. Решение этих задач возможно после предварительного структурно-логического анализа системы.

Большинство технических объектов, в том числе РЭС, являются сложными системами, состоящими из отдельных узлов, деталей, агрегатов, устройств контроля, управления и т.д. Техническая система (ТС) - совокупность технических устройств (элементов), предназначенных для выполнения определенной функции или функций. Соответственно, элемент - составная часть системы.

Расчленение ТС на элементы достаточно условно и зависит от постановки задачи расчета надежности. Например, при анализе работоспособности технологической линии ее элементами могут считаться отдельные установки и станки, транспортные и загрузочные устройства и т.д. В свою очередь, станки и устройства также могут считаться техническими системами и при оценке их надежности должны быть разделены на элементы - узлы, блоки, которые, разделяются на детали и т.д.

При определении структуры ТС необходимо оценить влияние каждого элемента и его работоспособности на работоспособность системы в целом. С этой точки зрения целесообразно разделить все элементы на четыре группы:

1. Элементы, отказ которых практически не влияет на работоспособность системы (например, деформация кожуха, изменение окраски поверхности и т.п.).

2. Элементы, работоспособность которых за время эксплуатации практически не изменяется и вероятность безотказной работы близка к единице (корпусные детали, малонагруженные элементы с большим запасом прочности).

3. Элементы, ремонт или регулировка которых возможна при работе изделия или во время планового технического обслуживания (наладка или замена технологического инструмента оборудования, настройка частоты селективных цепей РЭС и т.д.).

4. Элементы, отказ которых сам по себе или в сочетании с отказами других элементов приводит к отказу системы.

Очевидно, при анализе надежности ТС имеет смысл включать в рассмотрение только элементы последней группы.

Для расчетов параметров надежности удобно использовать структурно-логические схемы надежности ТС, которые графически отображают взаимосвязь элементов и их влияние на работоспособность системы в целом. Структурно-логическая схема представляет собой совокупность ранее выделенных элементов, соединенных друг с другом последовательно или параллельно. Критерием для определения вида соединения элементов (последовательного или параллельного) при построении схемы является влияние их отказа на работоспособность ТС.

Последовательным (с точки зрения надежности) считается соединение, при котором отказ любого элемента приводит к отказу всей системы (рис. 2.1).

Параллельным (с точки зрения надежности) считается соединение, при котором отказ любого элемента не приводит к отказу системы, пока не откажут все соединенные элементы (рис. 2.2).

Рис. 2.1. Последовательное соединение элементов

Рис. 2.2. Параллельное соединение элементов

Определенная аналогия здесь прослеживается c цепью, составленной из проводящих элементов (исправный элемент пропускает ток, а отказавший - не пропускает). Работоспособному состоянию ТС соответствует возможность протекания тока от входа до выхода цепи.

Примером последовательного соединения элементов структурно-логической схемы может быть технологическая линия, в которой происходит переработка сырья в готовый продукт, или РЭС, в котором последовательно осуществляется преобразование входного сигнала. Если же на некоторых участках линии или пути сигнала предусмотрена одновременная обработка на нескольких единицах оборудования, то такие элементы (единицы оборудования) могут считаться соединенными параллельно.

Однако не всегда структурная схема надежности аналогична конструктивной или электрической схеме расположения элементов. Например, подшипники на валу редуктора работают конструктивно параллельно друг с другом, однако выход из строя любого из них приводит к отказу системы. Аналогично действие индуктивности и емкости параллельного колебательного контура в селективных каскадах РЭС. Указанные элементы с точки зрения надежности образуют последовательное соединение.

Кроме того, на структуру схемы надежности может оказывать влияние и вид возникающих отказов. Например, в электрических системах для повышения надежности в ряде случаев применяют параллельное или последовательное соединение коммутирующих элементов (рис. 2.3). Отказ таких изделий может происходить по двум причинам: обрыва (т.е. невозможности замыкания цепи) и замыкания (т.е. невозможности разрыва соединения). В случае отказа типа «обрыв» - схема надежности соответствует электрической схеме системы (при «обрыве» любого коммутатора при последовательном их соединении возникает отказ, при параллельном - все функции управления будет выполнять исправный коммутатор). В случае отказа типа «замыкание» - схема надежности противоположна электрической (в параллельном включении утратится возможность отключения тока, а в последовательном - общего отказа не происходит).

Рис. 2.3. Электрические и структурные схемы соединения коммутационных элементов при различных видах отказов

В целом анализ структурной надежности ТС, как правило, включает следующие операции:

1. Анализируются устройства и выполняемые системой и ее составными частями функции, а также взаимосвязь составных частей.

2. Формируется содержание понятия «безотказной работы» для данной конкретной системы.

3. Определяются возможные отказы составных частей и системы, их причины и возможные последствия.

4. Оценивается влияние отказов составных частей системы на ее работоспособность.

5. Система разделяется на элементы, показатели надежности которых известны.

6. Составляется структурно-логическая схема надежности технической системы, которая является моделью ее безотказной работы.

7. Составляются расчетные зависимости для определения показателей надежности ТС с использованием данных по надежности ее элементов и с учетом структурной схемы.

