Стержневая диэлектрическая антенна
Структурная и принципиальная схемы антенно-фидерного тракта. Выбор типа линии передачи и расчет геометрических размеров облучателя и решетки. Расчет ДН облучателя и решетки в главных плоскостях. Расчет элементов фидерного тракта и конструкция излучателя.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 25.01.2015 |
Размер файла | 896,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное образовательное учреждение
высшего профессионального образования
«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»
КАФЕДРА ИНФОРМАЦИОННО-СЕТЕВЫХ ТЕХНОЛОГИЙ
КУРСОВАЯ РАБОТА (ПРОЕКТ)
ЗАЩИЩЕНА С ОЦЕНКОЙ
РУКОВОДИТЕЛЬ
Курсовой проект
Стержневая диэлектрическая антенна
Федорова Л. А.
должность, уч. степень, звание
РАБОТУ ВЫПОЛНИЛ
СТУДЕНТ ГР. 2115
Насимов В. С.
Санкт-Петербург 2014
Содержание
Введение
1. Структурная и принципиальная схемы антенно-фидерного тракта
2. Выбор типа линии передачи
3. Расчет геометрических размеров облучателя и решетки
4. Расчет ДН облучателя в главных плоскостях
5. Расчет ДН решетки в главных плоскостях и КУ
6. Расчет элементов фидерного тракта
7. Схема питания
8. Конструкция излучателя
Заключение
Введение
Антенны применяются как для излучения, так и для приема электромагнитных волн.
Предающая антенна - это элемент предающей радиостанции, который преобразует энергию токов высокой частоты в энергию электромагнитных волн и излучает их в заданных направлениях.
Приемная антенна выполняет обратную функцию: она преобразует энергию электромагнитных волн в энергию токов высокой частоты, обеспечивая при этом выделение волн, приходящих с заданных направлений.
В настоящее время существует большое многообразие различных антенн, в данной курсовой работе требуется спроектировать линейную решетку стержневых диэлектрических антенн, которая собрана из стержневых диэлектрических антенн.
Основными элементами стержневых диэлектрических антенн являются диэлектрический стержень 1(рис.1), металлическая обойма 2 и фидерная линия 3. Применяются стержни прямоугольного и круглого сечения. наряду со стержнями применяются диэлектрические трубки.
фидерный геометрический облучатель тракт
Поперечное сечение стержней, как правило, сужается от обоймы к свободному концу, а трубок - чаще остается постоянным по всей длине. Коническая форма стержня обусловлена тем, что в этом случае антенна хорошо согласуется со свободным пространством.
Из-за конструктивных и технологических преимуществ больше распространены трубки и стержни круглого сечения. Внутренняя полость металлической обоймы возбуждается при помощи коаксиального фидера или волновода и сама является, по сути, отрезком волновода, в свою очередь обойма возбуждает диэлектрический стержень, который является по сути своей диэлектрическим волноводом.
Стержневые диэлектрические антенны применяются на границе сантиметрового и дециметрового диапазонов в полосе частот от 2 до 10 ГГц.
Из теории диэлектрических волноводов известно, что в них могут распространяться как симметричные так и не симметричные волны. Симметричные волны, как правило, не используются в стержневых диэлектрических антеннах, т.к. в следствии осевой симметрии они не излучают вдоль оси стержня. Наиболее благоприятным для излучения энергии является тип волны , конфигурация электрического поля для этого типа волны изображена на рис.2:
С помощью одного стержня удается сформировать диаграмму направленности (ДН) шириной не меньше 20-25 градусов. В случае если данная ширина ДН не удовлетворяет предъявленным требованиям, то используют решетку из диэлектрических излучателей, в которой стержневые диэлектрические антенны являются отдельными излучателями.
Преимуществом диэлектрических антенн является малые поперечные размеры и простота конструкции. Диэлектрические антенны являются антеннами бегущей волны, поэтому сужение ДН таких антенн происходит за счет увеличения продольных, а не поперечных размеров. Это особенность позволяет размещать не выступающие диэлектрические антенны на гладкой поверхности фюзеляжей летательных аппаратов, что положительно сказывается на аэродинамических качествах.
Недостаток в том, что в диэлектрике существуют потери, которые ограничивают излучение больших мощностей.
