Применение пространственно-частотной фильтрации

Определения пространственных, временных и частотных характеристик сигналов. Классификация шумов и помех в зависимости от характера воздействия на сигнал. Математические модели сигналов и основные подходы к их созданию. Системы преобразования сигналов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 13.09.2015
Размер файла 181,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Что изучается в дисциплине.

Пространственно-частотная фильтрация применяется в различных областях науки для селективного приема сигналов от объектов расположенных в пространстве. При этом пространственная селективность достигается применением приемных систем с характеристиками направленности заданной формы, либо с меняющейся формой, которая адаптируется к максимальному соотношению сигнал помеха. Частотная избирательность осуществляется фильтрами различного рода, как аналоговыми, так и цифровыми. Приемы пространственно-частотной фильтрации широко используются для обработки изображений в сейсмоакустике, медицине, неразрушающем контроле, гидроакустике и везде, где нужно выделить на изображении объект на некотором фоне, являющимся когерентным по отношению к объекту.

В последние годы специалистами активно обсуждаются новые возможности, которые предоставляет техника использования сверхширокополосных сигналов (СШПС) в системах связи, гидролокации и технической диагностике [1]. Потенциальные возможности СШПС сигналов превосходят возможности традиционных систем по скорости передачи информации в системах связи, по разрешающей способности в системах локации, по скрытности работы, по устойчивости к внешним помехам и т.д. Такие системы могут быть более устойчивы и к условиям распространения сигнала. За счет увеличения полосы сигнала повышается устойчивость канала связи к воздействию помех различного происхождения, в том числе, и от помех соседних каналов, чем обеспечивается возможность одновременной работы большого числа каналов связи с СШПС в одном частотном диапазоне. Помимо этого, за счет низкой спектральной плотности излучаемого сигнала обеспечивается очень высокий уровень их энергетической скрытности и защиты информации. Применение СШПС в связи, повышение надежности и защищенности таких систем от несанкционированного доступа достигаемое вследствие расширение спектра, получило название технологии spread spectrum (SS). Она основана на использовании сигналов, ширина полосы частот которых значительно превышает значение полосы частот, необходимой для передаваемого сообщения. Использование указанных технологий представляет значительный интерес для специальных систем подвижной связи.

Возможности осуществления пространственной селекции сигналов с использованием направленных антенн, в том числе фазированных антенных решеток и адаптивных антенн, обстоятельно изучены и давно стали достоянием практики. Стали классическими, в частности, такие результаты, как оценки предельных возможностей достижения желаемых эффектов, определяемые фундаментальными, ограничениями апертурной теории антенн. При этом большинство из фундаментальных теоретических положений получено в монохроматическом приближении и в достаточной мере соответствует практике и особенностям традиционных средств подвижной связи, использующих узкополосные сигналы.

Для систем с широкополосными сигналами, использование в составе аппаратуры пункта управления фазированных антенных решеток, в сочетании со специальной многоканальной обработкой широкополосных сигналов, открывает возможности дополнительного улучшения качественных показателей таких систем связи.

Развитию теории и методам реализации многоканальной обработки сигналов, главным образом для гидролокационных приложений, посвящено значительное число исследований. В основу работ указанного направления положен принцип осуществления многоканальной пространственно-временной (или пространственно частотной) фильтрации. Цель обработки, как правило, заключается в максимизации величины отношения «сигнал/(шум + помеха)» при заданных структуре сигнала и помех и фиксированных направлениях их прихода. При этом, в большинстве из работ этого направления вопрос об изменениях указанной величины при изменении сигнально-помеховой обстановки в пространственной области остается вне поля зрения.

В 1974 году в ТРТУ в сотрудничестве с предприятиями и организациями Таганрога начались работы по исследованию пространственных свойств морской реверберации [2]. Были организованы морские экспедиции, при подготовке которых ставилась цель определить степень пространственной корреляции донной реверберации в вертикальной плоскости при наклонном зондировании поверхности дна короткими импульсами (с малым импульсным объемом). При этом также исследовалась пространственная корреляция объемной и поверхностной реверберации.

Для проведения эксперимента на металлической платформе были закреплены две антенны рыбопоискового гидролокатора «Сарган» с возможностью перестановки антенн для изменения базы полученной антенной системы. Испытания были проведены в 1975 году в Черном море на теплоходе «Верный» вблизи г. Геленджик в районе с плоским морским дном. Испытания показали высокую пространственную корреляцию (межканальную в совпадающий момент времени) для донной реверберации, низкую - для объемной реверберации и зависящую от степени морского волнения - для поверхностной реверберации.

Закон изменения разности фаз процессов на выходах антенн во времени определялся профилем морского дна. Такие исследования явились предпосылкой в разработке устройств обнаружения малоразмерных объектов на фоне донной реверберации и устройств измерения профиля и уклона морского дна, которые были запатентованы в дальнейшем. Среди этих устройств наиболее высокой эффективностью обладала адаптивная антенная решетка с послойным автоматическим сканированием приповерхностного слоя дна с подавлением донной реверберацией.

Дальнейшим продолжением является разработка на тех же принципах метода спектрального анализа, обеспечивающего формирование системы базисных функций с нулями в спектре для подавления спектральных составляющих, а также алгоритмов селекции медленно движущихся объектов на фоне отражений от поверхностей раздела сред как для гидролокации, так и для радиолокации. Общность моделей формирования отражений от поверхности и объектов в радио- и гидролокации позволила применить одинаковый подход в разработке алгоритмов обработки сигналов.

