Вихретоковый неразрушающий контроль
Виды методов вихретокового неразрушающего контроля. Измерение амплитуды сигнала преобразователя. Частота сигнала параметрического преобразователя, включенного в колебательный контур автогенератора. Контроль объектов из электропроводящих материалов.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 25.01.2014 |
Размер файла | 187,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное образовательное учреждение высшего профессионального образования
"Самарский государственный университет"
Реферат
по предмету: Основы технической диагностики
"Вихретоковый неразрушающий контроль"
г. Самара
Содержание
1. Общие понятия
2. Виды методов вихретокового неразрушающего контроля
3. Вихретоковый метод контроля: область применения
4. Преимущества вихретокового метода контроля
5. Особенности применения вихретокового метода
1. Общие понятия
Неразрушающий контроль (НК), говоря языком нормативных документов - это контроль, который не разрушает.
Вихретоковый неразрушающий Контроль (Eddy current nondestructive testing) - Неразрушающий контроль, основанный на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых в объекте контроля этим полем.
2. Виды методов вихретокового неразрушающего контроля
1. Амплитудный метод вихретокового неразрушающего контроля. Метод вихретокового неразрушающего контроля, основанный на измерении амплитуды сигнала преобразователя.
2. Фазовый метод вихретокового неразрушающего контроля - Метод вихретокового неразрушающего контроля, основанный на измерении фазы сигнала преобразователя.
3. Амплитудно-фазовый метод вихретокового неразрушающего контроля - Метод вихретокового неразрушающего контроля, основанный
на измерении проекции вектора напряжения преобразователя на направлении отстройки.
4. Частотный метод вихретокового неразрушающего контроля. Метод вихретокового неразрушающего контроля, основанный на измерении частоты сигнала параметрического вихретокового преобразователя, включенного в колебательный контур автогенератора.
5. Многочастотный метод вихретокового неразрушающего контроля.
Метод вихретокового неразрушающего контроля, основанный на анализе и (или) синтезе сигналов вихретокового преобразователя, обусловленных взаимодействием электромагнитного поля различной частоты с объектом контроля.
6. Переменно-частотный метод вихретокового неразрушающего контроля - Метод вихретокового неразрушающего контроля, основанный на анализе и (или) синтезе амплитуды и частоты сигнала вихретокового преобразователя при постоянном за счет изменения частоты заданном значении обобщенного параметра.
7. Импульсный метод вихретокового неразрушающего контроля. Метод вихретокового неразрушающего контроля, основанный на измерении амплитуды и (или) длительности сигнала вихретокового преобразователя импульсной формы, обусловленного взаимодействием нестационарного электромагнитного поля с объектом контроля
8. Абсолютный метод вихретокового неразрушающего контроля. Метод вихретокового неразрушающего контроля, основанный на измерении сигнала вихретокового преобразователя, на который воздействует абсолютное значение контролируемого параметра.
9. Модуляционный метод вихретокового неразрушающего контроля.
Метод вихретокового неразрушающего контроля, основанный на анализе сигнала вихретокового преобразователя, модулируемого в результате изменения в пространстве параметров объекта, при относительном перемещении преобразователя и объекта контроля.
10. Дифференциальный метод вихретокового неразрушающего контроля. Метод вихретокового неразрушающего контроля, основанный на измерении сигнала вихретокового преобразователя, обусловленного приращением контролируемого параметра.
11. Спектральный метод вихретокового неразрушающего контроля. Метод вихретокового неразрушающего контроля, основанный на измерении спектрального состава сигнала вихретокового преобразователя.
Вихретоковые МНК основаны на исследовании взаимодействия электромагнитного поля вихретокового преобразователя с наводимым в объекте контроля электромагнитным полем вихревых токов, имеющих частоту до 1 млн Гц.