В зависимости от поставленной задачи на основании результатов расчета характеристик надежности ТС делаются выводы и принимаются решения о необходимости изменения или доработки элементной базы, резервировании отдельных элементов или узлов, об установлении определенного режима профилактического обслуживания, о номенклатуре и количестве запасных элементов для ремонта и т.д.

3. Расчеты структурной надежности систем

Расчеты показателей безотказности ТС обычно проводятся в предложении, что как вся система, так и любой ее элемент могут находиться только в одном из двух возможных состояний - работоспособном и неработоспособном и отказы элементов друг от друга. Состояние системы (работоспособное или неработоспособное) определяется состоянием элементов и их сочетанием. Поэтому теоретически возможно расчет безотказности любой ТС свести к перебору всех возможных комбинаций состояний элементов, определению вероятности каждого из них и сложению вероятностей работоспособных состояний системы.

Такой метод (метод прямого перебора - см. п. 3.3) практически универсален и может использоваться при расчете любых ТС. Однако при большом количестве элементов системы n такой путь становится нереальным из-за большого объема вычислений (например, при n=10 число возможных состояний системы составляет: 2n=1024, при n=20 превышает 106, при n=30 - более 109). Поэтому на практике используют более эффективные и экономичные методы расчета, не связанные с большим объемом вычислений. Возможность применения таких методов связана со структурой ТС.

3.1 Системы с последовательным соединением элементов

Системой с последовательным соединением элементов называется система, в которой отказ любого элемента приводит к отказу всей системы (см. п. 2, рис. 2.1). Такое соединение элементов в технике встречается наиболее часто и поэтому его называют основным соединением.

В системе с последовательным соединением для безотказной работы в течение некоторой наработки необходимо и достаточно, чтобы каждый из ее n элементов работал безотказно в течение этой наработки. Считая отказы элементов независимыми, вероятность одновременной безотказной работы n элементов определяется по теореме умножения вероятностей: вероятность совместного появления независимых событий равна произведению вероятностей этих событий:

(3.1)

(далее аргумент t в скобках, показывающий зависимость показателей надежности от времени, опускаем для сокращения записей формул). Соответственно вероятность отказа такой ТС

(3.2)

Если система состоит из равнонадёжных элементов (рi = р), то

, (3.3)

Из формул (3.1) - (3.3) очевидно, что даже при высокой надежности элементов надежность системы при последовательном соединении оказывается тем более низкой, чем больше число элементов (например, при р = 0,95 и n =10 имеем Р = 0,60, при n=15 Р =0,46, а при n = 20 P = 0,36). Кроме того, поскольку все сомножители в правой части выражения (3.1) не превышают единицы, вероятность безотказной работы ТС при последовательном соединении не может быть выше вероятности безотказной работы самого ненадежного из ее элементов (принцип «хуже худшего») и из малонадежных элементов нельзя создать высоконадежной ТС с последовательным соединением.

Если все элементы системы работают в периоде нормальной эксплуатации и имеет место простейший поток отказов (см. п. 1), то наработки элементов и системы подчиняются экспоненциальному распределению (1.7) и на основании (3.1) можно записать:

(3.4)

где

(3.5)

есть интенсивность отказов системы. Таким образом, интенсивность отказов системы при последовательном соединении элементов и простейшем потоке отказов равна сумме интенсивностей отказов элементов. С помощью выражений (1.8) и (1.9) могут быть определены средняя наработка и -процентная наработка.

Из функций (3.4) - (3.5) следует, что для системы из n равнонадёжных элементов (i = ), при

=n

(3.6)

т.е. интенсивность отказов в п раз больше, а средняя наработка в n раз меньше, чем у отдельного элемента.

3.2 Системы с параллельным соединением элементов

Системой с параллельным соединением элементов называется система, отказ которой происходит только в случае отказа всех ее элементов (см. п. 2, рис. 2.2). Такие схемы надежности характерны для ТС, в которых элементы дублируются или резервируются, т.е. параллельное соединение используется как метод повышения надежности (см. п. 4.2). Однако такие системы встречаются и самостоятельно (например, системы двигателей четырехмоторного самолета или параллельное включение диодов в мощных выпрямителях).

Для отказа системы с параллельным соединением элементов в течение наработки необходимо и достаточно, чтобы все ее элементы отказали в течение этой наработки. В этом случае отказ системы заключается в совместном отказе всех элементов, вероятность (при допущении независимости отказов) может быть найдена по теореме умножения вероятностей как произведение вероятностей отказа элементов:

(3.7)

Соответственно вероятность безотказной работы

(3.8)

Для систем из равнонадежных элементов (рi = р):

, (3.9)

т.е. надежность системы с параллельным соединением повышается при увеличении числа элементов (например, при р=0,9 и n=2 Р=0,99, а при n=3 Р=0,999).

Поскольку qi < 1, произведение в правой части (3.7) всегда меньше любого из сомножителей, вероятность отказа системы не может быть выше вероятности самого надежного ее элемента («лучше лучшего») и даже из сравнительно ненадежных элементов возможно построение вполне надежной системы.