В радиолокации такие алгоритмы разработаны и моделировались для движущихся носителей РЛС в режимах картографирования на основе синтеза апертуры антенной решетки и доплеровского заострения луча. Доплеровское приращение частоты, обеспечиваемое движением носителя, для сигналов, отраженных от поверхности раздела сред, позволяет определить направление на объект, находящийся на поверхности. Собственное движение объекта приводит к ошибке в оценке направления, что и является признаком для его селекции на фоне пассивной помехи или реверберации. Отличие от традиционных методов заключается в пространственно-спектральной обработке сигналов одновременно на нескольких выходах антенной решетки, ориентированной соответствующим образом в пространстве.

Предложенная система базисных функций с нулями в спектре позволила обеспечить разработку регулярного метода формирования зондирующих сигналов с малым уровнем внеполосного излучения для доплеровских локаторов. Основой метода является целенаправленная расстановка нулей в спектре для подавления уровня лепестков в заданной зоне доплеровских частот для обнаружения движущихся объектов.

Исследования разработанных алгоритмов и устройств, как в лабораторных, так и в натурных условиях показали высокую их эффективность и правильный выбор направления обработки локационных сигналов.

Кроме обработки локационных сигналов, пространственно-временные алгоритмы применены при совместной обработке сигналов на выходах систем вибродатчиков, установленных на корпусах двигателей и механизмов. В частности, для трехкоординатных датчиков совместная обработка сигналов на выходах позволяет не только оценить уровень вибраций, но и обеспечить целеуказание их источников.

Таким образом в дисциплине пространственно-частотной фильтрации необходимо изучать методы формирования характеристик направленности, адаптивные алгоритмы построения пространственных и частотных фильтров, базисные функции для анализа сигналов. Вначале повторим свойства сигналов различных типов.

Некоторые материалы, приведенные ниже, взяты из источника [18] - prodav.narod.ru - Персональный сайт профессора Давыдова А.В.

1. Определения пространственных, временных и частотных характеристик сигналов

1.1 Общие сведения и понятия [1,10, 15, 25]

Понятие сигнала. В XVIII веке в теорию математики вошло понятие функции, как определенной зависимости какой-либо величины y от другой величины - независимой переменной х, с математической записью такой зависимости в виде у(х). Довольно скоро математика функций стала основой теории всех естественных и технических наук. Особое значение функциональная математика приобрела в технике связи, где временные функции вида s(t), v(f) и т.п., используемые для передачи информации, стали называть сигналами.

В технических отраслях знаний термин «сигнал» (signal, от латинского signum - знак) используется в широком смысловом диапазоне. Под ним понимают и техническое средство для передачи, обращения и использования информации - электрический, магнитный, оптический сигнал; и физический процесс, отображающий информационное сообщение - изменение какого-либо параметра носителя информации (электромагнитных колебаний, светового потока и т.п.) во времени, в пространстве или в зависимости от изменения значений каких-либо других аргументов (независимых переменных); и смысловое содержание определенного физического состояния или процесса, как, например, сигналы светофора, звуковые предупреждающие сигналы и т.п. Все эти понятия объединяет конечное назначение сигналов. Это определенные сведения, сообщения, информация о каких-либо процессах, состояниях или физических величинах объектов материального мира, выраженные в форме, удобной для передачи, обработки, хранения и использования этих сведений.

Термин «сигнал» часто отождествляют с понятиями «данные» (data) и «информация» (information). Действительно, эти понятия взаимосвязаны, но относятся к разным категориям.

Понятие информации имеет много определений, от наиболее широкого (информация есть формализованное отражение реального мира) до практического (сведения, являющиеся объектом хранения, передачи, преобразования, восприятия и управления). Мировая наука все больше склоняется к точке зрения, что информация, наряду с материей и энергией, принадлежит к фундаментальным философским категориям естествознания и относится к одному из свойств объективного мира. Что касается «данных» (от латинского datum - факт), то это совокупность фактов, результатов наблюдений, измерения каких-либо физических свойств объектов, явлений или процессов материального мира, представленных в формализованном виде. Это не информация, а сырье для получения информации путем соответствующей обработки и интерпретации (истолкования).

Термин «signal» в мировой практике является общепринятым для характеристики формы представления данных, при которой данные рассматриваются как результат некоторых измерений объекта исследований в виде последовательности значений скалярных величин (аналоговых, числовых, графических и пр.) в зависимости от изменения каких-либо переменных значений (времени, энергии, температуры, пространственных координат, и пр.). А так как данные содержат информацию, как об основных целевых параметрах объекта исследований, так и о различных сопутствующих и мешающих факторах измерений, то в широком смысле этого слова можно считать, что сигнал является носителем общей измерительной информации. При этом материальная форма носителей сигналов (механическая, электрическая, магнитная, акустическая, оптическая и любая другая), равно как и форма отображения данных в каких-либо физических параметрах или процессах носителей, значения не имеет. Информативным параметром сигнала может являться любой параметр носителя сигнала, функционально и однозначно связанный со значениями информационных данных.

Наиболее распространенное представление сигналов - в электрической форме в виде зависимости напряжения от времени U(t). Так, например, сигнал изменения напряженности магнитного поля по профилю аэросъемки - это и временная последовательность изменения электрического напряжения на выходе датчика аэромагнитометра, и запись этого напряжения на ленте регистратора, и последовательные значения цифровых отсчетов при обработке лент регистратора и вводе сигнала в ЭВМ.

Рис. 1. Сигнал.

С математической точки зрения сигнал представляет собой функцию, т.е. зависимость одной величины от другой, независимой переменной. По содержанию это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды. А целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Под «анализом» сигналов имеется в виду не только их чисто математические преобразования, но и получение на основе этих преобразований выводов о специфических особенностях соответствующих процессов и объектов. Целями анализа сигналов обычно являются:

- Определение или оценка числовых параметров сигналов (энергия, средняя мощность, среднее квадратическое значение и пр.).