На практике данный метод используют для контроля объектов, которые изготовлены из электропроводящих материалов. С его помощью получают информацию о химическом составе и геометрическом размере изделия, о структуре материала, из которого объект изготовлен и обнаруживают дефекты, залегающие на поверхности и в подповерхностном слое (на глубине 2-3 мм). Типичный прибор используемый этим методом - вихретоковый дефектоскоп.
Принцип контроля заключается в следующем. С помощью катушки индуктивности 1 в объекте контроля 3 возбуждаются вихревые токи 2, регистрируемые приёмным измерителем, в роли которого выступает та же самая или другая катушка. По интенсивности распределения токов в контролируемом объекте можно судить о размерах изделия, свойствах материала, наличии несплошностей.
Рис.3 - Вихретоковый МНК (прохождения)
На рисунке 3 изображен вихретоковый метод прохождения (возбуждающая катушка и приёмник расположены по двум сторонам объекта). К основным методам вихретокового контроля также относят
· метод рассеянного излучения (регистрация рассеянных волн или частиц, отраженных от дефекта);
· эхо-метод или метод отраженного излучения (регистрируются отраженные от дефекта поля и волны).
3. Вихретоковый метод контроля: область применения
В основе вихретокового метода контроля лежит анализ того, как внешнее электромагнитное поле взаимодействует с электромагнитным полем вихревых токов, которые этим самым полем наводятся в конкретном объекте.
Современный вихретоковый неразрушающий контроль позволяет диагностировать самые разные электропроводящие материалы.
Металлы.
Сплавы.
Графит.
Полупроводники.
При помощи вихретокового метода неразрушающего контроля обнаруживают несплошности, измеряют точные размеры, выявляют вибрации, определяют физико-механические характеристики и состояние объектов. вихретоковый параметрический автогенератор электропроводящий
На сегодняшний день вихретоковый неразрушающий контроль позволяет выполнять техническую диагностику:
электропроводящих прутков;
проволоки;
труб;
листов;
пластин;
покрытий (не исключая и многослойные);
железнодорожных рельсов;
корпусов атомных реакторов;
шариков и роликов подшипников;
крепежных деталей и иных промышленных изделий.
А так же к области применения вихретокового контроля относятся.
Авиастроение. В этой отрасли метод занимает особое место, так как здесь его используют как в процессе производства самолетов, вертолетов и прочей авиационной техники, так и на стадии активной эксплуатации. Здесь при помощи вихретокового метода контроляосуществляется диагностика крыльев, фюзеляжей, колесных дисков, компонентов двигателей, роторов, осей, крепежных отверстий и др.
Нефтегазовая отрасль. Основные объекты здесь - нефтепроводы, трубопроводы, газопроводы, резервуары и пр.
В целом, вихретоковый неразрушающий контроль актуален везде, где требуется проверять лакокрасочные, гальванические, защитные, изоляционные и другие покрытия на основании из металла.
В железнодорожном транспорте вихретоковый контроль применяется для оценки состояния рельсового пути.
4. Преимущества вихретокового метода контроля
К его преимуществам обычно относят, прежде всего, высокую чувствительность к микроскопическим дефектам, которые находятся на поверхности либо в непосредственной близости от исследуемого участка металлического объекта. Вихретоковый неразрушающий контроль эффективен даже в том случае, если между исследуемым объектом и преобразователем есть небольшой зазор (от нескольких долей миллиметра до нескольких миллиметров).
Отличие данного метода от ультразвукового контроля заключается в том, что вихретоковый датчик не нуждается в использовании контактной жидкости.
Вихретоковый метод неразрушающего контроля для многих привлекателен еще и сравнительно высокой скоростью проведения. Даже если объект имеет сложную геометрию либо находится в труднодоступном месте, такой контроль вполне возможен и эффективен.