При экспоненциальном распределении наработки (1.7) выражение (3.9) принимает вид

Р = 1 - [1 ехр(- t)]n, (3.10)

откуда с помощью (1.1) после интегрирования и преобразований средняя наработка системы определяется

(3.11)

где Т0 i = 1/ i - средняя наработка элемента. При больших значениях n справедлива приближенная формула

(3.12)

Таким образом, средняя наработка системы с параллельным соединением больше средней наработки ее элементов (например, при n = 2 Т0 = 1,5Toi, при n= 3 T0 = 1,83T0i).

3.3 Система типа «m из n»

Систему «типа m из n» можно рассматривать как вариант системы с параллельным соединением элементов, отказ которой произойдет, если из n элементов, соединенных параллельно, работоспособными окажутся менее m элементов (m < n).

Рис. 3.1. Система «2 из 5»

На рис. 3.1 представлена система «2 из 5», которая работоспособна, если из пяти её элементов работают любые два, три, четыре или все пять (на схеме пунктиром обведены функционально необходимые два элемента, причем выделение элементов 1 и 2 произведено условно, в действительности все пять элементов равнозначны). Системы «типа m из n» наиболее часто встречаются в электрических и связных системах (при этом элементами выступают связующие каналы), технологических линий, а также при структурном резервировании (см. п. 4.1, 4.2).

Для расчета надежности систем «типа m из n» при сравнительно небольшом количестве элементов можно воспользоваться методом прямого перебора. Он заключается в определении работоспособности каждого из возможных состояний системы, которые определяются различными сочетаниями работоспособных и неработоспособных состояний элементов.

Все состояния системы «2 из 5» занесены в табл. 3.1 (в таблице работоспособные состояния элементов и системы отмечены знаком «+», неработоспособные - знаком «-» ). Для данной системы работоспособность определяется лишь количеством работоспособных элементов. По теореме умножения вероятностей вероятность любого состояния определяется как произведение вероятностей состояний, в которых пребывают элементы. Например, в строке 9 описано состояние системы, в которой отказали элементы 2 и 5, а остальные - работоспособны. При этом условие «2 из 5» выполняется так, что система в целом работоспособна. Вероятность такого состояния

(предполагается, что все элементы равнонадежны). С учетом всех возможных

состояний вероятность безотказной работы системы может быть найдена по теореме сложе-ния вероятностей всех работоспособных сочетаний. Поскольку в табл. 3.1 количество неработоспособных состояний меньше, чем работоспособных (соответственно 6 из 26), проще вычислить вероятность отказа системы. Для этого суммируются вероятности неработоспособных состояний (где не выполняется условие «2 из 5»)

(3.13)

Тогда вероятность безотказной работы системы

(3.14)

Расчет надежности системы «m из n» может производится комбинаторным методом, в основе которого лежит формула биномиального распределения. Биномиальному распределению подчиняется дискретная случайная величина k - число появлений некоторого события в серии из n опытов, если в отдельном опыте вероятность появления события составляет р. При этом вероятность появления события ровно k раз и определяется

, (3.15)

где - биномиальный коэффициент, называемый «числом сочетаний по k из n» (т.е. сколькими разными способами можно реализовать ситуацию «k из n»).

(3.16)

Значения биномиальных коэффициентов приведены в приложении.

Поскольку для отказа системы «m из n» достаточно, чтобы количество исправных элементов было меньше m, вероятность отказа может быть найдена по теореме сложения вероятностей для k = 0, 1, ..., (m-1):

(3.17)

Аналогичным образом можно найти вероятность безотказной работы как сумму (3.15) для k=m, m+1, …, n:

(3.18)

Таблица 3.1. Таблица состояний системы «2 из 5»

N

состояния

Состояние элементов

Состояние

системы

Вероятность

состояния системы

1

2

3

4

5

1

+

+

+

+

+

+

2

+

+

+

+

-

+

3

+

+

+

-

+

+

4

+

+

-

+

+

+

5

+

-

+

+

+

+

6

-

+

+

+

+

+

7

+

+

+

-

-

+

8

+

+

-

+

-

+

9

+

-

+

+

-

+

10

-

+

+

+

-

+

11

+

+

-

-

+

+

12

+

-

+

-

+

+

13

-

+

+

-

+

+

14

+

-

-

+

+

+

15

-

+

-

+

+

+

16

-

-

+

+

+

+

17

+

+

-

-

-

+

18

+

-

+

-

-

+

19

-

+

+

-

-

+

20

+

-

-

-

+

+

21

-

+

-

-

+

+

22

-

-

-

+

+

+

23

+

-

-

+

-

+

24

-

+

-

+

-

+

25

-

-

+

-

+

+

26

-

-

+

+

-

+

27

+

-

-

-

-

-

28

-

+

-

-

-

-

29

-

-

+

-

-

-

30

-

-

-

+

-

-

31

-

-

-

-

+

-

32

-

-

-

-

-

-

Очевидно, что Q+P=1, поэтому в расчетах следует выбирать ту из формул (3.17), (3.18), которая в данном конкретном случае содержит меньшее число слагаемых.

Для системы «2 из 5» (рис. 3.1) по формуле (3.18) получим:

(3.19)

Вероятность отказа той же системы по (3.17):

(3.20)

что, как видно, дает тот же результат для вероятности безотказной работы.