- Изучение изменения параметров сигналов во времени.

- Разложение сигналов на элементарные составляющие для сравнения свойств различных сигналов.

- Сравнение степени близости, «похожести», «родственности» различных сигналов, в том числе с определенными количественными оценками.

Математический аппарат анализа сигналов весьма обширен, и широко применяется на практике во всех без исключения областях науки и техники.

С понятием сигнала неразрывно связан термин регистрации сигналов, использование которого также широко и неоднозначно, как и самого термина сигнал. В наиболее общем смысле под этим термином можно понимать операцию выделения сигнала и его преобразования в форму, удобную для дальнейшего использования. Так, при получении информации о физических свойствах каких-либо объектов, под регистрацией сигнала понимают процесс измерения физических свойств объекта и перенос результатов измерения на материальный носитель сигнала или непосредственное энергетическое преобразование каких-либо свойств объекта в информационные параметры материального носителя сигнала (как правило - электрического). Но так же широко термин регистрации сигналов используют и для процессов выделения уже сформированных сигналов, несущих определенную информацию, из суммы других сигналов (радиосвязь, телеметрия и пр.), и для процессов фиксирования сигналов на носителях долговременной памяти, и для многих других процессов, связанных с обработкой сигналов.

Применительно к настоящему курсу под термином регистрации будем понимать регистрацию данных (data logging), которые проходят через конкретную систему или точку системы и определенным образом фиксируются на каком-либо материальном носителе или в памяти системы. Что касается процесса получения информации при помощи технических средств, обеспечивающих преобразование физических величин в сигналы, удобные для обработки и восприятия, то для этого процесса будем применять, в основном, термин детектирования.

Шумы и помехи. При детектировании сигналов, несущих целевую для данного вида измерений информацию, в сумме с основным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различной природы (рис. 2.). Шумы, как правило, имеют случайный (стохастический) характер. К помехам относят стационарные искажения полезных сигналов при влиянии на процессы измерений различных дестабилизирующих факторов (электромагнитные наводки, вибрация, и т.п.). Выделение полезных составляющих из общей суммы зарегистрированных сигналов или максимальное подавление шумов и помех в информационном сигнале при сохранении его полезных составляющих является одной из основных задач первичной обработки результатов наблюдений.

Рис. 2. Сигнал с помехами.

Виды шумов и помех разделяют по источникам их возникновения, по энергетическому спектру, по характеру воздействия на сигнал, по вероятностным характеристикам и другим признакам. Источники шумов и помех бывают внутренние и внешние.

Внутренние, как правило, присущи физической природе источников и детекторов сигналов, а также их материальных носителей. Например, флюктуации интенсивности излучения радионуклидов в силу статистической природы ядерных процессов, тепловые шумы электронных потоков в электрических цепях, и т.п.

Внешние источники шумов и помех бывают искусственного и естественного происхождения. К искусственным источникам относятся индустриальные помехи и помехи от работающей физико-технической аппаратуры. Естественными источниками являются молнии, флюктуации магнитных полей, всплески солнечной энергии, и т.д. Электрические и магнитные поля различных источников помех вследствие наличия индуктивных, емкостных и резистивных связей создают в цепях сигнальных систем паразитные разности потенциалов и токи, накладывающиеся на полезные сигналы.

Помехи подразделяются на флюктуационные, импульсные и периодические.

Флюктуационные помехи представляют собой хаотические и беспорядочные во времени процессы в виде нерегулярных случайных всплесков различной амплитуды. Как правило, флюктуационные помехи распределены по нормальному закону с нулевым средним.

Импульсные помехи проявляются как в виде отдельных импульсов, так и в виде последовательности импульсов, форма и параметры которых имеют случайный характер. Причинами импульсных помех являются резкие броски тока и напряжения в промышленных установках, транспортных средствах, а также природные электрические явления.

Периодические помехи вызываются электромагнитными полями линий электропередач, силовых электроустановок и др. Если основная мощность помех сосредоточена на отдельных участках диапазона частот, например, на частоте напряжения промышленной сети или кратна этой частоте, то такие помехи называют сосредоточенными.

В зависимости от характера воздействия на сигнал помехи разделяют на аддитивные и мультипликативные. Аддитивные (налагающиеся) помехи суммируются с сигналом, не зависят от его значений и формы и не изменяют информативной составляющей самого сигнала. Мультипликативные или деформирующие помехи могут изменять форму информационной части сигнала, иметь зависимость от его значений и от определенных особенностей в сигнале и т.п. При известном характере мультипликативных помех возможна коррекция сигнала на их влияние.

Следует заметить, что деление сигналов на полезные и мешающие (шумовые) является достаточно условным. Источниками мешающих сигналов также могут быть определенные физические процессы, явления или объекты. При выяснении природы мешающих сигналов они могут переводиться в разряд информационных. Так, например, вариации диаметра скважин и каверны является мешающим фактором практически для всех методов каротажа. Вместе с тем этот же фактор, при соответствующем методическом и аппаратурном обеспечении, может дать возможность бесконтактного определения диаметра скважин в качестве дополнительного информационного параметра.

Размерность сигналов. Простейшими сигналами геофизической практики являются одномерные сигналы, как, например, сейсмические импульсы s(t), измерения каких-либо параметров геофизических полей (электрических, магнитных, и пр.) по профилям на поверхности земли s(x) или по стволу скважины s(h), и т.п. Значения одномерных сигналов зависят только от одной независимой переменной, как, например, на рис. 1. и 2.