5. Особенности применения вихретокового метода
Вихретоковые методы основаны на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте контроля. Плотность вихревых токов в объекте зависит от геометрических электромагнитных параметров объекта, а также от взаимного положения измерительного вихревого преобразователя (ВТП) объекта. В качестве преобразователя используют обычно индуктивные катушки (одну или несколько). Синусоидальный и импульсный ток, действующий в катушках ВТП, создает электромагнитное поле, которое возбуждает вихревые токи в электропроводящем объекте. Электромагнитное поле вихревых ЭДС воздействует на катушки преобразователя, наводя в них С или изменяя их полное электрическое сопротивление, регистрируя напряжение на зажимах катушки или их сопротивление, получают информацию о свойствах объекта и о положении преобразователя относительно него.
ЭДС (или сопротивление) преобразователя зависит от многих параметров объекта контроля, т.е. информация, даваемая преобразователем, многопараметровая. Это определяет как преимущество, так и трудности реализации вихретоковых методов (ВТМ). С одной стороны, ВТМ позволяют осуществить многопараметровый контроль; с другой стороны, требуются специальные приемы для разделения информации об отдельных параметрах объекта. При контроле одного из параметров влияние остальных на сигнал преобразователя становится мешающим, тому это влияние необходимо уменьшать.
Особенность вихретокового контроля в том, что его можно проводить без контакта преобразователя и объекта. Их взаимодействие происходит обычно на расстояниях, достаточных свободного движения преобразователя относительно объекта долей миллиметра до нескольких миллиметров). Поэтому ми методами можно получать хорошие результаты контроля даже при высоких скоростях движения объектов.
Получение первичной информации в виде электрических сигналов, бесконтактность и высокая производительность определяют широкие возможности автоматизации вихретокового контроля.
Одна из особенностей ВТМ состоит в том, что на сигналы преобразователя практически не влияют влажность, давление и загрязненность газовой среды, радиоактивные излучения, загрязнение поверхности объекта контроля непроводящими веществами.
Простота конструкции преобразователя - еще одно преимущество ВТМ. В большинстве случаев катушки помещают предохранительный корпус и заливают компаундами. благодаря этому они устойчивы к механическим и атмосферным воздействиям, могут работать в агрессивных средах в широком интервале температур и давлений.
ВТМ основаны на возбуждении вихревых токов, а поэтому применяются в основном для контроля качества электропроводящих объектов: металлов, сплавов графита полупроводников благоприятных условиях контроля и малом влиянии мешающих факторов удается выявить трещины глубиной 0,10,2 мм, протяженностью 12 мм (при использовании накладного преобразователя) или протяженностью около 1 мм и глубиной 15% от диаметра контролируемой проволоки или прутка (при использовании проходного преобразователя).
ВТМ позволяют успешно решать задачи контроля размеров изделий. Этими методами измеряют диаметр проволоки, прутков и труб, толщину металлических листов и стенок труб при одностороннем доступе к объекту, толщину электропроводящих (например, гальванических) и диэлектрических (например, лакокрасочных) покрытий на электропроводящих основаниях, толщину слоев многослойных структур, содержащих электропроводящие слои. Измеряемые толщины могут изменяться в пределах от микрометров до десятков миллиметров. Для большинства приборов погрешность измерения 25%. Минимальная площадь зоны контроля может быть доведена до 1 мм 2, что позволяет измерить толщину покрытия на малых объектах сложной конфигурации. С помощью ВТМ измеряют зазоры, перемещения и вибрации в машинах и механизмах.
Структурное состояние металлов и сплавов влияет на их электрические и магнитные характеристики. Благодаря этому оказывается возможным контролировать не только однородность химического состава, но и структуру металлов и сплавов, а также определять механические напряжения. Широко применяют вихретоковые измерители удельной электрической проводимости и другие приборы для сортировки металлических материалов и графитов по маркам (по химическому составу). С помощью вихретоковых приборов контролируют качество термической и химикотермической обработки деталей, состояние поверхностных слоев после механической обработки (шлифование, наклеп), обнаруживают остаточные механические напряжения, выявляют усталостные трещены в металлах на ранних стадиях их развития, обнаруживают наличие афазы и т.д.
