Применение метода фазовых траекторий для синтеза оптимальных по быстродействию систем
Суть методики синтеза оптимальных по быстродействию замкнутых систем, основанной на методе фазовых траекторий. Анализ закона лучшего управления в соответствии с принципом максимума. Синтез способов сечения пространства параметров и разделения движений.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | доклад |
Язык | русский |
Дата добавления | 22.07.2015 |
Размер файла | 15,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ПРИМЕНЕНИЕ МЕТОДА ФАЗОВЫХ ТРАЕКТОРИЙ ДЛЯ СИНТЕЗА ОПТИМАЛЬНЫХ ПО БЫСТРОДЕЙСТВИЮ СИСТЕМ
В задачах синтеза оптимальных по быстродействию систем, решаемых с помощью принципа максимума, дополнительно используют метод фазовых траекторий1'. При этом решение задачи сводится к определению уравнений линий или гиперповерхностей переключения, разделяющих фазовое пространство на области с различными траекториями движения изображающей точки. Так как фазовую плоскость или трехмерное фазовое пространство можно представить наглядно, то в простейших случаях для объектов, описываемых линейными дифференциальными уравнениями второго или третьего порядков, решение задачи синтеза оптимальных систем сводится к определению линий переключения на фазовой плоскости или поверхности переключения в трехмерном пространстве [2, 17].
Методика синтеза оптимальных по быстродействию замкнутых систем, основанная на применении метода фазовых траекторий, наиболее разработана для систем автоматической стабилизации выходной координаты объекта у(t)=x1(t)=const, когда xвх(t)=Хвх 1(t). При этом закон оптимального управления в соответствии с принципом максимума формируется в виде нелинейной зависимости координаты управления от координат вектора состояния [17, 18]:
.
Сигнал управления меняет знак, если функция S(X), проходя нулевое значение, меняет знак, поэтому поверхность, определяемую равенством
S (X) = 0,
называют поверхностью переключения, а функцию S(X) - функцией переключения. Знак сигнала управления на первом интервале определяется начальным X(t0) и заданным X(Т) значениями вектора состояния:
.
Аналитическое выражение функции переключения S(X) и релейный закон управления (3.138) определяют структуру оптимального по быстродействию регулятора.
В общем случае для автоматических систем программного управления и следящих систем задающее воздействие может иметь форму любого типового сигнала (линейного, квадратичного, гармонического и др.), т. е. хвх(t)const. При этом структура регулятора, определяемая уравнением (3.138), не всегда будет обеспечивать оптимальное по быстродействию управление. Поэтому для систем программного управления и следящих систем, когда хвх(t)=var, закон оптимального управления необходимо формировать в виде нелинейной зависимости координаты управления от ошибки Е(t), определяемой отклонением вектора состояния X(t) от вектора задающего воздействия Хвх(t):
,
где вектор ошибки Е = Хвх - X. Функция переключения S(Е) в данном случае учитывает вектор задающего воздействия, поэтому поверхность переключения. фазовый траектория сечение пространство
S(Е) = 0
следует рассматривать в фазовом пространстве вектора ошибки
,
где .
Если корни характеристического уравнения объекта вещественные, то определение поверхностей переключения S(X) или S(Е) основано на справедливости теоремы «об n интервалах». При этом решение задачи выполним методом фазового пространства. При уравнениях высокого порядка целесообразно использовать каноническую форму
.
Исключая из уравнений (3.143) время, получим систему уравнений, описывающих фазовые траектории в n-мерном фазовом пространстве. Для этого разделим все первые (n-1) уравнений на последнее и получим дифференциальные уравнения фазовых траекторий
.
Проинтегрировав эти уравнения, найдем соответствующие зависимости между переменными состояния, характеризующими поверхность переключения [2, 11, 17], которая имеет (n-1)-ю размерность.