В табл. 3.2 приведены формулы для расчета вероятности безотказной работы систем «типа m из n» при m<=n<=5. Очевидно, что при m=1 система превращается в обычную систему с параллельным соединением элементов, а при m=n - с - последовательным соединением.

Таблица 3.2

m

Общее число элементов, n

1

2

3

4

5

1

p

2

-

p2

3

-

-

p3

4

-

-

-

P4

5

-

-

-

-

p5

3.4 Мостиковые системы

Мостиковая структура (рис. 3.2, а, б) не сводится к параллельному или последовательному типу соединения элементов, а представляет собой параллельное соединение последовательных цепочек элементов с диагональными элементами, включенными между узлами различных параллельных ветвей (элемент 3 на рис. 3.2, а элементы 3 и 6 на рис. 3.2,б). Работоспособность такой системы определяется не только количеством отказавших элементов, но и их положение в структурной схеме. Например, работоспособность ТС, схема которой приведена на рис. 3.2,а, будет утрачена при одновременном отказе элементов 1 и 2, или 4 и 5, или 2, 3 и 4 и т.д. В то же время отказ элементов 1 и 5, или 2 и 4, или 1, 3 и 4, или 2, 3 и 5 к отказу системы не приводит.

а) б)

Рис. 3.2. Мостиковые системы

Таблица 3.3. Таблица состояний мостиковой системы

сост.

Состояние элементов

Состояние системы

Вероятность состояния

1

2

3

4

5

в общем случае

при равнонадежных элементах

1

+

+

+

+

+

+

p1 p 2 p3 p4 p5

2

+

+

+

+

-

+

p1 p 2 p3 p4 q5

3

+

+

+

-

+

+

p1 p 2 p3 q4 p5

4

+

+

-

+

+

+

p1 p 2 q3 p4 p5

5

+

-

+

+

+

+

p1 q 2 p3 p4 p5

6

-

+

+

+

+

+

q1 p 2 p3 p4 p5

7

+

+

+

-

-

-

p1 p 2 p3 q4 q5

8

+

+

-

+

-

+

p1 p 2 q3 p4 q5

9

+

-

+

+

-

+

p1 q 2 p3 p4 q5

10

-

+

+

+

-

+

q1 p 2 p3 p4 q5

11

+

+

-

-

+

+

p1 p 2 p3 p4 p5

12

+

-

+

-

+

+

p1 p 2 p3 p4 p5

13

-

+

+

-

+

+

p1 p 2 p3 p4 p5

14

+

-

-

+

+

+

p1 p 2 p3 p4 p5

15

-

+

-

+

+

+

p1 p 2 p3 p4 p5

16

-

-

+

+

+

-

p1 p 2 p3 p4 p5

17

+

+

-

-

-

-

p1 p 2 p3 p4 p5

18

+

-

+

-

-

-

p1 p 2 p3 p4 p5

19

-

+

+

-

-

-

p1 p 2 p3 p4 p5

20

+

-

-

-

+

-

p1 p 2 p3 p4 p5

21

-

+

-

-

+

+

p1 p 2 p3 p4 p5

22

-

-

-

+

+

-

p1 p 2 p3 p4 p5

23

+

-

-

+

-

+

p1 p 2 p3 p4 p5

24

-

+

-

+

-

-

p1 p 2 p3 p4 p5

25

-

-

+

-

+

-

p1 p 2 p3 p4 p5

26

-

-

+

+

-

-

p1 p 2 p3 p4 p5

27

+

-

-

-

-

-

p1 p 2 p3 p4 p5

28

-

+

-

-

-

-

p1 p 2 p3 p4 p5

29

-

-

+

-

-

-

p1 p 2 p3 p4 p5

30

-

-

-

+

-

-

p1 p 2 p3 p4 p5

31

-

-

-

-

+

-

p1 p 2 p3 p4 p5

32

-

-

-

-

-

-

p1 p 2 p3 p4 p5

Для расчета надежности мостиковых систем можно воспользоваться методом прямого перебора, как это было сделано для систем «m из n» (п. 3.3), но при анализе работоспособности каждого состояния системы необходимо учитывать не только число отказавших элементов, но и их положение в схеме (табл. 3.3). Вероятность безотказной работы системы определяется как сумма вероятностей всех работоспособных состояний:

(3.21)

В случае равнонадежных элементов

(3.22)

Метод прямого перебора эффективен только при малом количестве элементов n, о чем говорилось в начале разд. 3, поскольку число состояний системы составляет 2n. Например, для схемы на рис. 3.2,б их количество составит уже 256. Некоторое упрощение достигается, если в таблицу состояний включать только сочетания, отвечающие работоспособному (или только неработоспособному) состоянию системы в целом.

Для анализа надежности ТС, структурные схемы которых не сводятся к параллельному или последовательному типу, можно воспользоваться также методом логических схем с применением алгебры логики (булевой алгебры). Применение этого метода сводится к составлению для ТС формулы алгебры логики, которая определяет условие работоспособности системы. При этом для каждого элемента и системы в целом рассматриваются два противоположных события - отказ и сохранение работоспособности.

Для составления логической схемы можно воспользоваться двумя методами - минимальных путей и минимальных сечений.