Размещено на http://www.allbest.ru/
1. Структурная и принципиальная схемы антенно-фидерного тракта
Размещено на http://www.allbest.ru/
Рисунок 2.1 - Структурная схема радиотехнической системы.
АУ - антенное устройство. Преобразование направляемых ЭМ волн, движущихся от генератора по фидерной линии ко входу антенны, в расходящиеся ЭМ волны свободного пространства (для передающей антенны). Преобразование падающих свободных волн в направляемые волны фидера, подводящих принятую мощность ко входу приемника (для приемной) [3]
ВС по УМ - вращающееся сочленение по углу места. Осуществляет вращение АУ по углу места.
ВС по азимуту - вращающееся сочленение по азимуту. Осуществляет вращение АУ по азимуту.
АП - антенный переключатель. Переводит АУ в режим передачи/приема.
Передатчик - источник сигнала, модулятор,
Приемник - приемник сообщения (сигнала).
На рисунке 2.2 показана принципиальная схема антенно-фидерного тракта. ЭМ колебания СВЧ от генератора поступают в коаксиальный кабель. Для поворота волноводного тракта используются поворотные секции. Для обеспечения вращения АУ, устраиваются переходные устройства от коаксиального кабеля к круглому волноводу и вращающееся сочленение.
Рис. 2 Пример схемы волноводного тракта антенны радиолокационной станции
1-элемент связи, 2-прямоугольный волновод, 3-поршень, 4-фланцы, 5-антенный переключатель, 8-изогнутые секции, 7-переходные устройства, 8-вращающееся сочленение, 9-соглосование отдельных участков волноводного тракта, 10-стержневой или плоский
2. Выбор типа линии передачи
В аппаратуре сантиметровых и миллиметровых волн в качестве линий передачи наибольшее применение находят волноводы круглого сечения с использованием поля основного типа Н11.
Благодаря отсутствию изоляторов внутри волноводов, отсутствуют потери и отражения, связанные с этими изоляторами. В связи с меньшей концентрацией токов на внутренних поверхностях стенок волноводы обеспечивают передачи энергии с меньшими потерями. Благодаря большим размерам поперечного сечения , чем в кабелях, волноводы обладают значительно большей электрической прочностью и позволяют передавать большие мощности. Металлические волноводы отличаются сравнительной простотой изготовления, как следствие, дешевизной.
От генератора до волновода в качестве линии передач будет использоваться коаксиальный кабель для уменьшения веса и упрощения конструкции. В линии передач так же будут использоваться сплиттеры для разделения мощности в равной степени на каждую стержневую антенну.
3. Расчет геометрических размеров облучателя и решетки
В качестве облучателя диэлектрических стержней используется система синфазных волноводов, расположенных на определенном расстоянии друг от друга.
Длинна стержня выбрана равной двум длинам волн. Для удовлетворения условию широкой диаграммы направленности в вертикальной плоскости.
Исходя из уравнения - максимальный диаметр стержня 4,607 см. расстояние между стержнями меньше длинны волны, в нашем случае 8 см. Уравнение показало что в горизонтальной плоскости количество стержней 22, а в вертикальной 6 ().
В результате полученных данных - максимальные размеры антенной решётки в горизонтальной плоскости 2м 77,354 см. в вертикальной 77,642 см.
4. Расчет ДН облучателя в главных плоскостях
Диаграмма направленности системы синфазных излучателей в общем случае определяется следующей формулой:
, (5.1)
где - ДН одиночного излучателя (щели), -функция направленности системы из n ненаправленных излучателей, расположенных на расстоянии d друг от друга, она определяется следующим выражением:
, (5.2)
где ш - сдвиг фаз между точками соседних излучателей (в случае синфазной системы излучателей ш=0)
Используя выражение (5.1), можно рассчитать ДН линейного облучателя в плоскости, совпадающей с продольной осью облучателя и нормально к излучающему раскрыву линзы.
В плоскости, перпендикулярной продольной оси линейки излучателей, ДН облучателей будет определяться первыми двумя сомножителями выражения (5.1), т.е. зависеть только от выбранного типа одиночного излучателя и его ДН в соответствующей плоскости.