Рис. 3. Двумерный сигнал.

В общем случае сигналы являются многомерными функциями пространственных, временных и прочих независимых переменных - сейсмическая волна вдоль линии профиля s(x,t), аномалия гравитационного поля на поверхности наблюдений s(x,y), пространственно - энергетическое распределение потока ионизирующих частиц или квантов от источника излучения s(x,y,z,Е) и т.п. Все большее применение находят также многомерные сигналы, образованные некоторым множеством одномерных сигналов, как, например, комплексные каротажные измерения нескольких физических параметров горных пород по стволу скважины одновременно.

Многомерные сигналы могут иметь различное представление по своим аргументам. Так, полный акустический сигнал сейсмического профиля дискретен по пространству (точкам расположения приемников) и непрерывен по времени.

Многомерный сигнал может рассматриваться, как упорядоченная совокупность одномерных сигналов. С учетом этого при анализе и обработке сигналов многие принципы и практические методы обработки одномерных сигналов, математический аппарат которых развит достаточно глубоко, распространяются и на многомерные сигналы. Физическая природа сигналов для математического аппарата их обработки значения не имеет.

Вместе с тем обработка многомерных сигналов имеет свои особенности, и может существенно отличаться от одномерных сигналов в силу большего числа степеней свободы. Так, при дискретизации многомерных сигналов имеет значение не только частотный спектр сигналов, но и форма растра дискретизации. Пример не очень полезной особенности - многомерные полиномы сигнальных функций, в отличие от одномерных, не разлагаются на простые множители. Что касается порядка размерности многомерных сигналов, то ее увеличение выше двух практически не изменяет принципы и методы анализа данных, и сказывается, в основном, только на степени громоздкости формул и чисто техническом усложнении вычислений.

Учитывая эти факторы, при рассмотрении общей теории анализа, преобразований и обработки сигналов ограничимся, в основном, одно- и двумерными сигнальными функциями. В качестве универсальных независимых переменных (аргументов функций) будем использовать, как правило, переменную «t» для одномерных сигналов и переменные «x, t» или «x, y» для двумерных сигналов, безотносительно к их физическому содержанию (пространство, время, энергия и пр.).

Математическое описание сигналов. Сигналы могут быть объектами теоретических исследований и практического анализа только в том случае, если указан способ их математического описания. Математическое описание позволяет абстрагироваться от физической природы сигнала и материальной формы его носителя, проводить классификацию сигналов, выполнять их сравнение, устанавливать степень тождества, моделировать системы обработки сигналов.

Большинство сигналов, встречающихся на практике, представлены во временной области функциями времени. При отображении сигналов на графике одной из координат (независимой) является ось времени, а другой координатой (зависимой) - ось амплитуд. Тем самым мы получаем амплитудно-временное представление сигнала. В общем случае описание сигнала задается функциональной зависимостью определенного информационного параметра сигнала от независимой переменной (аргумента) - s(х), y(t) и т.п. Такая форма описания и графического представления сигналов называется динамической (сигнал в реальной динамике его поведения по аргументам). Функции математического описания сигналов могут быть как вещественными, так и комплексными. Выбор математического аппарата описания определяется простотой и удобством его использования при анализе и обработке сигналов.

Отметим двойственность применения описания сигналов функциями типа s(t) и т.п. С одной стороны s(t) - это величина, равная значению функции в момент времени t. С другой стороны мы обозначаем через s(t) и саму функцию, т.е. то правило, по которому каждому значению t ставится в соответствие определенная величина s. В большинстве аналитических выражений это не вызывает недоразумений и при однозначном соответствии значений сигналов их аналитическим выражениям принимается по умолчанию.

Сделаем также одно замечание по терминологии описания сигналов. В теоретических работах по анализу сигналов конкретные значения величины сигнала (отсчеты значений по аргументу) часто именуют координатами сигнала. В отраслях знаний, связанных с геологией и горным делом, и в геофизической практике в том числе, этот термин используется по своему прямому смысловому назначению - пространственных координат результатов измерений, и является неизменным атрибутом всех геолого-геофизических данных. С учетом последнего фактора условимся применять термин «координата» по своему традиционному смысловому назначению в качестве обобщающего термина для независимых переменных сигнальных функций. При этом под понятием координат значений сигнала будем понимать не только какие-либо пространственные координаты, как это непосредственно имеет место для результатов измерений при геолого-геофизических съемках, но и любые другие аргументы, на числовой оси которых отложены значения или отсчеты сигнала и рассматривается динамика его изменения (пример на рис. 1.).

Спектральное представление сигналов. Кроме динамического представления сигналов и функций в виде зависимости их значений от определенных аргументов при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал, не имеющий разрывов второго рода (бесконечных значений на интервале своего задания), можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, что выполняется при помощи преобразования Фурье. Соответственно, математически разложение сигнала на гармонические составляющие описывается функциями значений амплитуд и начальных фаз колебаний по непрерывному или дискретному аргументу - частоте изменения функций на определенных интервалах аргументов их динамического представления. Совокупность амплитуд гармонических колебаний разложения называют амплитудным спектром сигнала, а совокупность начальных фаз - фазовым спектром. Оба спектра вместе образуют полный частотный спектр сигнала, который по точности математического представления тождественен динамической форме описания сигнала.