Рассмотрим метод минимальных путей для расчета вероятности безотказной работы на примере мостиковой схемы (рис. 3.2,а).

Минимальным путем называется последовательный набор работоспособных элементов системы, который обеспечивает ее работоспособность, а отказ любого из них приводит к ее отказу.

Минимальных путей в системе может быть один или несколько. Очевидно, что система с последовательным соединением элементов (рис. 2.1) имеет только один минимальный путь, включающий все элементы. В системе с параллельным соединением (рис. 2.2) число минимальных путей совпадает с числом элементов и каждый путь включает один из них.

Для мостиковой системы из пяти элементов (рис. 3.2,а) минимальных путей четыре: (элементы 1 и 4), (2 и 5), (1, 3 и 5), (2, 3 и 5). Логическая схема такой системы (рис. 3.3) составляется таким образом, чтобы все элементы каждого минимального пути были соединены друг с другом последовательно, а все минимальные пути - параллельно.

Рис. 3.3. Логическая схема мостиковой системы по методу минимальных путей

Рис. 3.4. Логическая схема мостиковой системы по методу минимальных сечений

Затем для логической схемы составляется функция алгебры логики А по общим правилам расчета вероятности безотказной работы, но вместо символов вероятностей безотказной работы элементов pi и системы Р используются символы события (сохранения работоспособности элемента аi и системы А). Так, «отказ» логической схемы рис. 3.3 состоит в одновременном отказе всех четырех параллельных ветвей, а «безотказная работа» каждой ветви - в одновременной безотказной работе ее элементов. Последовательное соединение элементов логической схемы соответствует логическому умножению («И»), параллельное - логическому сложению («ИЛИ»). Следовательно, схема рис. 3.3 соответствует утверждению: система работоспособна, если работоспособны элементы 1 и 4, или 2 и 5, или 1, 3 и 5, или 2, 3 и 4. Функция алгебры логики запишется:

(3.23)

В выражении (3.23) переменные а рассматриваются как булевы, т.е. могут приниматься только два значения: 0 или 1. Тогда при возведении в любую степень k любая переменная a сохраняет свое значение: . На основе этого свойства функция алгебры логики (3.23) может быть преобразована к виду

(3.24)

Заменив в выражении (3.24) символы событий ai их вероятностями pi, получим уравнение для определения вероятности безотказной работы системы:

(3.25)

Для системы равнонадёжных элементов (pi = p) выражение (3.25) легко преобразуется в формулу (3.22).

Метод минимальных путей дает точное значение только для сравнительно простых систем с небольшим числом элементов. Для более сложных систем результат расчета является нижней границей вероятности безотказной работы.

Для расчета верхней границы вероятности безотказной работы системы служит метод минимальных сечений.

Минимальным сечением называется набор неработоспособных элементов, отказ которых приводит к отказу системы, а восстановление работоспособности любого из них - к восстановлению работоспособности системы. Как минимальных путей, так и минимальных сечений может быть несколько. Очевидно, система с параллельным соединением элементов имеет только одно минимальное сечение, включающее все ее элементы (восстановление любого восстановит работоспособность системы). В системе с последовательным соединением элементов число минимальных путей совпадает с числом элементов, и каждое сечение включает один из них.

В мостиковой системе (рис. 3.2,а) минимальных сечений четыре (элементы 1 и 2), (4 и 5), (1, 3 и 5), (2, 3 и 4). Логическая схема системы рис. 3.4) составляется таким образом, чтобы все элементы каждого минимального сечения были соединены друг с другом параллельно, а все минимальные сечения - последовательно. Аналогично методу минимальных путей, составляется функция алгебры логики. «Безотказная работа» логической системы (рис. 3.4) заключается в «безотказной работе» всех последовательных участков, а каждого из них - в одновременном «отказе» всех параллельно включенных элементов. Как видно, поскольку схема метода минимальных сечений формулирует условия отказа системы, в ней последовательное соединение соответствует логическому «ИЛИ», а параллельное - логическому «И». Схема (рис. 3.4) соответствует формулировке: система откажет, если откажут элементы 1 и 2, или 4 и 5, или 1, 3 и 5, или 2, 3 и 4. Функция алгебры логики запишется

(3.26)

После преобразований с использованием свойств булевых переменных (3.26) приобретает форму (3.24), после замены событий их вероятностями переходит в выражение (3.25).

Для мостиковой системы из пяти элементов верхняя и нижняя границы вероятности безотказной работы, полученные методами минимальных сечений и минимальных путей, совпали с точными значениями (3.22), полученными методом прямого перебора. В ряде случаев анализа надежности ТС удается воспользоваться методом разложения относительно особого элемента, основанным на известной в математической логике теореме о разложении функции логики по любому аргументу. Согласно ей можно записать:

(3.27)

где pi и qi = 1- pi - вероятности безотказной работы и отказа i - го элемента, Р(pi =1) и Р(pi =0) - вероятности работоспособного состояния системы при условии, что i-й элемент абсолютно надежен и что i-й элемент отказал.