Классификация и применение вихретоковых преобразователей (ВТП). По рабочему положению относительно объекта контроля преобразователи делят на проходные, накладные и комбинированные.
Накладные ВТП обычно представляют собой одну или несколько катушек, к торцам которых подводится поверхность объекта (рис. 1). Катушки таких преобразователей могут быть круглыми коаксиальными (рис. 1, а), прямоугольными (рис. 1, б), прямоугольными крестообразными (рис. 1, в), с взаимно перпендикулярными осями (рис. 1, г) и др.
Рис.2. Накладные преобразователи с сердечниками: а - цилиндрическим; б - прямоугольным; в - полуброневого типа; г - в виде полутороида
Накладные преобразователи выполняют с ферромагнитными сердечниками или без них. Благодаря ферромагнитному сердечнику (обычно ферритовому) несколько повышается абсолютная чувствительность преобразователя и уменьшается зона контроля за счет локализации магнитного потока. На рис. 2 приведены некоторые типы преобразователей с сердечниками. Здесь 2R - эквивалентный геометрический параметр ВТП, входящий в формулу для определения обобщенного параметра контроля р.
Проходные ВТП делят на наружные, внутренние, погружные. Отличительная особенность проходных ВТП в том, что в процессе контроля они проходят либо снаружи объекта, охватывая его (наружные, рис. 3, ав), либо внутри объекта (внутренние, рис. 3, г, д), либо погружаются в жидкий объект (погружные, рис. 3, е, ж). Обычно проходные ВТП имеют однородное магнитное поле в зоне контроля, в результате чего радиальные смещения однородного объекта контроля не влияют на выходной сигнал преобразователя. Для этого длина L возбуждающей обмотки должна не менее чем в 34 раза превышать ее диаметр D, а длина Ly измерительной обмотки, размещенной в середине возбуждающей обмотки, должна быть значительно меньше длины последней. Однородное поле получают также, применяя возбуждающую обмотку, выполненную в виде колец Гельмгольца, и измерительную - в виде короткой катушки.
Комбинированные преобразователи представляют собой комбинацию накладных и проходных ВТП. На рис. 4, а показаны некоторые разновидности комбинированных ВТП. К ним относятся также ВТП в виде линейнопротяженных витков или рамок, которые можно условно назвать линейными (рис. 4, б).
Особую разновидность представляют собой экранные ВТП, отличающиеся тем, что их возбуждающие и измерительные обмотки разделены контролируемым объектом. Различают накладные экранные ВТП (рис. 5, о) и проходные экранные ВТП - соответственно преобразователи первого и второго типов (рис. 5, б, в).
По виду преобразования параметров объекта в выходной сигнал преобразователя ВТП делят на трансформаторные и параметрические. В трансформаторных ВТП, имеющих как минимум две обмотки (возбуждающую и измерительную), параметры объекта контроля преобразуются в напряжение измерительной обмотки, а в параметрических ВТП, имеющих, как правило, одну обмотку, - в комплексное сопротивление. Преимущество параметрических ВТП заключается в их простоте, а недостаток, который в трансформаторных ВТП выражен значительно слабее, - в зависимости выходного сигнала от температуры преобразователя.
В зависимости от способа соединения обмоток различают абсолютные дифференциальные ВТП.
Выходной сигнал абсолютного ВТП определяется абсолютным значением параметров объекта, а дифференциального приращениями этих параметров. На рис. 6 приведены схемы проходных трансформаторных ВТП (на рис. 6, а показана схема абсолютного ВТП, а на рис. 6, б - дифференциального). Выходной сигнал дифференциального ВТП зависит и от абсолютных значений параметров объекта, но при малых приращениях этих параметров можно считать, что он определяется только приращениями.