Линейные системы преобразования сигналов описываются дифференциальными уравнениями, причем для них верен принцип суперпозиции, согласно которому реакция систем на сложный сигнал, состоящий из суммы простых сигналов, равна сумме реакций от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на гармоническое колебание с определенной частотой определить реакцию системы на любой сложный сигнал, разложив его в ряд гармоник частотного спектра сигнала. Широкое использование гармонических функций при анализе сигналов объясняется тем, что они являются достаточно простыми ортогональными функциями и определены при всех значениях непрерывных переменных. Кроме того, они являются собственными функциями времени, сохраняющими свою форму при прохождении колебаний через любые линейные системы и системы обработки данных с постоянными параметрами (изменяются только амплитуда и фаза колебаний). Немаловажное значение имеет и то обстоятельство, что для гармонических функций и их комплексного анализа разработан мощный математический аппарат.

Примеры частотного представления сигналов приводятся ниже (рис. 5 - 12).

Кроме гармонического ряда Фурье применяются и другие виды разложения сигналов: по функциям Уолша, Бесселя, Хаара, полиномам Чебышева, и др. Главное условие однозначности и математической идентичности отображения сигналов - ортогональность функций разложения. При качественном анализе сигналов могут применяться и неортогональные функции, выявляющие какие-либо характерные особенности сигналов, полезные для интерпретации физических данных.

Математические модели сигналов. Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов, на основе которых создаются математические модели сигналов. Математические модели сигналов дают возможность обобщенно, абстрагируясь от физической природы, судить о свойствах сигналов, предсказывать изменения сигналов в изменяющихся условиях, заменять физическое моделирование процессов математическим. С помощью математических моделей имеется возможность описывать свойства сигналов, которые являются главными в изучаемых процессах, и игнорировать большое число второстепенных признаков. Знание математических моделей сигналов дает возможность классифицировать их по различным признакам, характерным для того или иного типа моделей. Так, сигналы разделяются на неслучайные и случайные в зависимости от возможности точного предсказания их значений в любые моменты времени. Сигнал является неслучайным и называется детерминированным, если математическая модель позволяет осуществлять такое предсказание. Детерминированный сигнал задается, как правило, математической функцией или вычислительным алгоритмом, а математическая модель сигнала может быть представлена в виде

s = F(t, z, w,…; A, B, C,…),

где s - информативный параметр сигнала; t, z, w, … - независимые аргументы (время, пространственная координата, частота и др.); A, B, C… - параметры сигналов.

Модель должна быть, по возможности, проще, минимизирована по количеству независимых аргументов и адекватна изучаемому процессу. Рассмотрим этот вопрос на примере геофизических данных.

Под геофизическим полем понимают собственное или индуцированное определенным внешним воздействием распределение какой-либо физической величины, создаваемое геологическим объектом или геологической структурой в пространстве, во времени или по любому другому аргументу (независимой переменной). В простейшем случае геофизический сигнал - это изменение какой-либо составляющей геофизического поля, т.е. сечение поля по одному из аргументов. В пределе геофизическое поле в целом может рассматриваться как первичный многомерный сигнал в прямом физическом отображении, с которого путем измерений могут сниматься формализованные копии определенных составляющих (сечений) сигнала на материальные носители информации.

Геофизическим полям в определенных условиях их регистрации соответствуют определенные математические модели сигналов, т.е. их описание на каком-либо формальном языке. Математическое описание не может быть всеобъемлющим и идеально точным и, по существу, всегда отображает не реальные объекты, а их упрощенные (гомоморфные) модели. Модели могут задаваться таблицами, графиками, функциональными зависимостями, уравнениями состояний и переходов из одного состояния в другое и т.п. Формализованное описание может считаться математической моделью оригинала, если оно позволяет с определенной точностью прогнозировать состояние и поведение изучаемых объектов путем формальных процедур над их описанием.

Неотъемлемой частью любой математической модели сигнала является область определения сигнала, которая устанавливается интервалом задания независимой переменной. Примеры задания интервала для переменных:

a ? x ? b, x [a, b].

a < y ? b, y (a, b].

a < z < b, z (a, b).

Пространство значений независимой переменной обычно обозначается через индекс R. Так, например,

R:=(- , +), x R.

Кроме задания области определения сигнала могут быть также заданы виды численных значений переменных (целые, рациональные, вещественные, комплексные).

Математические модели полей и сигналов на первом этапе обработки и анализа результатов наблюдений должны позволять в какой-то мере игнорировать их физическую природу и возвращать ее в модель только на заключительном этапе интерпретации данных.

Виды моделей сигналов. При анализе физических данных используются два основных подхода к созданию математических моделей сигналов.

Первый подход оперирует с детерминированными сигналами, значения которых в любой момент времени или в произвольной точке пространства (а равно и в зависимости от любых других аргументов) являются априорно известными или могут быть определены (вычислены) с определенной степенью точности. Такой подход удобен в прямых задачах геофизики (расчеты полей для заданных моделей сред), в задачах активных воздействий на среду при заранее известных параметрах и форме сигнала воздействия (вибрационная сейсморазведка, электромагнитные методы каротажа и пр.), а также при использовании хорошо известных геолого-геофизических данных.

Второй подход предполагает случайный характер сигналов, закон изменения которых во времени (или в пространстве) носит случайный характер, и которые принимают конкретные значения с некоторой вероятностью. Модель такого сигнала представляет собой описание статистических характеристик случайного процесса путем задания закона распределения вероятностей, корреляционной функции, спектральной плотности энергии и др.

Случайность может быть обусловлена как собственной физической природой сигналов, что характерно, например, для методов ядерной геофизики, так и вероятностным характером регистрируемых сигналов как по времени или месту их появления, так и по содержанию. С этих позиций случайный сигнал может рассматриваться как отображение случайного по своей природе процесса или физических свойств объекта, которые определяются случайными параметрами или сложным строением геологической среды, результаты измерений в которой трудно предсказуемы.