Для мостиковой схемы (рис. 3.2,а) в качестве особого элемента целесообразно выбрать диагональный элемент 3. При р3 =1 мостиковая схема превращается в параллельно-последовательное соединение (рис. 3.5,а), а при р3 =0 - в последовательно-параллельное (рис. 3.5,б).

а) б)

Рис. 3.5. Преобразование мостиковой схемы при абсолютно надежном (а) и отказавшем (б) центральном элементе

Для преобразованных схем можно записать:

(3.28)

(3.29)

Тогда на основании формулы (3.27) получим:

(3.30)

Легко убедится, что для равнонадежных элементов формула (3.30) обращается в (3.22).

Этим методом можно воспользоваться и при разложении относительно нескольких «особых» элементов. Например, для двух элементов (i, j) выражение (3.27) примет вид

(3.31)

Вероятность безотказной работы мостиковой схемы (рис. 3.2,б) при разложении относительно диагональных элементов 3 и 6 по (3.31) определится:

(3.32)

Вероятность P(р3; р6) легко ставить, выполнив предварительно преобразованные схемы, подобно рис. 3.5, а, б.

3.5 Комбинированные системы

Большинство реальных ТС имеет сложную комбинированную структуру, часть элементов которой образует последовательное соединение, другая часть - параллельное соединение, отдельные ветви элементы или ветви структуры образуют мостиковые схемы или «типа m из n».

Метод прямого перебора для таких систем оказывается, практически не реализуем. Более целесообразно в этих случаях предварительно произвести декомпозицию системы, разбив ее на простые подсистемы - группы элементов, методика расчета надежности которых известна. Затем эти подсистемы - группы элементов, методика расчета надежности которых известна. Затем эти подсистемы в структурной схеме надежности заменяются квазиэлементами с вероятностями безотказной работы, равными вычисленным вероятностям безотказной работы этих подсистем. При необходимости такую процедуру можно выполнить несколько раз, до тех пор, пока оставшиеся квазиэлементы не образуют структуру, методика расчета надежности которой также известна.

Рис. 3.6. Исходная система

Рис. 3.7. Преобразованные системы

В качестве примера рассмотрим комбинированную систему, представленную на рис. 3.6. Здесь элементы 2 и 5, 4 и 7, 9 и 12, 11 и 14 попарно образуют друг с другом последовательные соединения. Заменим их соответственно квазиэлементами А, В, С, Д, для которых расчет надежности элементарно выполняется по формулам п. 3.1. Элементы 15, 16, 17 и 18 образуют параллельное соединение (п. 3.2), а элементы 3, 6, 8, 10 и 13 - систему «3 из 5» (п. 3.2). Соответствующие квазиэлементы обозначим Е и F. В результате преобразованная схема примет вид показанный на рис. 3.7,а. В ней, в свою очередь, элементы А, В, С, Д, F образуют мостиковую схему (п. 3.4), которую заменяем квазиэлементом 6. Схема, полученная после таких преобразований (рис. 3.7,б), образует последовательное соединение элементов 1, G, Е, 19, для которых справедливы соотношения п. 3.1. Отметим, что метод прямого перебора для исходной системы потребовал бы рассмотреть 219 =524288 возможных состояний.

4. Повышение надежности технических систем

4.1 Методы повышения надежности

Расчетные зависимости для определения основных характеристик надежности ТС показывают, что надежность системы зависит от ее структуры (структурно-логической схемы) и надежности элементов. Поэтому для сложных систем возможны два пути повышения надежности: повышение надежности элементов и изменение структурной схемы.

Повышение надежности элементов на первый взгляд представляется наиболее простым приемом повышения надежности системы. Действительно, теоретически всегда можно указать такие характеристики надежности элементов, чтобы вероятность безотказной работы системы удовлетворяла заданным требованиям. Однако практическая реализация такой высокой надежности элементов может оказаться невозможной. Рассмотрение методов обеспечения надежности элементов ТС является предметом специальных технологических и физико-химических дисциплин и выходит за рамки теории надежности. Однако, в любом случае, высоконадежные элементы, как правило, имеют большие габариты, массу и стоимость. Исключение составляет использование более совершенной элементной базы, реализуемой на принципиально новых физических и технологических принципах (например, в РЭС - переход от дискретных элементов на интегральные схемы).

Изменение структуры системы с целью повышения надежности подразумевает два аспекта.

С одной стороны, это означает перестройку конструктивной или функциональной схемы ТС (структуры связей между составными элементами), изменение принципов функционирования отдельных частей системы (например, переход от аналоговой обработки сигналов к цифровой). Такого рода преобразования ТС возможны исключительно редко, так что этот прием, в общем, не решает проблемы надежности.

С другой стороны, изменение структуры понимается как введение в ТС дополнительных, избыточных элементов, включающихся в работу при отказе основных. Применение дополнительных средств и возможностей с целью сохранения работоспособного состояния объекта при отказе одного или нескольких его элементов называется резервированием.

Принцип резервирования подобен рассмотренному ранее параллельному соединению элементов (п. 3.2) и соединению «типа n из m» (п. 3.3), где за счет избыточности возможно обеспечение более высокой надежности системы, чем ее элементов.