Накладными ВТП контролируют в основном объекты с плоскими поверхностями и объекты сложной формы. Эти преобразователи применяют также, когда требуется обеспечить локальность и высокую чувствительность контроля. Наружными проходными ВТП контролируют линейное протяжение объекта (проволоку, прутки, трубы и т.д.); применяют их и при массовом контроле мелких изделий. Внутренними проходными ВТП контролируют внутренние поверхности труб, а также стенки отверстий в различных деталях. Проходные ВТП дают а--с проходной возбуждающей и накладной измерительными обмотками; б - линейные интегральную оценку контролируемых параметров по периметру объекта, поэтому они обладают меньшей чувствительностью к локальным вариациям его свойств.
Погружные ВТП применяют для контроля жидких сред, экранные накладные - для контроля листов, фольги, тонких пленок, а экранные проходные - для контроля труб.
С помощью дифференциальных ВТП "самосравнения" можно резко повысить отношение сигнал/помеха в дефектоскопии. При этом обмотки преобразователя размещают так, чтобы их сигналы исходили от близкорасположенных участков контроля одного объекта. Это позволяет уменьшить влияние плавных изменений электрофизических и геометрических параметров объектов. При использовании проходных преобразователей с однородным магнитным полем в зоне контроля значительно уменьшается влияние радиальных перемещений объекта. Применяя экранные накладные преобразователи, можно практически исключить влияние смещений объекта между возбуждающей и измерительной обмотками. Преобразователи с взаимно перпендикулярными осями обмоток (см. рис. 1, г) нечувствительны к изменению электрофизических характеристик однородных объектов. При нарушении однородности объекта, например при появлении трещин, на выходе такого преобразователя возникает сигнал. Аналогично работают и комбинированные преобразователи (см. рис. 4, а, б). Они также могут быть применены для дефектоскопии. Их недостаток заключается в сильном влиянии перекосов осей преобразователей относительно поверхности объектов контроля.
Чтобы уменьшить влияние края объекта на сигналы ВТП, применяют концентраторы магнитного поля в виде ферритовых сердечников (рис. 2) и электропроводящие неферромагнитные экраны, вытесняющие магнитное поле из занятой ими зоны. При размещении экранов в торцах проходных преобразователей влияние краев объектов контроля уменьшается, но при этом ухудшается однородность поля в зоне контроля. Специальные экраны с отверстиями могут служить "масками", при этом отверстие служит источником магнитного поля, возбуждающего вихревые токи в объекте. При использовании "масок" значительно снижается чувствительность ВТП, но повышается их локальность. Повышения локальности ВТП добиваются также комбинацией кольцевых ферромагнитных сердечников с электропроводящими неферромагнитными (обычно медными) экранами и короткозамкнутыми витками, вытесняющими магнитный поток из сердечников в зону контроля (рис. 7, а, б) [2]. Кольцевые ферритовые сердечники служат также основой щелевых ВТП, применяемых для контроля проволоки (рис. 7, в, г). Для ослабления влияния радиальных перемещений объекта контроля на сигналы ВТП применяют экранирование магнитопр овода вблизи щели с целью повышения однородности магнитного поля в щели.
Трансформаторные ВТП обычно включают по дифференциальной схеме. При этом возможны схема сравнения со стандартным образцом и схема "самосравнения". В первом случае рабочий и образцовый ВТП не связаны индуктивно и имеют независимые измерительные и возбуждающие обмотки. Во втором случае возбуждающая обмотка часто служит общей для двух измерительных. При включении ВТП по дифференциальной схеме повышается стабильность работы прибора. Однако в ряде случаев измерительную обмотку включают последовательно с компенсатором, представляющим собой регулятор амплитуды и фазы напряжения. При этом компенсатор выполняет роль образцового ВТП: когда рабочий ВТП контролирует стандартный образец, то компенсатором устанавливается требуемое напряжение компенсации. Такая схема позволяет устранить нестабильность, связанную с разогревом стандартного образца вихревыми токами.