Между этими двумя видами сигналов нет резкой границы. Строго говоря, детерминированных процессов и отвечающих им детерминированных сигналов в природе не существует. Даже сигналы, хорошо известные на входе в среду (при внешнем воздействии на нее), по месту их регистрации всегда осложнены случайными помехами, влиянием дестабилизирующих факторов и априорно неизвестными параметрами и строением самой среды. С другой стороны, модель случайного поля часто аппроксимируется методом суперпозиции сигналов известной формы. Детерминированные модели могут использоваться и для изучения случайных процессов, если уровень полезного сигнала в этом процессе значительно выше уровня статистических флюктуаций.

На выбор математической модели поля в немалой степени влияет также сложность математического аппарата обработки сигналов и сложившиеся традиции геологической интерпретации результатов наблюдений. Не исключается и изменение модели, как правило, с переводом из вероятностной в детерминированную, в процессе накопления информации об изучаемом объекте.

Классификация сигналов осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные. Классификация сигналов внутри групп приведена на рис. 4.

Рис. 4. Классификация сигналов.

С математических позиций группы сигналов обычно называют множествами, в которые объединяют сигналы по какому-либо общему свойству. Принадлежность сигнала s к множеству LР записывается в виде LP = {s; P}, где Р - определенное свойство данного множества сигналов.

Классификация детерминированных сигналов. Обычно выделяют два класса детерминированных сигналов: периодические и непериодические.

К множеству периодических относят гармонические и полигармонические сигналы. Для периодических сигналов выполняется общее условие s(t) = s(t + kT), где k = 1, 2, 3, ... - любое целое число (из множества целых чисел I от -? до ?), Т - период, являющийся конечным отрезком независимой переменной. Множество периодических сигналов:

LP = {s(t); s(t+kT) = s(t), -? < t < ?, kI}.

Гармонические сигналы (синусоидальные), описываются следующими формулами:

s(t) = Asin (2pfоt+) = Asin (wоt+), s(t) = Acos(wоt+j), (1.1.1)

где А, fo, wo,--j,-- - постоянные величины, которые могут исполнять роль информационных параметров сигнала: А - амплитуда сигнала, fо - циклическая частота в герцах, wо--=--2pfо - угловая частота в радианах, j и - начальные фазовые углы в радианах. Период одного колебания T = 1/fо = 2p/wo. При = -/2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и начальным фазовым значением частоты fо (при t = 0).

Рис. 5. Гармонический сигнал и спектр его амплитуд.

Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов и описываются суммой гармонических колебаний:

s(t) =An sin (2pfnt+jn) ? An sin (2pBnfpt+jn), Bn ? I, (1.1.2)

или непосредственно функцией

пространственный сигнал помеха шум

s(t) = y(t kTp), k = 1,2,3,...,

где Тр - период одного полного колебания сигнала y(t), заданного на одном периоде. Значение fp =1/Tp называют фундаментальной частотой колебаний.

Рис.6. Модель сигнала.

Рис. 1.1.7. Спектр сигнала.

Полигармонические сигналы представляют собой сумму определенной постоянной составляющей (fо=0) и произвольного (в пределе - бесконечного) числа гармонических составляющих с произвольными значениями амплитуд An и фаз n, с частотами, кратными фундаментальной частоте fp. Другими словами, на периоде фундаментальной частоты fp, которая равна или кратно меньше минимальной частоты гармоник, укладывается кратное число периодов всех гармоник, что и создает периодичность повторения сигнала. Частотный спектр полигармонических сигналов дискретен, в связи с чем второе распространенное математическое представление сигналов - в виде спектров (рядов Фурье).

На рис. 6. приведен отрезок периодической сигнальной функции, которая получена суммированием постоянной составляющей и трех гармонических колебаний с разными значениями частоты и начальной фазы колебаний. Математическое описание сигнала задается формулой:

s(t) =Akcos(2pfkt+jk),

где: Ak = {5, 3, 4, 7} - амплитуда гармоник; fk = {0, 40, 80, 120} - частота в герцах; jk = {0, -0.4, -0.6, -0.8} - начальный фазовый угол колебаний в радианах; k = 0, 1, 2, 3. Фундаментальная частота сигнала 40 Гц.

Частотное представление данного сигнала (спектр сигнала) приведено на рис. 7. Обратим внимание, что частотное представление периодического сигнала s(t), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с временным представлением.

Периодический сигнал любой произвольной формы может быть представлен в виде суммы гармонических колебаний с частотами, кратными фундаментальной частоте колебаний

fр--= 1/Тр.

Для этого достаточно разложить один период сигнала в ряд Фурье по тригонометрическим функциям синуса и косинуса с шагом по частоте, равным фундаментальной частоте колебаний Df = fp:

s(t) =(ak cos 2pkDft + bk sin 2pkDft), (1.1.3)

ao = (1/T)s(t) dt, ak = (2/T)s(t) cos 2pkDft dt, (1.1.4)

bk = (2/T)s(t) sin 2pkDft dt. (1.1.5)

Количество членов ряда Фурье K = kmax обычно ограничивается максимальными частотами fmax гармонических составляющих в сигналах так, чтобы fmax < K·fp. Однако для сигналов с разрывами и скачками имеет место fmax , при этом количество членов ряда ограничивается по допустимой погрешности аппроксимации функции s(t).

Одночастотные косинусные и синусные гармоники можно объединить и представить разложение в более компактной форме:

s(t) = Sk cos (2pkDft-jk), (1.1.3')

Sk =, jk = argtg (bk/ak). (1.1.6)

Рис. 8. Прямоугольный периодический сигнал (меандр).

Пример представления прямоугольного периодического сигнала (меандра) в виде амплитудного ряда Фурье в частотной области приведен на рис. 8. Сигнал четный относительно t=0, не имеет синусных гармоник, все значения jk для данной модели сигнала равны нулю.