Выделяют несколько видов резервирования (временное, информационное, функциональное и др.). Для анализа структурной надежности ТС интерес представляет структурное резервирование - введение в структуру объекта дополнительных элементов, выполняющих функции основных элементов в случае их отказа.

Классификация различных способов структурного резервирования осуществляется по следующим признакам:

1) по схеме включения резерва:

- общее резервирование, при котором резервируется объект в целом;

- раздельное резервирование, при котором резервируются отдельные элементы или их группы;

- смешанное резервирование, при котором различные виды резервирования сочетаются в одном объекте;

2) по способу включения резерва:

- постоянное резервирование, без перестройки структуры объекта при возникновении отказа его элемента;

- динамическое резервирование, при котором при отказе элемента происходит перестройка структуры схемы. В свою очередь подразделяется :

а) на резервирование замещением, при котором функции основного элемента передаются резервному только после отказа основного;

б) скользящее резервирование, при котором несколько основных элементов резервируется одним или несколькими резервными, каждый из которых может заменить любой основной (т.е. группы основных и резервных элементов идентичны);

3) по состоянию резерва:

- нагруженное резервирование, при котором резервные элементы (или один из них) находятся в режиме основного элемента;

- облегченное резервирование, при котором резервные элементы (по крайней мере один из них) находятся в менее нагруженном режиме по сравнению с основными;

- ненагруженное резервирование, при котором резервные элементы до начала выполнения ими функций находятся в ненагруженном режиме.

Основной характеристикой структурного резервирования является кратность резервирования - отношение числа резервных элементов к числу резервируемых ими основных элементов, выраженное несокращаемой дробью («типа 2:3; 4:2» и т.д.). Резервирование одного основного элемента одним резервным (т.е. с кратностью 1:1) называется дублированием.

Количественно повышение надежности системы в результате резервирования или применения высоконадежных элементов можно оценить по коэффициенту выигрыша надежности, определяемому как отношение показателя надежности до и после преобразования системы. Например, для системы из n последовательно соединенных элементов после резервирования одного из элементов (k-го) аналогичным по надежности элементом, коэффициент выигрыша надежности по вероятности безотказной работы составит:

(4.1)

Из формулы (4.1) следует, что эффективность резервирования (или другого приема повышения надежности) тем больше, чем меньше надежность резервируемого элемента (при pk=0,9Gp=1,1, при pk=0,5Gp=1,5). Следовательно, при структурном резервировании максимального эффекта можно добиться при резервировании самых ненадежных элементов (или групп элементов).

В общем случае при выборе элемента (или группы элементов) для повышения надежности или резервирования необходимо исходить из условия обеспечения при этом максимального эффекта. Например, для мостиковой схемы (рис. 3.2,а) из формулы (3.21) можно получить выражение для частных производных вероятности безотказной работы системы по вероятности безотказной работы каждого из элементов, которые для резервированных по надежности, элементов принимают следующий вид:

,(4.2)

(4.3)

Очевидно, максимальное увеличение надежности системы обеспечит увеличение надежности или резервирование того элемента, частная производная для которого при данных условиях принимает максимально положительное значение. Сравнение выражений (4.2) и (4.3) показывает, что при любых положительных значениях р и q выражение (4.2) больше выражения (4.3) и, следовательно, в мостиковой схеме с идентичными элементами, эффективность повышения надежности или резервирования «периферийных» элементов 1, 2, 4 и 5 (см. рис. 3.2, а) выше, чем диагонального элемента 3, если в качестве критерия эффективности взять вероятность безотказной работы.

Таким образом, наибольшее влияние на надежность системы оказывают элементы, обладающие высоким значением производной , а при последовательном соединении - наименее надежные.

В более сложных случаях для выбора элементов, подлежащих изменению, используются как аналитические, так и численные методы оптимизации надежности.

4.2 Расчет надежности систем с резервированием

Расчет количественных характеристик надежности систем с резервированием отдельных элементов или групп элементов во многом определяется видом резервирования. Ниже рассматриваются схемы расчетов для самых распространенных случаев простого резервирования, к которым путем преобразований может быть приведена и структура смешенного резервирования. При этом расчетные зависимости получены без учета надежности переключающих устройств, обеспечивающих перераспределение нагрузки между основными и резервными элементами (т.е. для «идеальных» переключателей). В реальных условиях введение переключателей в структурную схему необходимо учитывать и в расчете надежности систем.

Расчет систем с нагруженным резервированием осуществляется по формулам последовательного и параллельного соединения элементов аналогично расчету комбинированных систем (п. 3.5). При этом считается, что резервные элементы работают в режиме основных как до, так и после их отказа, поэтому надежность резервных элементов не зависит от момента их перехода из резервного состояния в основное и равна надежности основных элементов.

Надёжность системы с последовательным соединением n элементов (рис. 2.1) при общем резервировании с кратностью l (рис. 4.1,а) равна:

.(4.4)

В частности, при дублировании (l=1):

.(4.5)

При раздельном резервировании (рис. 4.1,б):

, (4.6)

а при раздельном дублировании (l=1):

.(4.7)

a) б)

Рис. 4.1. Общее (а) и раздельное (б) нагруженное резервирование

Тогда коэффициенты выигрыша надежности по вероятности безотказной работы при дублировании:

(4.8)

откуда следует, что раздельное резервирование эффективнее общего (например, для системы из трех одинаковых элементов при p=0,9 Gоб=1,27, Gраз=1,33).