При использовании дифференциальной схемы обычно не исключается применение компенсатора, который в этом случае необходим для компенсации напряжения, вызванного не идентичностью рабочего и образцового ВТП, и включается последовательно со встречновключенными измерительными обмотками.
Компенсаторы часто выполняют в виде разнообразных фазорегуляторов и аттенюаторов - пассивных (RC и LC типов) и активных. Эффективны компенсаторы в виде регуляторов действительной и мнимой составляющих вектора компенсирующего напряжения.
Параметрические ВТП включают в схему, преобразующую изменение их комплексного сопротивления в изменение амплитуды и фазы (или частоты) напряжения. При включении параметрических ВТП в резонансные контуры, а также в контуры автогенераторов абсолютная чувствительность устройства повышается.
Размещено на Allbest.ru
Подобные документы
Электромагнитные методы неразрушающего контроля. Особенности вихретокового метода неразрушающего контроля. Основные методы возбуждения вихревых токов в объекте. Дефектоскопы многоцелевого назначения. Использование тепловых метода неразрушающего контроля.
реферат [782,1 K], добавлен 03.02.2009Определения в области испытаний и контроля качества продукции, понятие и контроль. Проверка показателей качества технических устройств. Цель технического контроля. Классификация видов и методов неразрушающего контроля. Электромагнитные излучения.
реферат [552,7 K], добавлен 03.02.2009Основные свойства математической, аналитической, имитационной моделей преобразователя частоты. Измерение интермодуляционной и амплитудной характеристик, параметров блокирования; зависимость от значений амплитуды колебаний гетеродина преобразователя Аг.
курсовая работа [331,7 K], добавлен 01.12.2011Описание модели упрощения обработки поступающего сигнала. Структурная схема преобразователя аналоговой информации. Расчет принципиальной схемы устройства: блок интегрирования, генератор прямоугольных импульсов, источник напряжения и усилитель мощности.
курсовая работа [254,0 K], добавлен 22.12.2012Расчет автогенератора, входная характеристика транзистора КТ301Б. Расчет спектра сигнала на выходе нелинейного преобразователя. Схема нелинейного преобразователя, делителя напряжения. Спектр тока, напряжения. Расчет электрических фильтров, усилителя.
курсовая работа [1,4 M], добавлен 01.02.2011Разработка автоматизированного дефектоскопа для сдаточного ультразвукового контроля бесшовных стальных труб. Методы и аппаратура контроля. Способ ввода ультразвука в изделие. Тип преобразователя и материала пьезоэлемента. Функциональная схема устройства.
курсовая работа [1,3 M], добавлен 14.01.2015Аналитическое и экспериментальное исследование прохождения амплитудно-модулированного (АМ) колебания через одиночный колебательный контур и систему связанных колебательных контуров. Частота модулирующего сигнала. Входное и выходное напряжение.
лабораторная работа [666,1 K], добавлен 20.11.2008Расчет и моделирование двухконтурной входной цепи. Потери мощности сигнала в колебательном контуре. Нестабильность коллекторного тока. Отклонение частоты сигнала от центрального значения. Структура линейного тракта. Коэффициент связи между катушками.
курсовая работа [3,2 M], добавлен 25.12.2014Произведение расчета автогенератора, спектра сигнала на выходе нелинейного преобразователя, развязывающего устройства, электрических фильтров, выходного усилителя с целью проектирования прибора, вырабатывающего несколько гармонических колебаний.
курсовая работа [707,6 K], добавлен 04.06.2010Расчет автогенератора, спектра сигнала на выходе нелинейного преобразователя, электрических фильтров для второй и третьей гармоники. Расчет масштабного, развязывающего и выходных усилителей. Спецификация резистора, усилителя, конденсатора, транзистора.
курсовая работа [496,6 K], добавлен 28.05.2015