В данной работе в качестве одиночных излучателей выбраны щели.[2]
ДН одиночных излучателей в E- и H- плоскостях имеют вид:
В Е-плоскости:
(5.3)
Рисунок 5.1 - Диаграмма направленности одиночного излучателя в горизонтальной плоскости
В H-плоскости
Рисунок 5.2 - Диаграмма направленности одиночного излучателя в вертикальной плоскости
Облучатель создает ДН всей антенны в Н- плоскости.(вертикальной)
ДН линейной системы синфазных излучателей, и, как следствие, ДН всей антенной системы в Н-плоскости определяется формулой.
Таким образом определяется множителем решетки (5.2), который в нашем случае при ш=0 примет вид
Рисунок 5.3 - ДН облучателя
Выполним проверку на соответствие полученной ДН в Н- плоскости с техническим заданием
При ц=1,5 значение ДН fn
Fn(1.5)=0.68
Из этого следует, что полученная ДН в Н-плоскости полностью соответствует техническому заданию.
5. Расчет ДН решетки в главных плоскостях и КУ
ДН решетки рассчитывается по формуле:
(7.1)
По формуле (7.1 ) построим диаграмму направленности решетки в горизонтальной плоскости.
В вертикальной:
Уровень бокового лепестка не превышает -20дБ
6. Расчет элементов фидерного тракта
Источники излучения изготавливаются из отдельных сборочных единиц, которые стыкуются с помощью SMA-коннекторов с коаксиальным кабелем, это обеспечивает удобство монтажа и ремонта.
SMA-коннектор (Sub-Miniature version A) служит для подключения коаксиального кабеля с волновым сопротивлением 50 Ом. Разработан в 1960-х годах. Используется в СВЧ-устройствах. Разъём обладает повышенной надежностью и прочностью. Имеет резьбовое соединение 1/4"-36 (примерно М6x0,75). Вилка (разъем типа «папа») имеет 0,312-дюймовую (7,925 мм) шестигранную гайку, внутреннюю резьбу и выступающий контакт. В SMA разъемах используется политетрафторэтиленовый диэлектрик.
SMA-разъёмы рассчитаны на 500 циклов подключения-отключения, но для достижения этого необходимо правильно закручивать разъем при подключении. Для этого требуется, чтобы 5/16-дюймовый динамометрический ключ был установлен на 0,3 до 0,6 Н*м для медных и 0,8-1,1 Н*м для стальных разъёмов.
Разъёмы SMA рассчитаны на работу от постоянного тока до 18 ГГц, но некоторые версии рассчитаны на 26,5 ГГц. Для других частот используются SMA-подобные разъемы. Это 3,5-мм разъемы, рассчитаные на ток до 34 ГГц и 2,92 мм (также известный как 2,9 мм, или К-типа), подходят до 46 ГГц. Они сохранили ту же наружную резьбу, как у SMA, поэтому все они могут быть связаны, но SMA-подобные разъёмы используют воздух как диэлектрик. Тем не менее время службы разъемов сократится при соединении разъемов с низкокачественными разъемами SMA.
Сплиттер с генератором соединяется по средствам FME-коннектора.
FME-коннектор служит для подключения коаксиального кабеля с волновым сопротивлением 50 Ом. Предназначены для работы на частотах до 2 ГГц включительно. Используются для соединения оконечных устройств систем подвижной связи, радиоудлинителей, сотовых терминалов и т.п. с мобильными антеннами и адаптированы к интерфейсам UHF, Mini UHF, TNC, BNC и N. Конструктив гнездовой части коннектора (rotating nipple) позволяет ей вращаться на 360° с последующей фиксацией соединения накидной гайкой, что обеспечивает гибкость при подключении мобильной аппаратуры связи.
7. Схема питания
Самый распространенный способ создания антенных решеток позволяющих производить сканирование это фазированные антенные решетки -ФАР. Существуют активные и пассивные ФАР. В активных ФАР каждый элемент решетки возбуждается от отдельного фазируемого генератора. В пассивных ФАР все излучатели возбуждаются от одного генератора, энергия которого с помощью распределительных фазируемых устройств разделяется между элементами решетки.