Информационными параметрами полигармонического сигнала могут быть как определенные особенности формы сигнала (размах от минимума до максимума, экстремальное отклонение от среднего значения, и т.п.), так и параметры определенных гармоник в этом сигнале. Так, например, для прямоугольных импульсов информационными параметрами могут быть период повторения импульсов, длительность импульсов, скважность импульсов (отношение периода к длительности). При анализе сложных периодических сигналов информационными параметрами могут также быть:

- Текущее среднее значение за определенное время, например, за время периода:

(1/Т)s(t) dt.

- Постоянная составляющая одного периода:

(1/Т)s(t) dt.

- Среднее выпрямленное значение:

(1/Т)|s(t)| dt.

- Среднее квадратичное значение:

.

К непериодическим сигналам относят почти периодические и апериодические сигналы. Основным инструментом их анализа также является частотное представление.

Почти периодические сигналы близки по своей форме к полигармоническим. Они также представляют собой сумму двух и более гармонических сигналов (в пределе - до бесконечности), но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик.

Рис. 9. Почти периодический сигнал и спектр его амплитуд.

Так, например, сумма двух гармоник с частотами 2f??и 3.5f? дает периодический сигнал (2/3.5 - рациональное число) с фундаментальной частотой 0.5f?, на одном периоде которой будут укладываться 4 периода первой гармоники и 7 периодов второй. Но если значение частоты второй гармоники заменить значением f?, то сигнал перейдет в разряд непериодических, поскольку отношение 2/ не относится к числу рациональных чисел. Как правило, почти периодические сигналы порождаются физическими процессами, не связанными между собой. Математическое отображение сигналов тождественно полигармоническим сигналам (сумма гармоник), а частотный спектр также дискретен.

Рис. 1.1.10. Апериодический сигнал и модуль спектра.

Апериодические сигналы составляют основную группу непериодических сигналов и задаются произвольными функциями времени. На рис. 1.1.10 показан пример апериодического сигнала, заданного формулой на интервале (0, ):

s(t) = exp(-at) - exp(-bt),

где a и b - константы, в данном случае a = 0.15, b = 0.17.

Рис.11. Импульсный сигнал и модуль спектра.

К апериодическим сигналам относятся также импульсные сигналы, которые в радиотехнике и в отраслях, широко ее использующих, часто рассматривают в виде отдельного класса сигналов. Импульсы представляют собой сигналы определенной и достаточно простой формы, существующие в пределах конечных временных интервалов. Сигнал, приведенный на рис. 1.1.11, относится к числу импульсных.

Частотный спектр апериодических сигналов непрерывен и может содержать любые гармоники в частотном интервале [0, ]. Для его вычисления используется интегральное преобразование Фурье, которое можно получить переходом в формулах (1.1.3) от суммирования к интегрированию при Df 0 и kDf f.

s(t) =(a(f) cos 2pft + b(f) sin 2pft) df =S(f) cos(2pft-j(f)) df. (1.1.7)

a(f) = s(t) cos 2pft dt, b(f) = s(t) sin 2pft dt, (1.1.8)

S(f) =,--j(f) = argtg (b(f)/a(f)). (1.1.9)

Частотные функции a(f), b(f) и S(f) представляют собой не амплитудные значения соответствующих гармоник на определенных частотах, а распределения спектральной плотности амплитуд этих гармоник по частотной шкале. Формулы (1.1.8-1.1.9) обычно называют формулами прямого преобразования Фурье, формулы (1.1.7) - обратного преобразования.

Если нас не интересует поведение сигнала за пределами области его задания [0, Т], то эта область может восприниматься, как один период периодического сигнала, т.е. значение Т принимается за фундаментальную частоту периодический колебаний, при этом для частотной модели сигнала может применяться разложение в ряды Фурье по области его задания (1.1.3-1.1.6).

Рис.12. Радиоимпульс и модуль его спектра.

В классе импульсных сигналов выделяют подкласс радиоимпульсов. Пример радиоимпульса приведен на рис. 1.1.12.

Уравнение радиоимпульса

s(t) = u(t) cos(2pfot+jo).

где cos(2pfot+jo) - гармоническое колебание заполнения радиоимпульса, u(t) - огибающая радиоимпульса. Положение главного пика спектра радиоимпульса на частотной шкале соответствует частоте заполнения fo, а его ширина определяется длительностью радиоимпульса. Чем больше длительность радиоимпульса, тем меньше ширина главного частотного пика.

С энергетических позиций сигналы разделяют на два типа: с ограниченной (конечной) энергией и с бесконечной энергией.

Для множества сигналов с ограниченной энергией должно выполняться условие:

L2 = {s; |s(t)|2 dt < ?}.

О сигналах s(t) данного множества принято говорить, что они интегрируемы с квадратом. Очевидно, что этому множеству могут соответствовать только сигналы, стремящиеся к нулю на бесконечности:

s(t) > 0.

Как правило, к этому типу сигналов относятся апериодические и импульсные сигналы, не имеющие разрывов 2-го рода при ограниченном количестве разрывов 1-го рода. Любые периодические, полигармонические и почти периодические сигналы, а также сигналы с разрывами и особыми точками 2-го рода, уходящими в бесконечность, относятся к сигналам с бесконечной энергией. Для их анализа применяются специальные методы.

Для бесконечных по энергии сигналов, в том числе для периодических, ограничение по энергии может задаваться для определенного интервала (периода) T = t1-t2:

L2(T) = {s;|s(t)|2 dt < ?}.