При ненагруженном резервировании резервные элементы последовательно включаются в работу при отказе основного, затем первого резервного и т.д. (рис. 4.2), поэтому надежность резервных элементов зависит от момента их перехода в основное состояние. Такое резервирование в различных ТС встречается наиболее часто, так как оно по сути аналогично замене отказавших элементов и узлов на запасные.

Рис. 4.2. Ненагруженное резервирование

Рис. 4.3. Скользящее резервирование

Если резервные элементы до их включения абсолютно надежны, то для системы с ненагруженным резервированием кратности l (всего элементов l+1):

(4.9)

т.е. вероятность отказа в (l+1)! раз меньше, чем при нагруженном (параллельном соединении, см. формулу (3.7)).

Для идентичных по надежности основного и резервного элементов:

(4.10)

При экспоненциальном распределении наработки (простейшем потоке отказов, см. 1.7) в случае t << 1 можно воспользоваться приближенной формулой:

(4.11)

При ненагруженном резервировании средняя наработка на отказ:

(4.12)

а для идентичных элементов T0=nT0i.

Облегченное резервирование используется при большой инерционности переходных процессов, происходящих в элементе при его переходе из резервного в основной режим, и нецелесообразности применения нагруженного резервирования из-за недостаточного выигрыша в надежности (в РЭС это характерно для устройств на электровакуумных приборах). Очевидно, облегченный резерв занимает промежуточное положение между нагруженным и ненагруженным.

Точные выражения для расчета надежности систем при облегченном резервировании весьма громоздки и неоднозначны, однако при экспоненциальном распределении наработки справедлива приближенная формула

(4.13)

где л - интенсивность отказов элементов в облегченном режиме, l - кратность резервирования.

Скользящее резервирование используется для резервирования нескольких одинаковых элементов системы одним или несколькими одинаковыми резервными (рис. 4.3, здесь все элементы идентичны, а элемент 4 - избыточный). Очевидно, отказ системы произойдет, если из общего качества идентичных элементов (основных и резервных) число отказавших превышает число резервных. Расчет вероятности безотказной работы систем со скользящим резервированием аналогичен расчету систем «типа m из n», см. п.3.3.


Подобные документы

  • Виды и способы резервирования как метода повышения надежности технических систем. Расчет надежности технических систем по надежности их элементов. Системы с последовательным и параллельным соединением элементов. Способы преобразования сложных структур.

    презентация [239,6 K], добавлен 03.01.2014

  • Назначение и состав блока преобразования кодов, схема управления им. Основные определения теории надежности, понятие безотказности. Расчет количественных характеристик критерия надежности конкретного изделия. Расчеты надежности при проектировании РЭА.

    реферат [28,6 K], добавлен 11.12.2010

  • Специфика проектирования системы автоматического управления газотурбинной электростанции. Проведение расчета ее структурной надежности. Обзор элементов, входящих в блоки САУ. Резервирование как способ повышения характеристик надежности технических систем.

    дипломная работа [949,7 K], добавлен 28.10.2013

  • Виды и основные этапы расчетов надежности элементов и систем. Метод структурной схемы надежности. Расчетные формулы для элементов, соединенных параллельно в структурной схеме надежности, соединенных последовательно в структурной схеме надежности.

    курсовая работа [490,0 K], добавлен 09.11.2013

  • Количественные показатели надежности невосстанавливаемых систем. Расчет надежности невосстанавливаемых систем при проектировании. Определение надежности дискретных систем с восстанавливающими органами. Выражение для вероятности безотказной работы.

    контрольная работа [431,1 K], добавлен 03.05.2015

  • Понятие надежности и его значение для проектирования и эксплуатации технических элементов. Основные понятия теории надежности. Резервы повышения надежности радиоэлектронных элементов и возможности их реализации. Расчет надежности типового устройства.

    курсовая работа [4,4 M], добавлен 25.01.2012

  • Сущность, основные показатели и понятия надежности. Коэффициенты надежности и методика их расчета. Расчёт количественных характеристик надёжности интегральных микросхем, среднего времени восстановления и коэффициента готовности системы автоматики.

    контрольная работа [66,6 K], добавлен 05.04.2011

  • Изучение методики расчета показателей надежности электронного модуля при экспоненциальном законе распределения отказов элементов. Показатели надежности объектов. Прибор для получения "серебряной" воды. Тактовые импульсы с коллектора транзистора.

    контрольная работа [71,6 K], добавлен 23.01.2014

  • Надежность современных автоматизированных систем управления технологическими процессами как важная составляющая их качества. Взаимосвязь надежности и иных свойств. Оценка надежности программ и оперативного персонала. Показатели надежности функций.

    курсовая работа [313,2 K], добавлен 23.07.2015

  • Разработка электрической схемы системы управления пуском и торможением двигателя. Обеспечение надежности электрооборудования на этапе проектирования автоматизированной системы управления. Повышение надежности АСУ и рабочей машины в целом. Реле времени.

    курсовая работа [256,5 K], добавлен 18.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.