Выберем параллельную схему питания, т.к она имеет следующие преимущества:
1) Такая схема позволяет использовать сравнительно маломощные фазовращатели.
2) Сигнал приходит на каждый элемент решетки с одинаковым ослаблением.
3) Отсутствует накопление фазовых ошибок вдоль раскрыва.
На рис. 13 приведена схема питания:
Сплиттер распределяет энергию, поступающую от генератора, между излучателями. далее энергия поступает на фазовращатели, которые обеспечивают требуемый сдвиг фазы между соседними излучателями, затем, через плавный переход от прямоугольного волновода к круглому волноводу, энергия поступает непосредственно к элементам решетки - диэлектрическим антеннам.
8. Конструкция излучателя
Излучатель представляет собой диэлектрический стержень, вставленный в круглый волновод. В круглом волноводе возбуждается волна с помощью плавного перехода от прямоугольного волновода к круглому.
Чертеж излучателя приведен на рис.14:
Заключение
В данной курсовой работе спроектирована антенная решетка диэлектрических стержневых антенн, удовлетворяющая заданным в техническом задании параметрам.
Размещено на Allbest.ru
Подобные документы
Структурная схема радиотехнической системы. Принципиальная схема антенно-фидерного тракта. Расчет основных геометрических размеров облучателя и зеркала. Расчет диаграммы направленности облучателя в главных плоскостях. Расчет элементов фидерного тракта.
курсовая работа [2,0 M], добавлен 08.12.2015Геометрический расчет основных размеров облучателя. Определение геометрических размеров параболического зеркала. Расчет ДН облучателя, поля в апертуре и ДН зеркала, конструкции антенны. Выбор фидерного тракта. Расчет диаграммы направленности антенны.
курсовая работа [1,9 M], добавлен 27.12.2011Область применения и описание строения зеркальных параболических антенн. Выбор типа зеркала, облучателя и тракта, канализирующего энергию к облучателю. Расчет фидерного тракта и его КПД, максимального КНД антенны и допусков на точность ее изготовления.
курсовая работа [1,1 M], добавлен 27.10.2011Расчет размеров и параметров рупорной антенны. Линия передачи - фидерный тракт антенны. Вычисление КПД антенно-фидерного тракта и мощности передатчика. Эксплуатация антенно-фидерного устройства. Определение типа волновода исходя из размеров сечения.
практическая работа [150,7 K], добавлен 05.12.2010Применение и устройство зеркальных параболических антенн, их преимущества и недостатки. Выбор геометрических размеров рупорного облучателя и зеркала. Построение диаграммы направленности антенны. Расчет фидерного тракта, вращающихся сочленений и узлов.
курсовая работа [1,2 M], добавлен 20.02.2013Определение элементов конструкции антенны. Выбор геометрических размеров рупорной антенны. Определение типа возбуждающего устройства, расчет его размеров. Размеры раскрыва пирамидального рупора. Расчет диаграммы направленности и фидерного тракта антенны.
курсовая работа [811,9 K], добавлен 30.07.2016Описание характеристик антенны, предназначенной для радиолокационного обнаружения. Выбор формы и расчет амплитудного распределения поля раскрыва зеркала. Определение параметров облучателя и фидерного тракта. Конструкция антенны и согласующего устройства.
курсовая работа [514,1 K], добавлен 23.12.2012Разработка параболической антенны РЛС с частотой 1.2 ГГц. Проведение анализа выбора типа облучателя для данной рабочей частоты антенны. Построение диаграммы направленности облучателя в различных плоскостях. Подбор и расчет геометрических размеров зеркала.
курсовая работа [2,6 M], добавлен 03.01.2009Применение линзовых антенн. Формирование различных диаграмм направленности. Выбор функции амплитудного распределения поля в раскрыве зеркала. Зависимость толщины линзы от фокусного расстояния. Расчет размеров облучателя. Выбор фидерного тракта.
курсовая работа [643,7 K], добавлен 18.12.2011Определение геометрических параметров антенной решетки. Расчет диаграммы направленности диэлектрической стержневой антенны, антенной решетки. Выбор и расчет схемы питания антенной решетки. Выбор фазовращателя, сектор сканирования, особенности конструкции.
курсовая работа [2,7 M], добавлен 06.07.2010