История развития кабельных и оптико-волоконных систем передачи
История развития кабельных систем передачи информации. Особенности освоения новых частот, изменение пропускной способности канала связи. Разработка первой практической телефонной цепи. История возникновения волоконно-оптических систем передачи информации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 26.05.2015 |
Размер файла | 20,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство транспорта Российской Федерации
Федеральное агентство железнодорожного транспорта
Омский государственный университет путей сообщения
Тайгинский институт железнодорожного транспорта - филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования
«Омский государственный университет путей сообщения»
Тематический реферат
По дисциплине: «История развития систем и сетей телекоммуникаций железнодорожного транспорта»
На тему: «История развития кабельных и оптико-волоконных систем передачи»
Тайга 2015
Содержание
Введение
1. История развития кабельных систем передачи информации
2. История волоконно-оптических систем передачи информации
Заключение
Библиографический список
Введение
Последние десятилетия кабельная индустрия играла немаловажную роль в развитии информационных технологий. Постоянная необходимость людей в расширении пропускания кабельных сетей, которая стимулировалась появлением все более ресурсоёмких программ, а так же развитием Интернет, которое включает электронную почту, ставшую самым распространённым средством связи, сделала эволюцию кабельных сетей важным условием продолжения прогресса в этой индустрии.
Технологи и разработчики кабельных изделий улучшали характеристики медных кабельных сетей, пытаясь обеспечить их соответствие требованиям технологий.
Мы стали свидетелями растущей потребности в передаче огромных объемов информации на большие расстояния. Интенсивно использовавшиеся для передачи информации в течение последних 20 лет технологии, такие, как коаксиальные кабели, спутниковая и микроволновая связь, очень быстро исчерпали свои возможности. Потребности в объёмах передачи далеко превосходили возможности существующих систем.
В промышленных системах с повышенным уровнем помех, где быстро росла нужда в передаче данных и создании сетей систем контроля, ощущалась растущая потребность в новой среде передачи. Решение проблем ограниченной пропускной способности передачи и повышенного уровня помех в условиях производства было успешно найдено с появлением оптоволоконных систем связи.
Целью данного реферата является рассмотрение темы истории развития кабельных и оптико-волоконных систем передачи, значимость данных изобретений и дальнейшие перспективы.
1. История развития кабельных систем передачи информации
Вся история развития кабельных систем связи связана с проблемой увеличения объема информации передаваемой по проводному каналу связи.
В свою очередь объем передаваемой информации определяется полосой пропускания. Установлено, что достижимая скорость передачи информации тем выше, чем выше частота колебаний электрического тока или радиоволны. Для того, чтобы передать в закодированном виде любую букву алфавита, необходимо использовать 7-8 битов. Таким образом, если для передачи текста применять проводную связь с частотой 20 кГц, то стандартную книгу в 400-500 страниц можно будет передать примерно за 1,5-2 часа. При передаче по линии с частотой 32 МГц та же процедура потребует лишь 2-3 секунды.
Рассмотрим как с развитием проводной связи, т.е. с освоением новых частот изменялась пропускная способность канала связи.
Как отмечалось выше, развитие электрических систем передачи информации началось с изобретения П. Л. Шиллингом в 1832 году телеграфной линии с использованием иголок. В качестве линии связи использовался медный провод. Эта линия обеспечивала скорость передачи информации - 3 бит/с (1/3 буквы). Первая телеграфная линия Морзе (1844 г) обеспечивала скорость 5 бит/с (0,5 буквы). Изобретение в 1860 г. печатающей телеграфной системы обеспечивало скорость - 10 бит/с (1 буква). В 1874 г. система шестикратного телеграфного аппарата Бодо уже обеспечивала скорость передачи - 100 бит/с (10 букв). Первые телефонные линии, построенные на основе изобретенного в 1876 году Беллом телефона, обеспечивали скорость передачи информации 1000 бит/с (1кбит/с -100 букв).
Первая практическая телефонная цепь была однопроводной с телефонными аппаратами, включенными на ее концах. Данный принцип требовал большого количества не только соединительных линий, но и самих телефонных аппаратов. Это простое устройство в 1878 году было заменено первым коммутатором, который позволил осуществить соединение нескольких телефонных аппаратов через единое коммутационное поле.