Иногда в отдельный класс выделяют сигналы конечной длительности, отличные от нуля только на ограниченном интервале аргументов (независимых переменных). Такие сигналы называют финитными.

С позиций временной динамики сигналы подразделяются на стационарные и нестационарные. Стационарными называются сигналы, частотный спектр которых не изменяется во времени и не зависит от интервала задания сигналов. К ним относятся периодические и почти периодические сигналы. Большинство практических сигналов являются нестационарными на достаточно больших интервалах задания, но могут содержать в своем составе стационарные частотные составляющие. Так, модулированные сигналы радио и телевидения относятся к числу нестационарных, но имеют стационарные несущие частоты.

Классификация случайных сигналов. Случайным сигналом называют функцию времени, значения которой заранее неизвестны, и могут быть предсказаны лишь с некоторой вероятностью. Случайный сигнал отображает случайное физическое явление или физический процесс, причем, зарегистрированный в единичном наблюдении, сигнал не воспроизводится при повторных наблюдениях. При регистрации случайного сигнала реализуется только один из возможных вариантов (исходов) случайного процесса, а достаточно полное и точное описание процесса в целом можно произвести только после многократного повторения наблюдений и вычисления определенных статистических характеристик ансамбля реализаций сигнала. В качестве основных статистических характеристик случайных сигналов принимают:

а) закон распределения вероятности нахождения величины сигнала в определенном интервале значений;

б) спектральное распределение мощности сигнала.

Случайные сигналы подразделяют на стационарные и нестационарные. Стационарные сигналы сохраняют свои статистические характеристики в последовательных реализациях случайного процесса. Что касается случайных нестационарных сигналов, то их общепринятой классификации не существует. Как правило, из них выделяют различные группы сигналов по особенностям их нестационарности.

1.2 Типы сигналов [1,10,15]

Выделяют следующие типы сигналов, которым соответствуют определенные формы их математического описания.

Рис. 1. Аналоговый сигнал.

Аналоговый сигнал (analog signal) является непрерывной или кусочно-непрерывной функцией y=x(t) непрерывного аргумента, т.е. как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала y1 --y y2, t1 --t t2. Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от - до +. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности.

Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен («аналогичен») порождающему его процессу. Пример графического отображения сигнала приведен на рис. 1. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

Рис. 2. Дискретный сигнал.

Дискретный сигнал (discrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nDt), где y1 --y y2, Dt - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/Dt, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nDt.

Пример дискретизации аналогового сигнала (рис. 1.2.1) представлен на рис. 1.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y(n). В технической литературе в обозначениях дискретизированных функций иногда оставляют прежние индексы аргументов аналоговых функций, заключая их в квадратные скобки - y[t]. При неравномерной дискретизации сигнала обозначения дискретных последовательностей обычно заключаются в фигурные скобки - {s(ti)}, а значения отсчетов приводятся в виде таблиц с указанием значений координат ti. Для числовых последовательностей (равномерных и неравномерных) применяется и следующее числовое описание:


Подобные документы

  • Математические модели сообщений, сигналов и помех. Основные методы формирования и преобразования сигналов в радиотехнических системах. Частотные и временные характеристики типовых линейных звеньев. Основные законы преобразования спектра сигнала.

    курсовая работа [1,8 M], добавлен 09.01.2013

  • Изучение основ построения математических моделей сигналов с использованием программного пакета MathCad. Исследование моделей гармонических, периодических и импульсных радиотехнических сигналов, а также сигналов с амплитудной и частотной модуляцией.

    отчет по практике [727,6 K], добавлен 19.12.2015

  • Классификация цифровых приборов. Модели цифровых сигналов. Методы амплитудной, фазовой и частотной модуляции. Методика измерения характеристики преобразования АЦП. Синтез структурной, функциональной и принципиальной схемы генератора тестовых сигналов.

    дипломная работа [2,2 M], добавлен 19.01.2013

  • Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.

    реферат [118,9 K], добавлен 24.04.2011

  • Основные методы анализа преобразования и передачи сигналов линейными цепями. Физические процессы в линейных цепях в переходном и установившемся режимах. Нахождение реакции цепи операционным методом, методами интеграла Дюамеля и частотных характеристик.

    курсовая работа [724,2 K], добавлен 04.03.2012

  • Понятие, сущность, размерность, виды, классификация, особенности преобразования и спектральное представление сигналов, их математическое описание и модели. Общая характеристика и графическое изображение аналогового, дискретного и цифрового сигналов.

    реферат [605,8 K], добавлен 29.04.2010

  • Радиотехнические системы передачи информации: методы передачи, регистрации и хранения двоичных сигналов. Неидентичность характеристик канала, действия помех, виды искажения сигналов. Общие принципы и закономерности построения РТС, техническая реализация.

    реферат [92,1 K], добавлен 01.11.2011

  • Параметры модулированных и немодулированных сигналов и каналов связи; расчет спектральных, энергетических и информационных характеристик, интервала дискретизации и разрядности кода. Принципы преобразования сигналов в цифровую форму, требования к АЦП.

    курсовая работа [611,1 K], добавлен 04.12.2011

  • Искажения фазомодулированных (манипулированных) сигналов. Особенности передачи ЧМ сигналов, влияние неравномерностей частотных характеристик канала на форму передачи. Аддитивные, мультипликативные и флуктуационные помехи, причины их возникновения.

    реферат [98,6 K], добавлен 01.11.2011

  • Процесс приема сигналов на вход приемного устройства. Модели сигналов и помех. Вероятностные характеристики случайных процессов. Энергетические характеристики случайных процессов. Временные характеристики и особенности нестационарных случайных процессов.

    дипломная работа [3,3 M], добавлен 30.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.