При определении аналитических выражений S(X) или S(Е) можно использовать известные методы построения фазовых траекторий и их аппроксимации [11, 12, 17]. Эта задача успешно решена для объектов второго и третьего порядков [2, 11, 12]. Для объектов более высокого порядка трудно получить практически реализуемые функции гиперповерхностей переключения, поэтому разработаны методы приближенного решения таких задач:
алгоритмический метод [2, 11] - основан на представлении решения уравнений состояния как линейного, так и нелинейного объекта, в виде степенных рядов для каждого интервала релейного управления и использует «попятное движение» от конечного состояния к начальному;
метод сечения пространства параметров - основан на выделении в системе канонических уравнений состояния нелинейного объекта независимой подсистемы уравнений первого или второго порядка и применении метода фазовой плоскости;
метод разделения движений - основан на расщеплении системы уравнений состояния как линейного, так и нелинейного объекта на подсистемы уравнений, характеризующих «быстрые» и «медленные» движения, и решении задачи сначала по уравнениям координат быстрых движений, а затем - медленных движений; при этом могут быть использованы как алгоритмический метод, так и методы построения фазовых траекторий, если уравнения расщепленных подсистем не превышают третий порядок.
При решении задачи синтеза оптимальных управлений методом фазовых траекторий могут быть учтены ограничения координат состояния и управления, а также контролируемые возмущения.
Размещено на Allbest.ru
Подобные документы
Исследование динамики элементов систем автоматического управления. Анализ устойчивости и режима автоколебаний нелинейной САУ температуры в сушильной камере с использованием методов фазовых траекторий, гармонической реализации, алгебраическим и частотным.
курсовая работа [1,3 M], добавлен 06.12.2012Условия разрешимости синтеза на примере линейных и нелинейных систем. Методы синтеза линейных систем. Метод разделения движений и область их применения. Особенности синтеза систем с вектором скорости в управлении. Свойства систем со скользящими режимами.
шпаргалка [1,7 M], добавлен 25.05.2012Представление САУ в пространстве состояний. Общая методика и решение задач оптимального быстродействия. Вид управляющего воздействия, его влияние на изменение координат. Программная реализация расчет закона управления, оптимального по быстродействию.
курсовая работа [245,2 K], добавлен 09.06.2011Решение задач оптимального быстродействия. Задача оптимизации энергозатрат. Программная реализация расчета и моделирование закона управления, оптимального по быстродействию. Структурная схема, реализующая оптимальный по быстродействию закон управления.
курсовая работа [286,9 K], добавлен 06.06.2011Составление структурной схемы для заданной системы, используя метод степенных рядов. Нахождение и сравнение управления оптимального по точности, по расходу сигнала и по быстродействию. Моделирование полученных результатов в математическом пакете MathCAD.
курсовая работа [1,2 M], добавлен 08.07.2014Минимизация булевых функций. Исследование алгоритмов синтеза цифровых устройств систем автоматического управления. Разработка программного обеспечения для реализации оптимального метода синтеза. Проект цифрового устройства статистического мажорирования.
отчет по практике [3,9 M], добавлен 28.04.2015Проектирование модели электродвигателя с рассчитанными параметрами в среде Simulink. Моделирование работы двигателя с различными нагрузками (возмущающим моментом). Расчет параметров и оптимальных регуляторов и показателей качества по ряду характеристик.
курсовая работа [2,2 M], добавлен 24.06.2012Метод расширенных частотных характеристик. Обзор требований к показателям качества. Компьютерные методы синтеза систем автоматического регулирования в среде Matlab. Построение линии равного затухания системы. Определение оптимальных настроек регулятора.
лабораторная работа [690,0 K], добавлен 30.10.2016Решение задачи синтеза корректирующего устройства при коррекции систем управления. Передаточная функция интегрирующей цепи. Методы синтеза последовательных корректирующих устройств и их классификация. Их логарифмические частотные характеристики.
контрольная работа [66,9 K], добавлен 13.08.2009Структурный синтез системы оптимального управления электроприводом постоянного тока. Система релейного управления с алгоритмами в различных фазовых пространствах. Требования, предъявляемые к силовому преобразователю, математическое описание объекта.
курсовая работа [6,6 M], добавлен 20.10.2011