До 1900 года первоначально используемые однопроводные цепи с заземленным проводом были заменены двухпроводными линиями передачи. Несмотря на то, что к этому времени уже был изобретен коммутатор, каждый абонент имел свою линию связи. Необходим был способ, позволяющий увеличить количество каналов без прокладки дополнительных тысяч километров проводов. Однако появление этого способа (системы уплотнения) задержалось до возникновения электроники в начале 1900 года. Первая коммерческая система уплотнения была создана в США, где в 1918 году между Балтиморой и Питсбуром начала работать четырехканальная система с частотным разделением каналов. До второй мировой войны большинство разработок было направлено на увеличение эффективности систем уплотнения воздушных линий и многопарных кабелей, поскольку по этим двум средам передачи были организованы почти все телефонные цепи.
Изобретение в 1920 году шести-двенадцати канальных систем передачи позволили увеличить скорость передачи информации в заданной полосе частот до 10 000бит/с, (10кбит/с - 1000 букв). Верхние граничные частоты воздушных и многопарных кабельных линий составляли соответственно 150 и 600 кГц. Потребности передачи больших объемов информации требовали создания широкополосных систем передачи.
В 30-40 годах ХХ века были внедрены коаксиальные кабели. В 1948 году между городами, находящимися на атлантическом и тихоокеанском побережьях США, фирмой «Bell System» была введена в эксплуатацию коаксиально-кабельная система L1. Эта коаксиально-кабельная система позволила увеличить полосу пропускания частот линейного тракта до 1,3 МГц, что обеспечивало передачу информации по 600 каналам.
После второй мировой войны велись активные разработки по совершенствованию коаксиально-кабельных систем. Если первоначально коаксиальные цепи прокладывались отдельно, то затем начали объединять несколько коаксиальных кабелей в общей защитной оболочке. Например, американская фирма Белл разработала в 60-е годы ХХ века межконтинентальную систему с шириной полосы 17,5 МГц (3600 каналов по коаксиальной цепи или «трубке»). Для этой системы был разработан кабель, в котором 20 «трубок» объединялись в одной оболочке. Общая емкость кабеля составила 32 400 каналов в каждом направлении, а две «трубки» оставались в резерве. кабельный волоконный передача информация
В СССР, примерно в это же время была разработана система К-3600 на отечественном кабеле КМБ 8/6, имеющем 14 коаксиальных цепей в одной оболочке. Затем появляется коаксиальная система с большей шириной полосы пропускания 60 МГц. Она обеспечивала емкость 9000 каналов в каждой паре. В общей оболочке объединены 22 пары.
Коаксиальные кабельные системы большой емкости в конце ХХ века обычно применялись для связи между близко расположенными центрами с высокой плотностью населения. Однако стоимость монтажа таких систем была высока из-за незначительного расстояния между промежуточными усилителями и вследствие большой стоимости кабеля и его прокладки.
2. История волоконно-оптических систем передачи информации
По современным воззрениям, все электромагнитные излучения, в том числе радиоволны и видимый свет, имеют двойственную структуру и ведут себя то как волнообразный процесс в непрерывной среде то как поток частиц, получивших название фотонов, или квантов. Каждый квант обладает определенной энергией.
Представление о свете как о потоке частиц впервые ввел Ньютон. В 1905 году А. Эйнштейн на основе теории Планка возродил в новой форме корпускулярную теорию света, которая сейчас называется квантовой теорией света. В 1917 году он теоретически предсказал явление вынужденного или индуцированного излучения, на базе использования которого впоследствии и были созданы квантовые усилители. В 1951 году советские ученые В. А. Фабрикант, М. М. Вудынский и Ф. А. Бутаева получили авторское свидетельство на открытие принципа действия оптического усилителя. Несколько позднее, в 1953 году предложение о квантовом усилителе было сделано Вебером. В 1954 г. Н. Г. Басов и А. М. Прохоров предложили конкретный проект молекулярного газового генератора и усилителя с теоретическим обоснованием. Независимо к идее аналогичного генератора пришли Гордон, Цейгер и Таунс, опубликовавшие в 1954 году сообщение о создании действующего квантового генератора на пучке молекул аммиака. Несколько позднее в 1956 г. Бломберген установил возможность построения квантового усилителя на твердом парамагнитном веществе, а в 1957 году такой усилитель был построен Сковелем, Фехером и Зайделем. Все квантовые генераторы и усилители, построенные до 1960 г., работали в СВЧ диапазоне и получили название мазеров. Это название происходит от первых букв английских слов «Microwave amplification by stimulated emission of radiation», что означает «усиление микроволн с помощью вынужденного излучения».
Следующий этап развития связан с перенесением известных методов в оптический диапазон. В 1958 году Таунс и Шавлов теоретически обосновали возможность создания оптического квантового генератора (ОКГ) на твердом теле. В 1960 году Мейман построил первый импульсный ОКГ на твердом теле - рубине. В этом же году вопрос об ОКГ и квантовых усилителях независимо был проанализирован Н. Г. Басовым, О. Н. Крохиным и Ю. М. Поповым.
В 1961 году Джанаваном, Беннетом и Эрриотом был создан первый газовый (гелий-неоновый) генератор. В 1962 г. был создан первый полупроводниковый ОКГ. Оптические квантовые генераторы (ОКГ) получили название лазеров. Термин «Лазер» образовался в результате замены буквы «м» в слове мазер на букву «л» (от английского слова «light - свет»).
После создания первых мазеров и лазеров начались работы, направленные на их использование в системах связи.
Волоконная оптика, как оригинальное направление техники, возникла в начале 50-х годов. В это время научились делать тонкие двухслойные волокна из различных прозрачных материалов (стекло, кварц и др.). Еще раньше было предсказано, что если соответствующим образом выбрать оптические свойства внутренней («сердечника») и наружной («оболочки») частей такого волокна, то луч света, введенный через торец в сердечник, будет только по нему и распространяться, отражаясь от оболочки. Даже если волокно изогнуть (но не слишком резко), луч будет послушно удерживаться внутри сердечника. Таким образом, световой луч - этот синоним прямой линии, - попадая в оптическое волокно, оказывается способным распространяться по любой криволинейной траектории. Налицо полная аналогия с электрическим током, текущим по металлическому проводу, поэтому двухслойное оптическое волокно часто называют светопроводом или световодом. Стеклянные или кварцевые волокна, толщиной в 2-3 раза больше человеческого волоса, очень гибки (их можно наматывать на катушку) и прочны (прочнее стальных нитей того же диаметра). Однако световоды 50-х годов были недостаточно прозрачны, и при длине 5-10 м свет в них полностью поглощался.
В 1966 г. была высказана идея о принципиальной возможности использования волоконных световодов для целей связи. Технологический поиск завершился успехом в 1970 г. - сверхчистое кварцевое волокно смогло пропустить световой луч на расстояние до 2 км. По сути дела, в том же году идеи лазерной связи и возможности волоконной оптики «нашли друг друга», началось стремительное развитие волоконно-оптической связи: появление новых методов изготовления волокон; создание других необходимых элементов, таких как миниатюрные лазеры, фотоприемники, оптические разъемные соединители и т. п.
Уже в 1973-1974 гг. расстояние, которое луч мог пройти по волокну, достигло 20 км, а к началу 80-х годов превысило 200 км. К этому же времени скорость передачи информации по ВОЛС возросла до невиданных ранее значений - в несколько миллиардов бит/с. Дополнительно выяснилось, что ВОЛС имеют не только сверхвысокую скорость передачи информации, но и обладают целым рядом других достоинств.
Световой сигнал не подвержен действию внешних электромагнитных помех. Более того, его невозможно подслушать т. е. перехватить. Волоконные световоды имеют отличные массогабаритные показатели: применяемые материалы имеют малую удельную массу, нет нужды в тяжелых металлических оболочках; простота прокладки, монтажа, эксплуатации. Волоконные световоды можно закладывать в обычную подземную кабельную канализацию, можно монтировать на высоковольтных ЛЭП или силовых сетях электропоездов и вообще совмещать их с любыми другими коммуникациями. Характеристики ВОЛС не зависят от их длины, от включения или отключения дополнительных линий - в электрических же цепях все это не так, и каждое подобное изменение требует кропотливых настроечных работ. В волоконных световодах в принципе невозможно искрение, и это открывает перспективу использования их во взрывоопасных и подобных им производствах.
Очень важен и стоимостной фактор. В конце прошлого века волоконные линии связи, как правило, по стоимости были соизмеримы с проводными линиями, но с течением времени, учитывая дефицит меди, положение непременно изменится. Эта убежденность основана на том, что материал световода - кварц - имеет неограниченный сырьевой ресурс, тогда как основу проводных линий составляют такие теперь уже редкие металлы, как медь и свинец. И дело даже не только в стоимости. Если связь будет развиваться на традиционной основе, то к концу века вся добываемая медь и весь свинец буду расходоваться на изготовление телефонных кабелей - а как развиваться дальше?
Заключение
Мы рассмотрели историю развития кабельных и оптико-волоконных систем передачи и установлено что в настоящее время оптические линии связи занимают доминирующее положение во всех телекоммуникационных системах, начиная от магистральных сетей до домовой распределительной сети. Благодаря развитию оптико-волоконных линий связи активно внедряются мультисервисные системы, позволяющие довести до конечного потребителя в одном кабеле телефонию, телевидение и Интернет.
Библиографический список
1. Самарский П. А. Основы структурированных кабельных систем - М.: Компания АйТи; ДМК Пресс, 2013г. - 216 с.
2. Бейли Д, Райт Э. Волоконная оптика. Теория и практика - М.: Кудиц-Образ, 2012г. -- 320 с.
3. Ломовицкий В.В., Михайлов А.И. Основы построения систем и сетей передачи информации - М.: Стериотип, 2011г -- 382 с.
4. Левин Д.Ю. История техники. История развития системы управления перевозочным процессом на железнодорожном транспорте - Новосибирск: УМЦ ЖДТ, 2014г. - 467 с.
5. Родина О.В. Волоконно-оптические линии связи - М.: Гриф, 2014г -- 400 с.
Размещено на Allbest.ru
Подобные документы
Порядок и принципы построения волоконно-оптических систем передачи информации. Потери и искажения при их работе, возможные причины появления и методы нейтрализации. Конструктивная разработка фотоприемного устройства, охрана труда при работе с ним.
дипломная работа [177,4 K], добавлен 10.06.2010Общие принципы построения волоконно-оптических систем передачи. Структура световода и режимы прохождения луча. Подсистема контроля и диагностики волоконно-оптических линий связи. Имитационная модель управления и технико-экономическая эффективность.
дипломная работа [3,8 M], добавлен 23.06.2011Перспектива развития волоконно-оптических систем передачи в области стационарных систем фиксированной связи. Расчет цифровой ВОСП: выбор топологии и структурной схемы, расчет скорости передачи, подбор кабеля, трассы прокладки и регенерационного участка.
курсовая работа [435,2 K], добавлен 01.02.2012Основы построения оптических систем передачи. Источники оптического излучения. Модуляция излучения источников электромагнитных волн оптического диапазона. Фотоприемные устройства оптических систем передачи. Линейные тракты оптических систем передачи.
контрольная работа [3,7 M], добавлен 13.08.2010Особенности волоконно-оптических систем передачи. Выбор структурной схемы цифровой ВОСП. Разработка оконечной станции системы связи, АИМ-модуляторов. Принципы построения кодирующих и декодирующих устройств. Расчёт основных параметров линейного тракта.
дипломная работа [2,8 M], добавлен 20.10.2011Преимущества оптических систем передачи перед системами передачи, работающими по металлическому кабелю. Конструкция оптических кабелей связи. Технические характеристики ОКМС-А-6/2(2,0)Сп-12(2)/4(2). Строительство волоконно-оптической линии связи.
курсовая работа [602,7 K], добавлен 21.10.2014Особенности систем передачи информации лазерной связи. История создания и развития лазерной технологии. Структура локальной вычислительной сети с применением атмосферных оптических линий связи. Рассмотрение имитационного моделирования системы.
дипломная работа [2,6 M], добавлен 28.10.2014Изучение радиотехнических систем передачи информации. Назначение и функции элементов модели системы передачи (и хранения) информации. Помехоустойчивое кодирование источника. Физические свойства радиоканала как среды распространения электромагнитных волн.
реферат [47,5 K], добавлен 10.02.2009История развития радиосистем передачи информации. Применение радиотелеметрических систем. Задачи космических РСПИ, технические требования к ним. Состав упрощенной структурной схемы передающей части РСПИ. Особенности работы информационных подсистем.
реферат [630,1 K], добавлен 10.03.2011Принцип работы аппаратуры линейного тракта систем передачи "Сопка-3М". Требования к линейным сигналам ВОСП и определение скорости их передачи. Принцип равномерного распределения регенераторов. Расчет детектируемой мощности и выбор оптических модулей.
курсовая работа [163,2 K], добавлен 27.02.2009